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Abstract. We use a convolutional neural network (CNN) to
identify plumes of nitrogen dioxide (NO2), a tracer of com-
bustion, from NO2 column data collected by the TROPO-
spheric Monitoring Instrument (TROPOMI). This approach
allows us to exploit efficiently the growing volume of satel-
lite data available to characterize Earth’s climate. For the pur-
poses of demonstration, we focus on data collected between
July 2018 and June 2020. We train the deep learning model
using six thousand 28× 28 pixel images of TROPOMI data
(corresponding to ' 266 km× 133 km) and find that the
model can identify plumes with a success rate of more than
90 %. Over our study period, we find over 310 000 individ-
ual NO2 plumes, of which ' 19 % are found over mainland
China. We have attempted to remove the influence of open
biomass burning using correlative high-resolution thermal
infrared data from the Visible Infrared Imaging Radiome-
ter Suite (VIIRS). We relate the remaining NO2 plumes
to large urban centres, oil and gas production, and major
power plants. We find no correlation between NO2 plumes
and the location of natural gas flaring. We also find persis-
tent NO2 plumes from regions where inventories do not cur-
rently include emissions. Using an established anthropogenic
CO2 emission inventory, we find that our NO2 plume distri-
bution captures 92 % of total CO2 emissions, with the re-
maining 8 % mostly due to a large number of small sources
(< 0.2 g C m−2 d−1) to which our NO2 plume model is less
sensitive. We argue that the underlying CNN approach could
form the basis of a Bayesian framework to estimate anthro-
pogenic combustion emissions.

1 Introduction

The Paris Agreement (PA) is the current inter-government
vehicle that describes a progressive reduction in greenhouse
gas (GHG) emissions to mitigate dangerous climate change,
described as an increase larger than 2 ◦C in global mean tem-
perature above pre-industrial values. Whether it will achieve
its stated goals depends on commitments of its signatories to
establish and more importantly realize stringent plans to re-
duce effectively national GHG emissions. The PA includes
two main activities – quinquennial global stocktakes (GSTs)
and nationally determined contributions (NDCs) – that de-
scribe pledged emission reductions during successive GSTs.
Given the implications of non-compliance and the need to
make large and rapid emission reductions, measurement, re-
porting and verification (MRV) systems are being developed
that will help guide nations on the effectiveness of policies
(Janssens-Maenhout et al., 2020). The main focus of these
MRV systems is anthropogenic emissions of carbon dioxide
(CO2) and methane. One of the challenges faced by all these
MRV systems is separating the anthropogenic and natural
components of CO2 and methane fluxes. Here, we use a deep
learning model to identify automatically satellite-observed
plumes of nitrogen dioxide (NO2), a proxy for combustion, to
locate combustion hotspots, e.g. oil and gas industry, cities,
and powerplants.

Burning of fossil fuels, representing emissions of 9–
10 Pg C yr−1 (Friedlingstein et al., 2020), has been shown un-
equivocally to impact Earth’s climate via rising atmospheric
levels of gases such as CO2 and methane that can absorb
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and radiate infrared radiation. The distribution of these emis-
sions is heterogeneous across the globe, disproportionately
focused on cities, oil and gas extraction facilities, energy gen-
eration facilities, and flows of physical trade that rely heav-
ily on shipping and road transportation (Poore and Nemecek,
2018). Compiled inventories, which rely on self-reporting,
provide estimates on these emissions but rely on assump-
tions such as fuel consumption, combustion efficiencies, and
emission rates that can sometimes lead to inaccurate values.
Cities are responsible for almost three-quarters of the fos-
sil fuel contribution to atmospheric CO2 (Edenhofer et al.,
2014), but questions remain about the veracity of reported
emissions (e.g. Gurney et al., 2021) and the disproportionate
role of a small number of super-emitters (e.g. Duren et al.,
2019). We know where most power plants are geographically
located, but new and large coal-fired power plants continue
to be built and commissioned in countries such as China and
India, potentially compromising their short-term climate am-
bitions within the PA. The rate of their construction often
outpaces updates to inventory estimates. International ship-
ping only represents a few per cent of global CO2 emissions,
but they appear to be going up (International Marine Orga-
nization, 2020). The importance of accurate emission esti-
mates becomes even more prevalent at smaller geographi-
cal and temporal scales. Reported annual country-level emis-
sions of CO2 tend to be reasonably accurate but are typically
not sufficiently detailed to support targeted policy develop-
ment. Given the importance of establishing accurate national
and sub-national emission baselines from which to reduce
emissions as part of the PA, it is essential we have a robust
measurement-based approach to estimate emissions of CO2
and methane to complement inventory estimates.

A growing body of work has been using satellite obser-
vations to study point sources of CO2 (Bovensmann et al.,
2010; Kort et al., 2012; Hakkarainen et al., 2016; Nassar
et al., 2017; Broquet et al., 2018; Brunner et al., 2019;
Kuhlmann et al., 2019; Zheng et al., 2019; Wang et al.,
2019; Kuhlmann et al., 2020; Strandgren et al., 2020; Wang
et al., 2020; Wu et al., 2020; Yang et al., 2020; Ye et al.,
2020; Zheng et al., 2020) and methane (Varon et al., 2019;
de Gouw et al., 2020; Varon et al., 2021), taking advan-
tage of global measurement coverage, subject to clear skies.
Even with the 0.3 % precision of CO2 columns detected by
the NASA Orbiting Carbon Observatory-2 instrument, dilu-
tion of point source emissions across a 3 km2 grid box could
potentially result in the directly overhead column being ele-
vated but not elevate the measurements immediately down-
wind except under exceptional circumstances. Other studies
have recognized this shortcoming and have taken advantage
of trace gases that are co-emitted with CO2 and methane dur-
ing the combustion process. For many industrial combustion
processes, air provides the source of molecular oxygen nec-
essary for the fuel to burn. While molecular nitrogen (N2)
in the air does not take part in the combustion reaction, the
temperatures involved can thermally dissociate N2 to facil-

itate the production of NO (and to a lesser extent NO2). In
the absence of widespread use of scrubbers that remove ni-
trogen oxides from combustion exhaust and with the subse-
quent influence of photochemistry that rapidly interconverts
NO and NO2, NO2 is widely assumed to be a robust proxy
for combustion CO2 (Reuter et al., 2019; Liu et al., 2020;
Hakkarainen et al., 2021; Ialongo et al., 2021). The main
advantage of using NO2 as a tracer of combustion is its at-
mospheric e-folding lifetime, which ranges from hours to a
day in the lower troposphere. Consequently, any major sur-
face emissions will result in an observable plume close to the
point of emission.

All of these studies represent case studies or a small num-
ber of case studies, reflecting the difficulty of locating CO2
plumes and coincident measurements of NO2. This piece-
meal approach is inconsistent with the vast volume of data
being produced by the current generation of satellite instru-
ments, in particular the TROPOspheric Monitoring Instru-
ment (TROPOMI), and limits our ability to quantify the
changing influence of CO2 hotspots on the global carbon
cycle. Here, we address this issue by using a deep learning
algorithm to detect automatically NO2 plumes. This work
builds on earlier remote sensing image detection studies that
use machine learning, e.g. Lary et al. (2016) and Maxwell
et al. (2018). As we show, the number of plumes found in
any single year is O(105), allowing us to study more system-
atically how NO2 can be used to study combustion emission
of carbon. Although the NO2 plume detection algorithm does
not quantify anthropogenic emissions of CO2 or methane, it
provides a method to refine the development of future MRV
systems, which can directly feed into policy decisions.

In Sect. 2 we discuss the TROPOMI NO2 and thermal
anomaly data that we use to identify anthropogenic plumes
of NO2. We also describe the deep learning method we use,
including our approach to supervised learning, which un-
derpins our ability to automatically detect NO2 plumes. In
Sect. 3 we report the performance of our NO2 plume detec-
tion method and use the ensemble of plumes to assess how
well it detects CO2 emissions described by an established
inventory. We conclude the paper in Sect. 4, including a dis-
cussion of next steps.

2 Data and methods

We describe the TROPOMI-retrieved data of NO2 columns
that we use to study combustion and VIIRS biomass burning
data we use to isolate the influence of fossil fuel combustion.
We also describe the development of our deep learning model
to detect NO2 plumes.
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2.1 Satellite data

2.1.1 TROPOMI column observations of NO2

We use level 2 tropospheric column NO2 data retrieved from
the TROPOspheric Monitoring Instrument (TROPOMI),
launched in 2017. We use 2 years of NO2 column data
from July 2018 to June 2020. These data are taken from
the Sentinel-5P Pre-Operations Data Hub (https://s5phub.
copernicus.eu/dhus/, last access: 25 April 2021). For further
information about these level 2 data products we refer the
reader to studies dedicated to NO2 (Boersma et al., 2011;
Van Geffen et al., 2015; Lorente et al., 2017; Zara et al.,
2018).

TROPOMI is a UV–Vis–NIR–SWIR (UV–visible–near-
infrared–short-wave infrared) spectrometer aboard the
Copernicus Sentinel-5 Precursor (S5-P) satellite, which is in
a sun-synchronous orbit with a local equatorial overpass time
of 13:30. TROPOMI has a swath width of 2600 km divided
into 450 across-track pixels, which during our study period
have dimensions of 7 km× 3.5 km (across× along track) for
NO2. This sampling strategy results in near-daily global cov-
erage (Veefkind et al., 2012), subject to cloud-free scenes. In
this study, we only use pixels with a quality flag > 0.75, as
recommended by the TROPOMI Level 2 Product User Man-
uals.

2.1.2 VIIRS thermal anomaly data

We use thermal anomaly data from the Visible Infrared
Imaging Radiometer Suite (VIIRS) on board the Suomi Na-
tional Polar-orbiting Partnership (NPP) satellite, launched
in 2011 as a proxy to identify NO2 plumes from biomass
burning. We use the 375 m Level 2 VNP14 product from
https://firms.modaps.eosdis.nasa.gov/download/ (last access:
18 March 2021). VIIRS provides near twice-daily global
coverage at a spatial resolution of 750 m. During the study
period we found 16 056 612 vegetation fires spotted by VI-
IRS after discarding low-confidence data.

We attribute an NO2 plume to biomass burning if it is
within 15 km of a biomass burning scene identified by VI-
IRS. We chose that distance criterion because it corresponds
to approximately 2 TROPOMI pixels and should account for
any offset error in determining the plume centre. We find
that a 5–10 km adjustment to this criterion does not signif-
icantly affect our results. Development of a more sophis-
ticated method, taking account of other trace gas measure-
ments, is outside the scope of this study.

For the purposes of this study, we discard biomass burn-
ing scenes to focus on anthropogenic combustion source, but
we acknowledge that the converse to this approach is also
scientifically valid.

2.2 Deep learning model to identify NO2 plumes

To automatically detect plumes of NO2 from TROPOMI
data, we used a convolutional neural network (CNN) based
on a deep learning model that contains four convolutional
and two fully connected (FC) layers.

CNNs first use a series of convolutional layers, each with
multiple filters which extract features (e.g. lines, orientation,
clustering) from small sections of the input image. Each layer
has an increasing number of filters and finds higher levels of
features (progressively incomprehensible to humans). Maxi-
mum pooling layers are added between convolutional layers
to reduce the spatial size of the convolved feature, reducing
the computational power required. This is achieved by pass-
ing a 2× 2 pixel kernel over the image and extracting the
maximum value, helping extract dominant features. After the
convolution, the data are passed to multiple FC layers that
learn which features are important in categorizing the image.
The final FC layer is the output layer, which returns a cate-
gorization of the input image along with a confidence in the
result.

Figure 1 shows a simplified schematic of the CNN archi-
tecture we use to create our plume identification model. The
input image is first passed through two convolutional layers
with 32 and 64 filters, respectively, followed by a maximum
pooling layer. We then randomly drop 50 % of the layers
from the model, which helps to prevent overfitting of the data
(as recommended by Srivastava et al., 2014). The remaining
data are then passed through two more convolutional layers
of 128 and 256 filters, respectively, and another maximum
pooling layer. This is followed by dropping another 50 % of
the layers and flattening the array to one dimension to be
fed into the FC layer that contains 512 nodes. Each CNN
layer is then passed into a rectified linear unit (ReLU) acti-
vation function before going into the next layer. The last FC
is passed into a softmax function to calculate the probabil-
ities that the image contains a plume or not. The optimizer
used here is an AdamOptimizer, which helps to reduce the
cost calculated by cross-entropy. The model has a total of
4 892 770 trainable parameters.

Supervised learning strategy

To train our CNN model we use example images of
TROPOMI NO2 that can be classified as containing a plume
or not. Each image is 28× 28 pixels (approximately corre-
sponding to 200 km× 100 km) and was individually normal-
ized to remove the influence of the magnitude of NO2 fea-
tures, a step that also ensures the model parameters have a
similar data distribution and therefore improves the model
efficiency and accuracy. We acknowledge that normalizing
each individual image could potentially lead to false detec-
tion if the background noise resembles a plume; the alterna-
tive of normalizing the images to a standard value decreases
the model’s ability to detect smaller emission sources and
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Figure 1. Simplified schematic of the convolutional neural network architecture to identify NO2 plumes. See main text for further details.

Figure 2. Three examples of individually normalized images of
TROPOMI tropospheric column NO2 that contain a plume.

may lead to a larger number of false negatives. Figure 2
shows three example images from the level 2 TROPOMI
NO2 data considered to contain plumes used in the train-
ing dataset. For an emission source to create a plume de-
tectable by TROPOMI, the source must be subject to winds
strong enough to disperse the emissions across multiple pix-
els within the lifetime of NO2. We anticipate that the number
of occurrences where these conditions are not met will be
relatively small compared to the entire dataset and therefore
should not have an adverse effect on our results.

Determining whether an image contains a plume or not is
a non-trivial task that is subject to human judgement and is
consequently prone to error. Plumes are highly variable in
both size and shape and can potentially be obscured by other
features in the image; in some instances, multiple plumes can
be found within a single image. In the first instance, we used
a crowd-sourcing approach where participants were asked to
determine whether an image contained a plume. A total of
41 participants classified 1565 unique images and created
13 750 classifications, a mean of 8.8 classifications per im-
age. This is further described in Appendix A. However, we
found that this approach did not produce consistent results,
with a larger number of images inconclusively classified by
the participants than the number of images for which the par-
ticipants agreed. This result emphasizes the role of human

bias in identifying plumes, which in the absence of any post-
training check compromises the performance of the CNN
model.

Due to the lack of agreement in our crowd-sourced ap-
proach to plume identification, we created a dataset for this
study based on the authors’ judgement. Subjective judgement
of the images could lead to small variations in repeated ex-
periments, and therefore a more rigorous approach may be
needed for future applications. We selected a total of 6086
images (3043 of which contained a plume) from across the
globe for all times of year to minimize regional and seasonal
biases. We used an iterative process to select images to train
the model. We started with an initial set of images, randomly
selected images that contained at least one plume, and cor-
rected the classification if necessary, ensuring an equal num-
ber of true and false images were included in the training set.
The images were then randomly split in an 80 : 20 ratio to
train the CNN model and test the trained model. We find that
the resulting CNN model achieves an accuracy of > 90 %
when compared against the test data.

Using the developed plume identification model, we pro-
cessed 2 years (July 2018–June 2020) of TROPOMI tropo-
spheric NO2 data, resulting in 18 million individual 28× 28
pixel images. Prior to running the model, we discarded im-
ages that included > 40 % invalid pixels, i.e. data that did not
match the TROPOMI quality threshold as described above;
this quality control step reduced the number of processed im-
ages to approximately 7.2 million. We then passed these im-
ages to our CNN model, which returned a Boolean variable
that describes whether a plume was identified and an associ-
ated confidence level associated with the identification. We
discard images for which the confidence threshold < 75 %.
We find that our results are moderately sensitive to this value,
with an approximate 10 % change in the number of plumes
found when changing the confidence threshold by ±15 %.
This confidence threshold can be adjusted to increase the
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number of identified plumes but at the expense of the confi-
dence of the plumes being reported. For each image in which
a plume was identified, we extract the geographical coordi-
nates of the plume by identifying the image pixel with the
maximum value. We acknowledge that this method could
lead to inaccuracies as the maximum pixel value in the image
will not necessarily correspond to the origin of the plume and
may not identify all plumes (e.g. images that contain multi-
ple plumes), but we consider this to be a minor source of er-
ror. The area of one TROPOMI NO2 pixel is approximately
24 km2, so the plume origin could easily fall within this area.
Each image has an associated timestamp from the satellite,
allowing us to build a dataset of the location and time of
plumes spotted by TROPOMI.

3 Results

First, we assess the performance of the CNN model to iden-
tify plumes on global and regional spatial scales. We then use
the locations of these plumes to study their ability to identify
anthropogenic combustion sources of CO2.

3.1 CNN model performance

Over our 2-year study period, the CNN model identified
310 020 images that contained at least one plume. After ex-
tracting the geographical locations for each plume location,
we identified 62 040 (20 %) images that were within 15 km
of an active fire as determined by VIIRS thermal anomaly
data and categorize these NO2 plumes as being associated
with biomass burning. We assign the remaining 247 980 NO2
plumes as originating from anthropogenic combustion.

3.1.1 Global-scale plume distributions

Figure 3 shows the location of NO2 plumes from fossil fuel
and biomass burning over our study period. We find that
anthropogenic combustion is widespread across the globe
(Fig. 3a), with a focus over northern mid-latitudes, India
and China, as expected. We also find coherent distributions
of NO2 plumes over the ocean along established shipping
routes. On the global scale, this is particularly noticeable in
the Bay of Bengal between southern India and Southeast
Asia and between the Cape of Good Hope, north-western
Africa, and eastern Brazil. Shipping lanes are clearer on the
regional scales we report below.

The cluster of plumes over northern Alaska (Fig. 3a) is
an excellent example of a geographic region where NO2
emissions are dwarfed compared to other point sources on a
global scale, so it will not typically appear as a hotspot using
other detection methods. We believe these are genuine de-
tections, which we link to petroleum extraction activities in
the National Petroleum Reserve–Alaska in the Alaska North
Slope region.

Figure 3. Geographical locations of individual TROPOMI NO2
plumes identified using a CNN model, July 2018–June 2020.
We attribute these plumes to (a) anthropogenic combustion or
(b) biomass burning, depending on whether the plume falls within
15 km of the nearest VIIRS thermal anomaly measurement.

The distribution of biomass burning NO2 plumes (Fig. 3b)
identified using the CNN model and VIIRS data highlights
geographical regions where we expect seasonal fire activ-
ity, with a high density of plumes over western, central, and
eastern Africa; Colombia; Venezuela; Brazil; and Australia.
We account for the seasonal variation in fire activity by us-
ing daily VIIRS data and remove fire-influenced scenes from
those identified by our CNN.

We acknowledge that a number of plumes that we clas-
sify as anthropogenic combustion occur in locations where
we expect biomass burning, e.g. central Australia, various re-
gions across the tropics, Siberia, and North America. We also
acknowledge that anthropogenic plumes could be incorrectly
labelled as biomass burning, especially where these emission
types are co-located. While this suggests that our use of VI-
IRS is imperfect, we find that our approach broadly achieves
its goal.

3.1.2 Regional-scale plume distributions

Figure 4 shows anthropogenic combustion plumes we iden-
tify from July 2018 to June 2020 over Europe, the con-
tiguous US and southern Canada, China, and the Mid-
dle East. We have broadly classified these hotspots as ma-
jor urban areas, power stations, and flaring regions. We
identify major urban areas (populations > 200 000) based
on data from https://www.naturalearthdata.com/downloads/
10m-cultural-vectors/10m-populated-places/ (last access:
10 March 2021), fossil fuel power stations taken from
the Global Power Plant Database (https://datasets.wri.org/
dataset/globalpowerplantdatabase, last access: 10 March
2021, Byers et al., 2019), and oil and gas flaring regions
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based on data from https://skytruth.org/flaring/ (last access:
10 April 2021). We acknowledge that the power station
database will be incomplete due to data availability and reli-
ability across the globe (Byers et al., 2019). The location of
oil and gas flaring used here, determined by nighttime ther-
mal anomaly data from VIIRS, is clustered spatially and tem-
porally and therefore may not coincide with the TROPOMI
local overpass time of 13:30.

We find that the highest-density plumes are found over
large cities, e.g. Paris, Madrid, Riyadh, Beijing, Los Angeles,
and New York, and over busy ports such as Rotterdam, Porto,
Cairo, and Hong Kong (Fig. 4a, b, c). Ship tracks are clearly
seen through the Strait of Gibraltar (Fig. 4a) and the Red Sea
leading to the Suez Canal (Fig. 4d). Plumes over China, Ko-
rea, and Japan are so dense they begin to overlap (Fig. 4c).
We also find clusters of NO2 plumes over and around power
stations and flaring regions, with some notable exceptions,
e.g. North Sea oil fields (Fig. 4a), the oil fields in Oman
and north-western Egypt (Fig. 4d), and the large number of
power stations in the Midwestern United States (Fig. 4b).
The poor correspondence between flaring regions and NO2
plumes may be due to differences in the overpass times of
the data used, as discussed above. In general, the location
of the NO2 plumes and the coincidence with cities, power
plants and established shipping routes provide us with confi-
dence of the CNN model we have developed. Discrepancies
between known sources and the large areas of clustered NO2
plumes, especially over China and India, and power plants
that do not have any associated plumes suggest that invento-
ries being used to identify power plants are out of date. Fur-
ther discrepancies may be due to detecting sources outwith
the inventories used in this analysis (e.g. small settlements
with large industrial emissions). Achieving this level of de-
tail using conventional plume detection methods would be
difficult.

Table 1 shows the top 10 countries with the most fossil fuel
plumes identified over the 2-year study period. China con-
tains the most plumes, representing 20 % of all the plumes
found during our study period. These plumes are mainly
located around the highly urbanized and heavily industrial
east of China (Fig. 4c), encompassing Beijing, Hebei, and
Shenyang in the north-east. India is a close second with 17 %,
where most plumes are over New Delhi, Mundra Port in the
north-western Gujarat region and large coal mining areas to
the north-east of the country (Fig. 3a). Russia is responsible
for 12 % of plumes, spread over multiple cities and fossil fuel
extraction works across the west of the country. The Middle
East, including Iran, Saudi Arabia, and Iraq, is collectively
responsible for more than 26 % of plumes. These plumes are
mostly coincident with known regions of petroleum extrac-
tion and processing. Values over eastern Egypt appear to fol-
low the Nile and abruptly stop before Sudan. Plumes over
the US mainly coincide with major urban areas and flaring
regions, with clusters found over some of the major oil and
gas extraction sites, e.g. San Juan Basin, Permian Basin, Nio-

Table 1. Top 10 countries containing the most fossil fuel plumes
identified by TROPOMI NO2 plumes, July 2018–June 2020.

Rank Country Number of % total
Plumes

1 China 27 290 19.9
2 India 23 258 17.0
3 Russia 17 225 12.6
4 Iran 16 035 11.7
5 Saudi Arabia 14 924 10.9
6 USA 13 873 10.1
7 Mexico 7387 5.4
8 Kazakhstan 6197 4.5
9 Egypt 5389 4.0
10 Iraq 5336 3.9

brara Formation, and Bakken Formation. There is also some
evidence of oil and gas extraction over Mexico, e.g. Burro-
Picachos and Sabinas, and over Kazakhstan, e.g. the Aktobe
oil fields.

We acknowledge that statistics reported here will reflect
the number of cloud-free days over specific regions. The
frequency of global plume detections does change every
month but does not show any seasonal cycle (not shown),
even though there is a seasonal cycle of plume detections at
high latitudes due to low sun angles during winter. Over our
study period, the monthly mean number of fossil fuel NO2
plumes is 11 100, and the monthly mean number of biomass
burning NO2 plumes is 2787. The largest number of fossil
fuel plumes and biomass burning plumes was found during
March 2019 and August 2018, respectively. Persistence of
plume detection locations (Fig. 4) provides confidence that
we are observing point sources. We find a total of 21 802
plumes detected over the oceans, mostly focused along ships
tracks.

Table 2 shows the 20 cities across the globe with the most
fossil fuel plumes identified over our 2-year study period.
As previously discussed, cities that are likely to have more
high-quality (cloud-free) retrievals are more likely to have
plumes spotted over them; however the list of cities with the
largest number of plumes is as expected based on knowledge
of their large emissions. All of these 20 cities are within lat-
itudes 35◦ S–35◦ N. Five of the cities are in India, with two
each in neighbouring Pakistan and Bangladesh. Los Ange-
les and Phoenix are the only two US cities on the list, and
there are two in Mexico (Mexico City and Torreón) and two
in South America (Buenos Aires and Santiago). The others
are in northern Africa (Cairo, Egypt, and Khartoum, Sudan),
Indonesia, and South Korea. No cities in China are found in
the top 20 despite most plumes being found in the country.
We attribute this to large areas of industry in China being
located outwith city boundaries.
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Figure 4. Geographical locations of individual anthropogenic combustion plumes (denoted by blue dots) identified from TROPOMI
tropospheric-NO2-column data using a CNN model, July 2018–June 2020. (a) Europe, (b) North America, (c) China, and (d) the Mid-
dle East. Also shown are the locations of major urban areas (populations > 200 000) denoted by grey circles; coal, oil and nature gas power
stations denoted by red squares; and oil and gas flaring locations denoted by orange rectangles.

3.2 What fraction of anthropogenic CO2 emissions are
identified using NO2 plumes?

The low frequency of corresponding TROPOMI NO2 mea-
surements and satellite observations of CO2 precludes any
meaningful statistical analysis of CO2 : NO2 (not shown).
We anticipate that this will improve with the launch of new
satellites, particularly with the Copernicus CO2 constellation
(CO2M) due for launch in 2025 and the Japanese Global
Observing SATellite for Greenhouse gases and Water cycle
(GOSAT-GW) due for launch in 2023.

To help us understand the fraction of global anthropogenic
CO2 emissions that are identified using our plume identifi-
cation model, we sample the Open-source Data Inventory
for Anthropogenic CO2 (ODIAC; 2020 release; Oda and
Maksyutov, 2011; Oda et al., 2018; Oda and Maksyutov,
2021) where there is an NO2 plume. We use the monthly
1◦× 1◦ ODIAC gridded land CO2 emissions dataset for 2018
and 2019, and in the absence of 2020 data we use the 2019

ODIAC emissions for January–June 2020 to compare against
the plume dataset. We do not anticipate that the COVID-19-
related lockdowns of 2020 will significantly impact our re-
sults as the reduction in CO2 emissions was less than ex-
pected (Tollefson, 2021). We sample the ODIAC dataset be-
tween −50–50◦ north to remove the impact of fewer obser-
vations during winter months. For this comparison, we as-
sume that all anthropogenic combustion sources of CO2 in
the ODIAC dataset co-emit NO2 and therefore can be used
as geographical validation for the plume detection dataset.

We sample the ODIAC dataset at the location and month
of each NO2 plume identified using our model. Figure 5
shows the cumulative percentage of total emissions and the
corresponding emission rate described as a function of the
percentage of sources (from large to small) for the entire
ODIAC dataset and the ODIAC dataset sampled at the NO2
plume locations. We find that for ODIAC emissions, large
sources (> 1 g C m−2 d−1) account for approximately 25 %
of all sources but contribute approximately 90 % of the to-
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Table 2. Top 20 cities containing the most fossil fuel plumes over
the study period.

Rank City Number of
plumes

1 Delhi, India 1015
2 Los Angeles, USA 738
3 Dhaka, Bangladesh 726
4 Cairo, Egypt 654
5 Phoenix, USA 537
6 Lahore, Pakistan 516
7 Kabul, Afghanistan 516
8 Khartoum, Sudan 491
9 Surabaya, Indonesia 462
10 Rawalpindi, Pakistan 412
11 Kolkata, India 409
12 Ahmedabad, India 378
13 Chittagong, Bangladesh 367
14 Buenos Aires, Argentina 360
14 Santiago, Chile 360
16 Mexico City, Mexico 354
17 Torreón, Mexico 349
18 Surat, India 325
19 Mumbai, India 321
20 Seoul, South Korea 321

Figure 5. The cumulative total emission percentage as a function
of source size (black) and emission rate as a function of source size
(red) for all ODIAC (solid line) and ODIAC sampled at plume lo-
cations (dotted line).

tal emissions. The ODIAC emissions sampled by the NO2
plumes accounted for 92 % of all global CO2 emissions, de-
scribed by 56 % of all sources. The remaining 8 % of emis-
sions, described by 44 % of all sources, typically have val-
ues of < 0.18 g C m−2 d−1. This suggests that our method of
identifying NO2 plumes is biased towards the largest end of
the emission spectrum and is less sensitive to the smallest
emissions. This limit of detection does not lead to a large
discrepancy in the total emissions being sampled by the NO2
plumes, reflecting the disproportionate role of large emission
sources in the total emission budget.

Figure 6 shows the ODIAC emissions where no NO2
plumes were detected. Out of these undetected sources, 95 %
have emission rates < 0.18 g C m−2 d−1, and only nine loca-
tions have an emission rate > 1 g C m−2 d−1, denoted by the
green circles. Five of these locations are situated in the USA,
with the remaining in Colombia, China, Japan, and Slove-
nia. The locations in the USA are all between large cities,
connected by highways that are not described by single point
sources. The source in Colombia is located in an area of per-
sistent cloud cover (> 80 % of the year) and therefore will
have fewer high-quality observations from TROPOMI. The
reason for the missed large sources over China, Japan, and
Slovenia is unclear.

Figure 5 also shows that 10 % of our plumes do not cor-
respond to ODIAC CO2 emissions. This is due mostly to
plumes over the ocean associated with ship tracks (Figs. 3
and 4), but there will be instances where fires have not been
removed using our VIIRS criterion (described above) and
possibly false detections. Here, we also consider the possi-
bility that the emission inventory is incomplete for some rea-
son.

Figure 7 shows four examples of clusters of plumes spot-
ted by the detection method which do not have any associ-
ated ODIAC emissions. The clustering of the plumes sug-
gests that they are highly unlikely to be false detections, and
the persistence of the features over multiple years suggests
that it is unlikely to be biomass burning. Although accurate
determination of the emissions associated with these hotspots
is outside the scope of this paper, we hypothesize based on
satellite imagery from Google Maps that these are regions of
fossil fuel extraction and processing (coal in China and oil
and gas in Mali, Saudi Arabia, and Iraq). Having the abil-
ity to detect these plumes automatically provides a method
of frequently updating emission inventories. Although these
clusters of plumes could be persistent errors from highly re-
flective features such as salt lakes and solar panels, it is un-
likely that they would appear as plume-shaped anomalies and
therefore are less likely to be picked up by the CNN model.
As well as errors in the TROPOMI retrieval leading to false
detections in the final dataset, errors may also occur during
the creation of the model (e.g. mislabelled training data). A
single plume data point may not represent a real-life plume
and should be considered in the context of other data (e.g.
frequent recurrence, land use, proximity to other sources).
Further refinement of the training dataset, model parameters,
and data analysis stages will reduce the number of false de-
tections, and feedback to the TROPOMI community could
help reduce the number of retrieval errors.

4 Discussion and conclusions

We have developed a convolutional neural network (CNN)
to identify plumes of atmospheric nitrogen dioxide (NO2),
a tracer of combustion. We have trained the model us-
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Figure 6. CO2 emission rates as per the ODIAC inventory where no plumes were detected. The green circles indicate sources greater than
1 g C m−2 d−1.

Figure 7. Example locations with plume clusters that are not associated with ODIAC CO2 emissions. The light-grey lines show major roads,
and urban areas are shown by grey patches.

ing a small subset of available images from the TROPO-
spheric Monitoring Instrument, aboard Sentinel-5P. The re-
sulting CNN, capable of identifying plumes with a success
rate > 90 %, reveals a rich distribution of plumes across the
globe, which correspond to large city centres, power plants,
oil and gas production, and shipping routes. Many of these

features would be difficult to isolate without the use of a deep
learning model.

The impetus for our study is using NO2 as a tracer for an-
thropogenic emissions of CO2 and methane from combus-
tion. We aim to demonstrate the potential of this method
to exploit NO2 observations in conjunction with other rel-
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evant data and known relationships with gases such as CO2
and methane to improve emission estimates. The main ad-
vantage of using NO2 is its comparatively short atmospheric
lifetime, allowing elevated values to be related to local emis-
sions. We have attempted to remove biomass burning using
thermal anomaly data, which are often used to locate open
biomass burning. This is not a perfect method, but our results
suggest that it works reasonably well. To evaluate our abil-
ity to observe anthropogenic emissions of CO2 we have used
the Open-Data Inventory for Anthropogenic Carbon dioxide
(ODIAC) (Oda et al., 2018), an established emission inven-
tory used widely by the community. We have chosen this
approach because we found the number of coincident mea-
surements of TROPOMI NO2 and OCO-2/GOSAT CO2 was
not sufficient to generate meaningful statistics (not shown).
By sampling ODIAC at the location of NO2 plumes, we
find that the CNN model describes 92 % of global anthro-
pogenic CO2 emissions. The remaining 8 % of emissions,
mostly < 0.2 g C m−2 d−1, provide an effective limit of de-
tection for our method.

Our use of NO2 to describe anthropogenic emissions of
CO2 and methane relies on them being co-emitted. We find
no evidence in the literature of NOx scrubbers being used for
power plants, although they are used by the chemical indus-
try, which is a sector that represents a comparatively small
emission of CO2. The validity of using NO2 as a proxy for
CO2 emissions may change in the future as non-catalytic re-
duction and low-NOx burner technologies begin to mature.
We find no correlation between NO2 plumes and the loca-
tion of natural gas flaring, which is unexpected since this
will be a major form of combustion and therefore should re-
sult in a significant source of NO2. We have no explanation
for this observation, except if flaring occurs at preferential
times of day that do not coincide with the early afternoon
overpass time of TROPOMI. Our approach will also miss
direct CO2 and methane emissions, e.g. pipeline leaks, coal
mines (Palmer et al., 2021). For these sources, we still have
to rely on highly spatially resolved CO2 and methane data
(Varon et al., 2021). In contrast, we also find persistent NO2
plumes from regions where ODIAC does not currently in-
clude CO2 emissions that may be real or reflect false posi-
tives. False positives can result from data retrieval errors or
from human error in the supervised learning strategy neces-
sary to develop the CNN model. Based on the location and
inspection of satellite imagery provided by Google Maps we
suggest that these are likely to be associated with new areas
where fossils fuels are being extracted or combusted for en-
ergy generation. This demonstrates how NO2 plumes could
be used to inform emission inventories about the location of
new point sources across the globe. Generally, it is important
for domain-level expertise to evaluate data products devel-
oped by deep learning models to minimize the influence of
false positives.

The NO2 plume detection algorithm does not quantify an-
thropogenic emissions of CO2 or methane, but it provides a

method to refine the development of measurement, reporting
and verification systems that form the backbone of the Paris
Agreement. The launch of the Copernicus CO2 service, in-
cluding a constellation of satellites that will measure CO2,
methane, and NO2, will result in a step change in the num-
ber of coincident measurements and will thereby improve our
ability to simultaneously use NO2 with CO2 and methane to
quantify anthropogenic emissions of CO2 and methane.

Appendix A: Supervised learning using crowd sourcing

We created a temporary online tool that briefly describes
what a plume is with a few examples of what they can look
like and then displays 18 images in a 6× 3 grid. These im-
ages were selected at random from an initial 1565 unique
images which were compiled by the authors. Each partici-
pant was then invited to click on the images in the grid which
they considered to contain a plume and then to submit their
selection. Once their results were submitted, the participant
was asked to classify 18 more random images. We then used
these results to determine how many true (contains a plume)
or false (does not contain a plume) classifications each im-
age received. We designed this method to reduce the amount
of human error and individual judgement on what could be
considered a plume or not.

A total of 41 participants classified 1565 unique images
and created 13 750 classifications, a mean of 8.8 classifica-
tions per image. The number of classifications per participant
is unknown as this was an online tool open to the public and
relied on how much time they were willing to give.

For this crowd sourcing experiment, there were approx-
imately 580 images for which 0 %–10 % of classifications
were true, i.e. high confidence that these images do not con-
tain a plume. There were approximately 130 images for
which 90 %–100 % of classifications were true. For the re-
maining (' 800) images there was little agreement between
the participants about whether they included a plume or not.
Since the majority of the images from the initial dataset did
not have a high level of agreement on whether they contained
a plume or not, we decided that this dataset was not suitable
to train our model.

Going forward, this experiment could be refined to help
improve the results and give us more confidence in the classi-
fications of the images. The experiment assumed that all im-
ages did not contain a plume unless the participant changed
the classification; this meant that if a participant did not see
an image then it would be considered not to contain a plume.
We also noticed that what was considered a plume changed
depending on the surrounding images. If the participant is
unsure whether an image contains a plume or not, they may
be more likely to keep the image classification as false if a
surrounding image contained a clearer plume or vice versa if
the surrounding images definitely did not contain a plume.
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