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Abstract—Identifying groups of patients with similar morbid-
ity profiles can help us understand the relationships between
their pre-existing conditions and the risks of adverse events
in the ICU. To find such groups, common approaches apply
clustering algorithms such as k-means and latent class analysis.
However, these techniques present drawbacks such as the lack
of principled methods for choosing the number of clusters, the
need for assumptions about the relationships between variables,
and outputs which are hard to explain. To overcome these
limitations, we map the problem of patient clustering to that
of community detection in complex networks. We construct a
bipartite network in which nodes represent patients and their
features, including morbidities and demographics. Then, we find
homogeneous groups of patients using stochastic block modeling
(SBM), an unsupervised probabilistic approach to find structure
in networks. We show that this approach has several advantages
over traditional clustering methods, and enables us to retrieve
more fine-grained clusters that are commonly missed by existing
approaches. We also show that these clusters have a stronger
relationship with mortality and sepsis rates of patients in the
ICU.

Index Terms—Multimorbidity, Patient clustering, Critical care,
AI for healthcare, Community detection, Unsupervised learning,
Stochastic block modeling, Networks for health

I. INTRODUCTION

With the global population getting older and older, the
prevalence of long-term illnesses has become the main chal-
lenge in healthcare [1]. This becomes even more apparent in
critical care, where the medical outcome of a patient depends
on the interaction of a number of factors. The coexistence of
multiple long-term illnesses, or multimorbidity, is one of the
most important of such factors and it heavily contributes to
the heterogeneity of adverse outcomes [2, 3, 4, 5].

For this reason, clustering techniques, such as k-means, have
been used to identify multimorbidity profiles and contextu-
alize the potential impact of specifically adapted treatments,
including those for sepsis [6, 7, 8]. However, even when
they are successful, these computational techniques commonly
rely on heuristics to optimize an objective function, and have
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been criticized due to their dependency on the quality of the
data and simplicity of their models [9]. In response to such
concerns, latent class analysis (LCA) has been proposed as an
alternative [9, 10]. Recently, it has been used on laboratory and
demographic data to identify four multimorbidity profiles with
different prevalence of sepsis and mortality [11]. Similarly,
using data on pre-existing conditions, Zador et. al. identified
six multimorbidity profiles [12].

Despite being a more principled approach and addressing
some of the issues of other clustering algorithms, LCA still
shares some of the same drawbacks: First, it does not use a
principled method to define the optimal number of clusters,
which could lead to poor results [5, 13]. Second, similar
to traditional clustering techniques, LCA makes assumptions
about the causal relationship between variables, assumptions
that might however be unrealistic, consequently affecting the
quality of the results [5]. Finally, LCA uses unobserved
variables to find clusters, making them hard to understand as
they cannot be interpreted directly from the observed data [14].

Network science is the study of complex systems based
on the connections between their constituting elements [15],
which makes it particularly suitable to analyze the complex
interactions between long-term disorders in patients. In com-
plex networks, the analogous of clustering is called community
detection, a problem whereby the entities constituting a net-
work (nodes) are grouped based on their connectivity patterns
[16]. However, most of the methods proposed to do this are
heuristic and, therefore, show similar problems to those of
traditional clustering techniques [17, 18]. To overcome this
problem and provide a more robust solution to the task of
patient clustering, we propose the use of stochastic block
modeling (SBM) [19, 20]. This encompasses a family of
generative models commonly used for community detection
that, thanks to their probabilistic approach, are not prone
to the same issues that affect heuristic methods [18, 21].
Specifically, to accurately address the shortcomings of the
clustering techniques discussed above, we use the hierarchical
stochastic block model (hSBM), a non-parametric version
of SBM that provides hierarchical clusters and therefore a
better resolution, and has been already successfully applied to
clustering outside standard community detection [21, 22, 23].

One of the main advantages of this approach is that the



hSBM is an unsupervised, non-parametric method, and there-
fore it does not require any input or assumption about the data.
Additionally, this guarantees that the model cannot overfit and
find structure where there is none [21, 22]. Finally, the model
presents a hierarchical cluster structure that can facilitate the
visualization of the solutions, and enhance their interpretability
[24].

We use the hSBM to detect clusters of patients based on
their multimorbidity and demographic information. Our results
show that it finds clusters with homogeneous demographic and
multimorbidity profiles that explain the data in more detail
than in recent work [12], also uncovering important groups
of patients missed by existing approaches. Additionally, these
groups show distinct, statistically significant sepsis and mor-
tality rates which are more informative than those suggested
by existing methods used in critical care.

II. METHODS AND DATA

In this section we briefly describe the dataset used for our
analysis, and present the hSBM and its use in the context of
our work.

A. Dataset

To perform our analysis, we use information on 38,417
patients from the Medical Information Mart in Critical Care
(MIMIC-III), an anonymized dataset comprising information
on the admissions to the critical care units of the Beth Israel
Deaconess Medical Center between 2001 and 2012, which has
been widely used since its release [25, 26].

Following Zador et al. [12], we consider age, sex, admis-
sion type (elective, non-elective) and secondary diagnoses as
features for our study. Patients under 16 years of age are
not considered, and the age of the rest is discretized into the
following ranges: 16-24, 25-44, 45-64, 65-84, and over 85. We
only consider the first ICU admission for patients with multiple
ones. The resulting dataset is consistent with that reported by
Zador et. al in terms of both demographic (gender and age)
and morbidity distributions.

Morbidities are computed from the rich collection of sec-
ondary diagnoses by using the Elixhauser comorbidity index
[27], a well established method to detect long-term disorders
in patients based on ICD-9 codes. Finally, sepsis is computed
following the definition given by Angus et al., whose im-
plementation is available from the official MIMIC-III code
repository [26, 28]: A patient is considered to have sepsis if
it is explicitly recorded in the their history, if there exists an
infection (bacterial/fungal) and organ dysfunction, or if there
exists an infection (bacterial/fungal) and the patient is under
mechanical ventilation.

B. Hierarchical stochastic block model for patient clustering

The stochastic block model (SBM) is a generative model
commonly used for community detection in complex net-
works, and is based on the assumption that nodes have a given
probability to connect to each other, and that this probability
solely depends on the community (or block) to which they
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Fig. 1. This figure displays the posterior odds ratio obtained at every batch run
of the merge-split MCMC. We run the algorithm for 1,000 batches of 10 runs
each. The posterior probability of a partition is computed for each of these
batches. Then, we compute the posterior odds ratio by dividing the posterior
probability of the partition obtained at a given batch run by the posterior
probability of the partition we obtained after running the agglomerative
multilevel MCMC 100 times. It is possible to note that after around 200
batch runs, the posterior odds ratio stabilises, after having reached a state
whose partition is ≈ 1060 more likely than the one found initially by the
agglomerative multilevel MCMC.

belong [29, 30]. A major limitation of the SBM is that the
model requires prior information on the number of blocks the
network possesses [17]. To address this issue, recent studies
have proposed a series of Bayesian, non-parametric versions of
the SBM [21, 22]. One of such versions, the hierarchical – or
nested – stochastic block model (hSBM), provides hierarchical
clustering and was introduced to improve the resolution limits
of the non-parametric SBM, allowing the model to discover
finer-grained clusters [22].

In this paper, we use the hSBM to identify informative clus-
ters of homogeneous patients. To this end, we create a bipartite
unweighted network, in which one set of nodes represents
patients, whereas the other represents their features, including
demographics, admission type, and morbidities. Each patient
node is connected to its features, as shown in Fig. 2. Then, we
use the hSBM to find clusters of patients. There are several
ways by which the hSBM can find the best partition, so we
decide to follow a procedure that gives the highest probability
of not getting stuck in a local minimum. Specifically, we first
use an agglomerative multilevel Markov Chain Monte Carlo
(MCMC) algorithm that starts by partitioning each node in a
different cluster and then, at each step, proposes moving nodes
to different clusters [31]. These moves are accepted with a
given probability based on their resulting minimum description
length gain. Given its stochastic nature, this algorithm is not
guaranteed to always find the best partition. To limit this
possibility, we run the algorithm 100 times and keep the run
that yields the highest posterior probability. However, this
still does not ensure that the partition obtained is optimal,
as there is still a small chance that the algorithm found a
solution corresponding to a local minimum. For this reason,
we further refine the resulting partition by running another
optimization algorithm on it, the merge-split MCMC, proposed
to address this issue [32]. We run this 10,000 times, in batches
of 10, to ensure that no further significant improvement is



possible. Indeed, we find that, after roughly 200 run batches,
the improvement in the posterior likelihood reaches a plateau,
as can be seen in Fig. 1. This result suggests that the clusters
obtained by the hSBM are either optimal or near-optimal.

III. CLUSTER ANALYSIS

We compare our clusters with those obtained by Zador et al.
using LCA [12] through a discussion of their composition and
relationship to the prevalence of sepsis and mortality among
the patients that belong to them.

A. The benchmark - LCA for patient clustering

Zador et al. find groups of patients with similar morbidity
profiles and the relationship of such groups with sepsis and
mortality rates [12]. We use this work as our benchmark
for three reasons: First, this is one of the few studies that
cluster patients based on their multimorbidity profiles. Second,
to achieve this they use MIMIC-III. Third, they focus their
analysis of clusters on adverse outcomes such as mortality
and sepsis. To the best of our knowledge, this is currently
the state-of-the-art for studies that possess all three of the
aforementioned characteristics.

Zador et al. find six groups of patients with statistically
significant different multimorbidity profiles. They compute the
prevalence of sepsis and organ dysfunction for all the clusters,
and the associated mortality rates. Their results suggest that
two commonly used scores by clinicians to assess the risk
of sepsis and mortality at the time of admission, namely the
Oxford Acute Severity of Illness Score (OASIS)[33] and the
Sequential Organ Failure Assessment (SOFA) [34], provide
predictions which are in contrast to the observed prevalence
of adverse events in their clusters. This implies that, by
using information on multimorbidity, it is possible to improve
the assessment of adverse outcomes. Despite this promising
finding though, not all the clusters they obtain show discernible
mortality and sepsis rates [12]. Also, these clusters miss some
categories of patient with far higher or lower probabilities
to develop sepsis or die, such as those patients with elective
admissions or those with no long-term illnesses, respectively.
In the next section, we show that our approach can uncover
these groups of patients, which are missed by both LCA, and
OASIS and SOFA scores.

B. Clinically homogeneous multimorbidity clusters

Fig. 2 presents the clusters and their hierarchy as found
using the hSBM. At the highest hierarchical level, it is possible
to see that the hSBM captures the bipartite structure of
the network, separating features (on the left-hand side) from
patients (on the right-hand side).

At the intermediate hierarchical level, the hSBM identified
six patient clusters. This is the same number of clusters
identified by Zador et al. with LCA. However, despite some
similarities, the clusters provided by the two methods are very
different. In both cases, it does not seem that gender plays a
significant role in assigning patients to a group. Moreover,
both approaches identified clusters of similar age profiles.

Fig. 2. The bipartite network of patients and their features. Patients are
displayed on the right-hand side, and features are displayed on the left-hand
side of the network. Only 1000 edges out of the 235,137 between patients
and their features are randomly sampled to be displayed here, to reduce visual
clutter. The tree illustrates the hierarchical structure of the clusters we find,
and is discussed in Sec. III.

For instance, the hSBM includes most patients in the age
ranges 16-24 and 25-44 in the same clusters – clusters A
and B, Fig. 3 –, as does LCA [12]. Similarly, both groups
of patients over 85 and patients in the age range 65-84 are
clustered separately with both methods. Morbidities aside, the
main difference is that the admission type (i.e. elective vs
non-elective admissions) plays a role in several of the clusters
found by the hSBM. We can clearly see this in clusters B
and D, in which patients have a low prevalence of elective
admissions (roughly 60% lower than average). This difference
becomes even more pronounced when considering clusters at
the bottom hierarchical level, with clusters B1, D1, and D2
showing little to no elective admissions. This is a level of
detail that LCA could not capture.

Another major difference in cluster composition emerges
when examining multimorbidity profiles: LCA separates pa-
tients based on several groups of diseases, suggesting that mul-
timorbidity is the main separation criterion for this algorithm
[12]. Furthermore, they show that in all clusters patients have a
multimorbidity count, which suggests that only the morbidity
type plays an effective role in grouping patients.

Our results are in stark contrast to these. In fact, the hSBM
discerns patients not only based on multimorbidity profiles,
but also their combinations with demographics, admission type
and, importantly, the number of morbidities patients have (see
Fig. 5). Specifically, we see that only two clusters, D and F,
include patients with a heterogeneous multimorbidity count,
whereas the others include patients with a definite number
of morbidities. For instance, a remarkable finding by our
approach is that none of the 2716 patients in cluster A have
morbidities. This cluster, in fact, represents younger patients
with no long-term conditions who have been admitted to
the hospital following some traumatic event, such as a car
accident, a stab or gun wound. Importantly, this category of
patients is expected and of particular interest, but is unde-
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Fig. 3. This figure illustrates the multimorbidity composition of patient clusters inferred by the hSBM. For example cluster B splits into clusters B1 and B2.
The lines between clusters at the bottom level group clusters that originate from the same parent cluster at the intermediate level. The heatmap shows the
relative difference in the prevalence of morbidity between each cluster and the whole dataset. Although relative changes can be larger, we cap the colormap
at 500% to improve readability.
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Fig. 4. This figure displays the heterogeneity in the prevalence of sepsis, mortality, and mortality given sepsis across the clusters we find. These are compared
to the respective averages in the whole subset of 38,417 patients we use in our analysis. Especially considering the fine-grained clusters at the bottom
hierarchical level, starting from A1, it is possible to see that some clusters present far higher than average prevalence of sepsis and mortality, such as D1,
F1, and F3, which is not captured by the OASIS and SOFA scores computed at admission (Fig. 7). Similarly, some of the clusters we uncover display a
high prevalence of patients with low risk of developing sepsis and die, such as clusters from A1 to C1, which is once again in contrast with the information
provided by SOFA and, in particular, OASIS scores.

tectable by LCA. This is also reflected in the much lower
than average mortality and sepsis rates for these patients (see
Fig. 4), which is not captured by either LCA or the SOFA and
OASIS scores (see Fig. 7).

C. Analysis of fine-grained clusters

In the previous section, we showed how the six clusters
obtained at the intermediate hierarchical level display infor-

mation which could not be retrieved with traditional clustering
and LCA. At the lowest hierarchical level, these clusters
split into 12, more fine-grained ones, that discriminate even
further between complex patient and multimorbidity profiles
and provide greater insights on sepsis and mortality in the
ICU.

Given the different number of clusters, an accurate compari-
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Fig. 5. This figure displays the multimorbidity count – i.e. the number of
co-existing long-term disorders – by each cluster at both the intermediate and
bottom hierarchical levels. The circle size is proportional to the frequency
of patients who have exactly that number of morbidities. It is interesting to
see that, contrary to existing literature, we find several clusters in which the
patients have only few, if any, long-term illnesses. Importantly, the fact that
clusters such as A1, B1, C1, etc. are composed of patients who all have the
same multimorbidity count, suggests that the number of morbidities has a
major role in determining the clusters. The exact number seems to matter less
though when the multimorbidity count becomes higher, such as in the case
of clusters D1, D3, and F2.

son between the hSBM and LCA at this point would hardly be
significant. Instead, we provide a detailed analysis of each of
these 12 clusters next, focusing on their composition, and on
the mortality and sepsis rates for the patients they represent.
We will further discuss the similarities and differences with
LCA clusters in the discussions in Sec. IV.

Cluster A1 – Young patients without morbidities. This
cluster has a much higher than average prevalence of younger
patients, who have no morbidities and expectedly show a far
lower prevalence of sepsis (9.68% vs 27.52%) and mortality
given sepsis (13.3% vs 21.6%) than average (Fig. 4).

Clusters B1 and B2 – Younger patients with substance
abuse issues and non-elective admissions. These two clusters
are also defined by patients under 45 years of age, but
compared to A1 they present a higher proportion of patients
in the age range 25-44. Besides age, from Fig. 3 it is possible
to see that patients in these two clusters are distinguished by
a much lower than average prevalence of elective admissions,
and by a prevalence of drug abuse which is 3 and 3.89 times
higher than average for B1 and B2, respectively. Similarly,
alcohol abuse is present in 22.74% and 21.17% of the patients,
whereas the average in the dataset is 8.42%. It is worth noting
that the main factor that distinguishes these two – otherwise
similar – clusters is that in cluster B1 all patients only have
one morbidity each, whereas in B2 they all have exactly two
(see Fig. 5). This is reflected in the higher prevalence of AIDS,
psychoses and depression that we can see in B2, but also in
the fact that patients grouped in B1 have a lower mortality rate
after they develop sepsis (Fig. 4). Overall, these two clusters
have a low mortality rate, both with and without sepsis, and
also lower than average prevalence of sepsis, which is coherent
with the fact that patients in these clusters are younger and
have only one or two long-term conditions.

Cluster C1 – Elective admissions of middle-aged patients
with exactly one morbidity. This cluster is the one with the
highest rate of elective admissions, which is 38.38% higher
than average (Fig. 6). From Fig. 5, we can see that patients
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Fig. 6. This figure shows the relative change of gender and admission
type prevalence between each cluster and the average among all patients.
It is immediate to see that gender plays a major role in clustering, with
only two clusters – D1 and D2 – having a significantly lower than average
prevalence of female patients, and only F1 having a significantly higher
prevalence. Conversely, we can see that the admission type is more influential.
For instance, D1 and D2 have little to no patients with elective admissions,
whereas C1 is composed of many patients scheduled critical surgery.

in this cluster only have one morbidity, but on average, the
prevalence of all morbidities is lower than in the whole dataset
(Fig. 3). To gain a better idea of who these patients are, we
inspect the most common causes of admission. We find that
these are mostly patients who are receiving coronary artery
bypass graft surgery, which is compatible with the fact that
most admissions in this cluster are elective. This might also
explain the second lowest prevalence of sepsis among the
clusters.

Clusters D1, D2, D3 – Patients with mental and neu-
rological disorders. At the intermediate hierarchical level,
cluster D showed a significantly high prevalence of substance
abuse, followed by a number of other conditions with higher
than average prevalence such as AIDS, coagulopathy, liver
disease and fluid electrolyte disorder, all compatible with
substance abuse [35, 36]. However, the split of this cluster
into D1, D2, and D3 tells a much more complex story. Clusters
D1 and D2 still present the highest prevalence of substance
abuse, AIDS, and liver disease among all clusters (see Fig.
3). Similar to B1 and B2, the main difference among D1 and
D2 is the multimorbidity count, which is either 3 or 4 for all
patients in D2 but is far higher and more heterogeneous for
patients in D1. If analyzed together with the age profiles – in
D1 patients are older than in D2 – this suggests that D1 groups
those patients who are in the later stage of substance abuse:
these patients have developed a number of long-term illnesses
that are not as present in their younger counterpart, such as
higher prevalence of liver disease, coagulopathy, peptic ulcer,
and weight loss. This is unsurprisingly reflected in their far
higher sepsis and mortality rates (Fig. 4).

Interestingly, despite sharing the same parent cluster as D1
and D2, cluster D3 does not show an higher than average
substance abuse prevalence, but instead displays the highest
number of obese patients – 28.22% vs an average of 4.92%
– and a number of associated cardiovascular and metabolic
conditions, including diabetes with and without complications
and pulmonary circulation disorders. Although at first sight D3
may seem very different from D1 and D2, it is possible to see
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Fig. 7. This figure shows the distribution of OASIS and SOFA scores among the patients in our clusters. As discussed in Sec. III-D, we find that the actual
rates of sepsis and mortality in our clusters follow different patterns that what suggested by these scores.

that all these three clusters share a very similar prevalence
of neurological disorders, psychoses, depression, and even
paralysis. Further, D3 and D1 are linked by a very similar
– almost identical – multimorbidity count distribution.

Cluster E1 – Elderly patients with multimorbidity and
elective admissions. The defining characteristics of this cluster
are age – with a higher prevalence of elderly patients– elective
admissions – 29.71% higher than average – and the number
of morbidities, either 3 or 4. Apart from this, patients in
this cluster show a much lower than average prevalence of
substance abuse, AIDS and liver disease, but slightly higher
prevalence of everything else. This cluster is representative of
the dataset, so it does not come as a surprise that its sepsis
and mortality rates are close to the average.

Clusters F1, F2, F3, and F4 – Patients over 45 with
heterogeneous multimorbidity profiles. At the intermediate
level, cluster F shows that its patients are predominantly
older – with a peak of patients over 85 years old – and
have a number of co-occurring morbidities. By inspecting its
ramifications at the bottom level from Fig. 3, we can see that
we can further divide this category of patients into two groups.
Clusters F1 and F3 are mostly composed of patients who
do not have a high number of morbidities, between 2 and
4 and exactly 2, respectively. The main difference between
these two clusters is the age of the patients, which is strictly
over 85 for F1 and between 45 and 84 for F3. Remarkably, this
difference allows us to uncover significantly different mortality
rates between the two groups, which is far higher at 21.29%
for the older patients of F1, compared to 8.75% of patients that
belong to F3, as it can be seen in Fig. 4. The other two clusters
of this group, F2 and F4, are also fairly similar in terms of
multimorbidity profiles and demographics, but differ in the
number of morbidities their patients have. In fact, although
patients in both clusters have a high multimorbidity count,
those who belong to F4 have either 5 or 6, whereas patients
in F2 strictly have at least 7 morbidities (Fig. 5). This is clearly

reflected in their sepsis prevalence, which is the highest among
all clusters at 56.11%, more than double the average of all
patients. A similar observation can be made for their mortality
rate, which is 21.29%, or 86.5% higher than the average. These
observations are to be expected, given both the age of the
patients and the fact that they have complex multimorbidity
profiles which include a number of cardiovascular diseases
[37].

D. Comparison of sepsis and mortality rates with OASIS and
SOFA scores

OASIS and SOFA are commonly used scores for patient risk
assessment at time of admission. OASIS focuses on assessing
the risk of mortality, whereas SOFA is used to evaluate the risk
of organ dysfunction (and consequently sepsis) [33, 34]. These
scores have the merit of being easy to compute, not requiring
any laboratory data, and easy to understand. However, these
scores do not take into account multimorbidity, despite it being
a key factor in determining the outcome of a patient, as we
have seen from our results in Sec. III-C. Our results suggest
that these scores alone are not accurate enough to be effec-
tively used in the risk assessment of a patient. Specifically,
we want to investigate whether the relative risk of mortality
and sepsis across our clusters as predicted by OASIS and
SOFA is coherent with the prevalence of these two adverse
outcomes we find. By inspecting our results from Fig. 7 and
Fig. 4 it is possible to see that OASIS and SOFA provide
scores which are in disagreement with the actual prevalence
of adverse outcomes we find in our clusters. There are two
stark examples of this that we will use to illustrate our point.
First, it is cluster D, whose children clusters D1, D2, and D3
have progressively higher OASIS and SOFA scores. However,
if we analyze the actual prevalence of mortality and sepsis, we
see that the highest are found in cluster D1. In fact, we find that
mortality rates progressively decrease, rather than increase,
in these clusters. The second, and perhaps most powerful
example is represented by F2, which is the cluster with the



lowest average SOFA score but the highest prevalence of sepsis
and the second highest mortality rate across all clusters. These
results show that our approach provides significantly different
insights into sepsis and mortality rates than common scores
and can potentially be used to assess the risk of a patient
more accurately.

IV. DISCUSSION

By representing patients’ data as a bipartite network, we
can map the problem of patient clustering to community
detection, and find structure in our data using the hSBM,
a non-parametric Bayesian generative model. Thanks to this
approach, we are able to unveil complex relationships between
multimorbidity and adverse events in the ICU, and find more
significant profiles than existing methods. Our results show
that our approach has three distinctive advantages over LCA.

First, we are able to retrieve clusters that would otherwise be
undetected, such as those with low multimorbidity prevalence.
For instance, cluster A1 only includes patients with no pre-
existing conditions, who have been admitted to the hospital
primarily due to traumatic events. Not surprisingly, this cluster
has the lowest sepsis rates of all. Moreover, the two clusters
in which patients only have one or two long-term disorders,
namely B1 and B2, have the lowest mortality rates. Second,
from our comparison with LCA it is immediate to see that
the hSBM captures more fine-grained relationships. In fact,
although our approach still identifies clusters similar to those
reported by Zador et al., revolving around substance abuse,
cardiovascular diseases, diabetes, etc., it is also capable to
differentiate them into more detailed depictions. This is clear
from analyzing, for instance, clusters B and D. They both
represent substance abuse clusters but, within cluster B, pa-
tients are younger and have a low prevalence of multimor-
bidity, whereas in cluster D patients are older and have a
higher prevalence of disorders commonly associated with drug
abuse (Fig. 3). These differences create a significant divide in
mortality and sepsis rates, which is not observed in Zador
et al. [12]. Third, the hSBM is non-parametric, and it does
not even require input on the number of clusters. Thanks
to the network representation of the data, the fact that the
model is non-parametric ensures that no overfitting occurs,
and, consequently, that the resulting clusters are completely
unbiased, even in presence of highly unbalanced data. A
remarkable consequence of these features is that we find
several clusters in which patients display an exceedingly high
prevalence of characteristics which have, instead, a particularly
low prevalence in the whole dataset, such as being between 16
and 24 years old (2.9%), obesity (4.9%), peptic ulcer (0.82%),
and AIDS (0.57%). A second, equally important, consequence
is that, unlike recent work, all our clusters include patients
with a largely homogeneous number of long-term disorders
[11, 12].

Besides comparison with other clustering methods, we also
show that the sepsis and mortality rates found in our clusters
largely differ from the predictions made by OASIS and SOFA
scores. For this reason, we argue that our results constitute

robust evidence that multimorbidity should be included in
critical care risk assessment.

V. CONCLUSION

There is currently a limited understanding of the co-
occurrence of long-term health conditions and their associated
health outcomes due to the complex interactions between
morbidities and also interactions with other factors such as
demographics. Our work shows that hierarchical stochastic
block modeling and, more generally, a network representation
of patient data offer several intrinsic advantages, such as
the elucidation of fine-grained associations, over traditional
clustering methods. It is an original contribution to a growing
number of research efforts aimed at mapping and identifying
disease clusters and understanding adverse health outcomes –
in our case sepsis and death in the ICU – for people with
complex sets of pre-existing conditions.
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