
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Models as documents, documents as models
Citation for published version:
Stevens, P 2022, Models as documents, documents as models. in T Margaria & B Steffen (eds), Leveraging
Applications of Formal Methods, Verification and Validation. Software Engineering: 11th International
Symposium, ISoLA 2022, Rhodes, Greece, October 22–30, 2022, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 13702, Springer, Cham, pp. 28-34, 11th International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation, Greece, 22/10/22. https://doi.org/10.1007/978-
3-031-19756-7_3

Digital Object Identifier (DOI):
10.1007/978-3-031-19756-7_3

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Leveraging Applications of Formal Methods, Verification and Validation. Software Engineering: 11th International
Symposium, ISoLA 2022, Rhodes, Greece, October 22–30, 2022, Proceedings, Part II

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 01. Nov. 2022

https://doi.org/10.1007/978-3-031-19756-7_3
https://doi.org/10.1007/978-3-031-19756-7_3
https://doi.org/10.1007/978-3-031-19756-7_3
https://www.research.ed.ac.uk/en/publications/312a46ef-7950-4195-95b9-eff07e48166e


Models as documents, documents as models

Perdita Stevens1[0000−0002−3975−7612]

Laboratory for Foundations of Computer Science
School of Informatics

University of Edinburgh, UK
Perdita.Stevens@ed.ac.uk

http://homepages.inf.ed.ac.uk/perdita

Abstract. In software engineering, documentation and models are both
broad concepts which attract varying approaches and attitudes. More-
over, as the title indicates, they overlap: in some circumstances, an arte-
fact thought of as a model can serve to document a software project,
while in others, an artefact thought of as a document can be manipu-
lated by model-driven engineering tools just like any other kind of model.
In this short paper we briefly explore these issues and provide pointers
to some of the relevant literature.

Keywords: documentation · programming · modelling

1 Introduction

What most software developers today think of as a “document” in software
development, and what they think of as a “model”, bear little resemblance to
one another. The canonical document in today’s practice is word-processed; it
has a narrative structure, being intended to be read, at least initially, from
beginning to end; and its intended consumers are humans, not machines. The
canonical model is developed in a drawing tool or a specialised modelling tool,
or perhaps is sketched on a whiteboard; it is graphical, making essential use of a
two-dimensional canvas, and its elements are often capable of being apprehended
in many orders; and depending on its form, its intended consumers may be tools,
as well as humans.

Unfortunately, in writing that opening paragraph, I have already made steam
start to curl out of the ears of some readers, whose ideas of “document”, “model”,
or both, are different from the ideas I am intending to invoke. A reviewer asked
for precise definitions of the terms: while on the surface the request is reasonable,
I fear that it would be sterile to attempt to meet it. When we ask ourselves what
documents and models are, and – crucially – what they are for, we find that there
is a great overlap between the two concepts; indeed, both the positions “every
document is a model” and “every model is a document” will turn out to be
arguable.

This short paper, intended to accompany an expository talk, does not pur-
port to present original research. Instead, we explore the similarities and dif-
ferences between the connotations of the terms “document” and “model”, and



2 Perdita Stevens

draw attention to some of the work that has already been done making use of the
connections between the two concepts. Further pointers and comments would be
very welcome.

2 The purposes of software modelling

Modelling has been used within the process of software development, since the
earliest days, as a means of controlling the information overload that otherwise
prevents human software developers from effectively making decisions about how
to build the software (see [17] for one interesting early example). Indeed some
of the models that have been most commonly used with software pre-date the
idea of computer software: flow charts, for example.

The key point about a model is that it presents all of, and ideally only,
the information that is necessary for some particular purpose. Although this
has arguably been the case since the earliest days of graphical modelling, it
has become more important as the increasing scale of software development has
made separation of concerns essential: key decisions must be taken safely, without
requiring the decision-maker to understand everything about the software. (We
will return to the implications of this for automation momentarily.) The purpose
might be the support of any software engineering process, including requirements
management, architecture, detailed design, verification, etc. For example, a flow
chart (or activity graph) might show how one important process is to be carried
out by the software, but abstract away from how the software is structured. On
the other hand an architecture diagram might show the high level packages into
which a large software system is split, without giving any information about the
behaviour to be coded in each package.

When software developers talk about “models”, we should usually under-
stand a graphical representation of some aspect of a software system, perhaps
placed within its environment. Latterly, especially with the formalisation and
codification of techniques such as metamodelling for defining and manipulating
models, it has become clear that it does not matter very much whether a model
is graphical or textual: this is a matter of concrete syntax, and it is often useful to
separate concrete syntax conceptually from abstract syntax and from semantics.
This observation is a key part of what makes “model” and “document” overlap.

Models were originally used in software development for informal communica-
tion purposes between humans. The idea that they could be formal was relatively
late to arrive: in 1976, Chen felt the need to emphasise that a graphical repre-
sentation of an entity-relationship model could be isomorphic to a symbolic one
[4]. This conception of graphical models as essentially informal is natural given
many other human relationships with pictures: originally, and often still today,
a model is seen as an informal aid to understanding of what the corresponding
formal artefact, the code which is actually used to instruct the computer, should
do. However, there are advantages to making a graphical notation precise, and
indeed, once it is normal for a software development to involve separated repre-
sentations of different concerns, and for there to be nobody who can understand



Models as documents, documents as models 3

every detail simultaneously, it becomes almost essential to have tool support for
the tasks of relating models to one another and to the code. Once the code is
materially affected by precisely what is in the model – and it no longer mat-
ters what the human who drew the model hand-waved while drawing it – the
model has become, in a certain sense, a formal artefact. Thus we reach modern
conceptions of model-driven development, in which models are related by model
transformations and code is (in part or in whole) generated from models, and
related approaches such as language-driven engineering [15].

3 The purposes of software documentation

Documentation, broadly conceived, serves a number of processes within software
development [1]. We will limit scope to documents that relate somewhat directly
to the software – they describe or constrain its usage, structure, functionality,
or development.

For us, then, a document in some sense specifies the software or part of its
structure or function. Typically it records the result of some software engineering
process, more than supporting the doing of that process – even if its purpose is
then to support a downstream process. It may support:

– communication within the software project, e.g. clarifying the API of a com-
ponent to both implementors and users of the component

– verification, validation and testing, e.g. when what software actually does is
compared with what a document says it should do

– maintenance, e.g. by explaining to a future human developer what decisions
have been taken by the original developers and why

– use of the software, e.g. by explaining to a human reader how to interact
with the software to achieve some aim

– litigation, e.g. demonstrating that the software developers have not delivered
what they were contractually obliged to deliver.

4 What counts as a model?

We have already mentioned that models may be formal or informal, graphical or
textual. The reader may reasonably wonder what would not count as a model
and indeed the author has often proclaimed “everything’s a model!”. For our
purposes today, a model is an artefact which records all, and preferably only, the
information necessary for some decision-making purpose relating to a software
development.

As is by now apparent, in this paper “model” typically indicates a prescriptive
model of the kind used in model-based or model-driven development, rather
than a descriptive, mathematical model. The distinction between prescriptive
and descriptive models can become blurred – after all, if a prescriptive model
is correctly followed, so that it prescribes something about a resulting system,
we expect that that same model now describes something about that system,



4 Perdita Stevens

i.e., can now be regarded as a descriptive model. However, the primary purpose
of models within model-driven development is prescriptive: descriptions don’t
drive things!

5 What counts as a document?

The prototypical “document” in software development is written using a word
processor, e.g. Microsoft Word. The term “documentation” has broader conno-
tations, and might include, for example, the in-program “Help” text a user can
access. For purposes of this paper, key characteristics are:

– a document is intended to be read by humans, typically by a predicted class
of humans with predictable background knowledge, e.g., developers, users;

– a document is relatively long-lived, typically having a lifetime that is com-
mensurate with that of the software to which it relates; we would normally
consider the minutes of a design meeting to be too ephemeral to count as
documentation, for example.

Within these bounds, there are possibilities other than the prototypical Word
document, differing especially in how long-lived human-readable text is struc-
tured and perhaps entwined with other software artefacts such as code. For ex-
ample, comments within the code might well be considered to be documentation,
especially if, as with JavaDoc, they are structured for extraction. By consider-
ing JML text embedded within programs, and indeed “self-documenting code”,
where code is considered to be so clearly written that it does not require com-
ments or other form of documentation, we see the blurred edges of this concept:
a key point is that not all humans are the same and so “human-readable” often
has to be qualified with which humans are the intended readers.

6 Models as documents

Martin Fowler’s seminal classification of the uses of UML as sketch, as blueprint,
and as programming language [10] gives a suitable setting in which to discuss
when models can be seen as documents. Within this setting, it is the second
mode, models as blueprints, which is most convincing.

When models are used purely informally, as sketches, for example on a white-
board, they will fail our second criterion for documents. Being produced to sup-
port a particular discussion, they will be ephemeral.

On the other hand, when a modelling language like UML is used as a pro-
gramming language – by which Fowler meant, when the model becomes fully
detailed and is used as input to tools – the model may fail our first criterion.
The model is to be read by a tool, and there is a danger that in order to make it
amenable to being read by a tool its readability by humans is reduced. We say
“may” because the premise of model-driven engineering is that this is not the
inevitable result of using models that can be processed by tools. It is important



Models as documents, documents as models 5

to note, here, that Fowler was writing not about all modelling languages but
specifically about UML, in a context where UML2.0 was emerging.

The middle use, models as blueprints, gives “a way to express software de-
signs in such a way that the designs can be handed off to a separate group to
write the code, much as blueprints are used in building bridges” [9]. The model
documents the intended design, and the document is then read by the human
programmer. The models thus produced might, indeed, be printed in the speci-
fication documents alongside explanatory text (this was a standard part of the
ISO9000 process of the organisation the author worked for in the early 1990s).
The problem is that one may end up with what John Daniels memorably called
“the Great Corporate Data Modeling Fiasco” [6] – a model which contains so
many details that it is readable, and maintainable, by nobody and nothing. The
lesson here is that some models need to be more than documents: only rather
simple software engineering artefacts can sensibly be long-lived, if they are only
readable by humans and not by tools.

7 Documents as models

The idea that documents can usefully have structure which can then be exploited
to use the document effectively is an old one. In the W3 standard, DOM stands
for “document object model” although use of this standard is usually within the
context of a program or model, rather than anything normally thought of as a
document. Files following the DOM format are not easy for humans to read (or
write); in that sense they are not really documents in the sense we have laid
out. Readers may also think of the standard DTD, “document type definition”,
which preceded XML schema as a way to specify how an XML document should
be structured. This, similarly, uses “document” in a broad sense, more usually
applied to artefacts we would think of as models than to documentation.

Already a decade ago, Erissson, Wingkvist and Löwe were concerned about
the variable quality of traditional technical documentation, which they found
frequently to involve many clones (or near-clones) of text passages, leading to
maintenance difficulties and error-prone-ness. Their paper [8] exploits metamod-
elling techniques to propose a software infrastructure for assessing and improving
the quality of technical documentation.

Other work in this vein, which starts with a document, and produces from it
a descriptive model for purposes of analysis or remediation, starts to stray out
of our declared scope, but is nonetheless interesting. Before leaving behind this
field we mention work on the modelling of contracts [3] and on privacy conditions
of websites [16, 7]. However, to pursue this avenue would take us too far afield,
into natural language processing.

Returning to central documentation of software, we should consider the Ope-
nAPI standard (also known as Swagger). OpenAPI descriptions document appli-
cation programmer’s interfaces of components in standardised, plain text which,
it is claimed, can be easily read and written by human developers using any text



6 Perdita Stevens

editor. A key part of how OpenAPI is marketed is that an API description in
this format can also be used as input to a tool.

The team contrast “code first” and “design first” approaches and advocate
the latter: that is, the idea is that the OpenAPI document should be developed
first, before the code that implements the API. There is a small academic litera-
ture amplifying this; David Sferruzza is prominent among researchers who have
investigated using OpenAPI descriptions as sources from which to generate web
services [13, 14].

A problem is that OpenAPI API descriptions often fail to follow the format
properly (e.g. as analysed by Ralphson [12]) or include content that is inadvisable
from a security point of view [5]. It might be argued that any editing that a
human is allowed to do, they will do: because the files are designed to be readable,
and writeable, by unassisted humans, such errors creeping in is unsurprising.
The same could be said about ordinary programs, which are typically built in a
text editor; but the compiler or interpreter normally catches such problems, and
programmers are used to this. The lesson here is that blurring the line between
human- and machine-readable text increases the risk of failing to achieve either.

An alternative approach is to make more central use of artificial intelligence
to bridge the gap between a specification that is natural for a human to write,
and an implementation; a recently famous example is GitHub Copilot1, but the
problems of naively adopting this technology have been well rehearsed [2, 11].

8 Conclusions

In this short paper we have suggested that there are overlapping intentions and
purposes of documents and of models, which have more in common with one
another than either does with programs.

What implications does this have for the future of programming? Most impor-
tantly, researchers and practitioners concerned with either models or documents
should pay heed to advances that concern the other class of artefacts. There is,
for example, scope for model-driven engineering to pay more attention specifi-
cally to documents, and to how documents interrelate with “other models”.

Acknowledgements

I thank the anonymous reviewers for insightful comments, questions and pointers
to relevant literature.

References

1. Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele
Bavota, Michele Lanza, and David C. Shepherd. Software documentation: the
practitioners’ perspective. In Gregg Rothermel and Doo-Hwan Bae, editors, ICSE

1 https://copilot.github.com/



Models as documents, documents as models 7

’20: 42nd International Conference on Software Engineering, Seoul, South Korea,
27 June - 19 July, 2020, pages 590–601. ACM, 2020.

2. Tim Anderson and Katyanna Quach. Github copilot auto-coder snags
emerge, from seemingly spilled secrets to bad code, but some love it.
https://www.theregister.com/2021/07/06/github copilot autocoder caught spilling/,
July 2021.

3. John J. Camilleri and Gerardo Schneider. Modelling and analysis of normative
documents. J. Log. Algebraic Methods Program., 91:33–59, 2017.

4. Peter P. Chen. The entity-relationship model - toward a unified view of data. ACM
Trans. Database Syst., 1(1):9–36, 1976.

5. Cybersprint. Swagger API: Discovery of API data and security flaws.
https://www.cybersprint.com/blog/swagger-api-discovery-of-api-data-and-
security-flaws, December 2020.

6. John Daniels. Modeling with a sense of purpose. IEEE Softw., 19(1):8–10, 2002.
7. Michiel de Jong, Jan-Christoph Borchardt, Hugo Roy, Ian McGowan, Jimm Stout,

Suzanne Azmayesh, Christopher Talib, Vincent Tunru, Madeline O’Leary, and
Evan Mullen. Terms of service; didn’t read. https://tosdr.org/, 2011-date.

8. Morgan Ericsson, Anna Wingkvist, and Welf Löwe. The design and implementation
of a software infrastructure for IQ assessment. Int. J. Inf. Qual., 3(1):49–70, 2012.

9. Martin Fowler. UmlAsBlueprint. https://martinfowler.com/bliki/UmlAsBlueprint.html,
May 2003.

10. Martin Fowler. UmlMode. https://martinfowler.com/bliki/UmlMode.html, May
2003.

11. Jeremy Howard. Is github copilot a blessing, or a curse?
https://www.fast.ai/2021/07/19/copilot/, July 2021.

12. Mike Ralphson. What we learned from 200,000 OpenAPI files.
https://blog.postman.com/what-we-learned-from-200000-openapi-files/, August
2021.

13. David Sferruzza. Plateforme extensible de modélisation et de construction
d’applications web correctes et évolutives, avec hypothèse de variabilité. (Towards
an extensible framework for modelling and implementing correct and evolutive
web applications, under variability hypothesis). PhD thesis, University of Nantes,
France, 2018.

14. David Sferruzza. Top-down model-driven engineering of web services from ex-
tended openapi models. In Marianne Huchard, Christian Kästner, and Gordon
Fraser, editors, Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7,
2018, pages 940–943. ACM, 2018.

15. Bernhard Steffen, Frederik Gossen, Stefan Naujokat, and Tiziana Margaria.
Language-driven engineering: From general-purpose to purpose-specific languages.
In Bernhard Steffen and Gerhard J. Woeginger, editors, Computing and Software
Science - State of the Art and Perspectives, volume 10000 of Lecture Notes in
Computer Science, pages 311–344. Springer, 2019.

16. Shomir Wilson, Florian Schaub, Aswarth Abhilash Dara, Frederick Liu, Sushain
Cherivirala, Pedro Giovanni Leon, Mads Schaarup Andersen, Sebastian Zimmeck,
Kanthashree Mysore Sathyendra, N. Cameron Russell, Thomas B. Norton, Ed-
uard H. Hovy, Joel R. Reidenberg, and Norman M. Sadeh. The creation and
analysis of a website privacy policy corpus. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, ACL 2016, August 7-
12, 2016, Berlin, Germany, Volume 1: Long Papers. The Association for Computer
Linguistics, 2016.



8 Perdita Stevens

17. Frank W. Zurcher and Brian Randell. Iterative multi-level modelling. A methodol-
ogy for computer system design. In A. J. H. Morrel, editor, Information Processing,
Proceedings of IFIP Congress 1968, Edinburgh, UK, 5-10 August 1968, Volume 2
- Hardware, Applications, pages 867–871, 1968.


