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Abstract

Insect visual navigation is often assumed to depend on panoramic views of the horizon, and how
these change as the animal moves. However, it is known that honey bees can visually navigate in
flat, open meadows where visual information at the horizon is minimal, or would remain relatively
constant across a wide range of positions. In this paper we hypothesise that these animals can
navigate using view memories of the ground. We find that in natural scenes, low resolution views
from an aerial perspective of ostensibly self-similar terrain (e.g. within a field of grass) provide
surprisingly robust descriptors of precise spatial locations. We propose a new visual route following
approach that makes use of transverse oscillations to centre a flight path along a sequence of
learned views of the ground. We deploy this model on an autonomous quadcopter and
demonstrate that it provides robust performance in the real world on journeys of up to 30 m. The
success of our method is contingent on a robust view matching process which can evaluate the
familiarity of a view with a degree of translational invariance. We show that a previously developed
wavelet based bandpass orientated filter approach fits these requirements well, exhibiting double
the catchment area of standard approaches. Using a realistic simulation package, we evaluate the
robustness of our approach to variations in heading direction and aircraft height between inbound
and outbound journeys. We also demonstrate that our approach can operate using a vision system
with a biologically relevant visual acuity and viewing direction.

1. Introduction

Bees and wasps use a combination of path integration
(PI) and visual memory to navigate in their local envi-
ronments [76]. A common experimental paradigm to
test the visual memory navigation system in isolation
is to displace an animal from its nest [11, 37, 74].
Animals that have not previously departed their nests
become lost after such a manipulation while those
with foraging experience can often find their way
home after displacements of several hundred meters
[11, 35]. In [11], bees that are displaced to previ-
ously visited locations return to their nest quickly and
directly. By contrast, bees that are transported to new
locations embark on long convoluted routes which
tend to straighten out when their flight paths coincide
with familiar ground. This appears to be a feature of
flat landscapes, whereas in environments with more

clutter, both bees [44] and ants [42, 86] show an abil-
ity to travel towards their nests from new locations,
presumably guided by prominent landmarks on the
horizon.

In recent years a popular hypothesis for visual
memory navigation has emerged, based principally
on models of desert ant behaviour: that routes are
learnt by periodically storing view snapshots [29, 34].
Modelling approaches have bolstered this theory by
demonstrating that an agent using a simple strategy
of moving in the direction of greatest visual famil-
iarity can traverse previously learned routes [3]. This
process is known as visual route following. Rotational
scanning allows the agent to compare view famil-
iarity at different heading angles, forming a rota-
tional image difference function [85]. While desert ants
are known to stop and rotate their body or head
[81], this scanning action is sporadic and infrequent

© 2021 The Author(s). Published by IOP Publishing Ltd
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in nature. By contrast, contemporary visual route
following models require agents to scan periodically
and often. Despite these extra scans, visual homing
models are less robust than desert ants, sometimes
getting lost several times along a route [2]. Further-
more, the bulk of modelling work has been conducted
in basic simulation environments, which have limited
textural information, static lighting conditions, sim-
plistic agent dynamics and perfect orientation con-
trol. In a handful of exceptions to this [20, 27, 28, 47,
721, visual route following models have been deployed
on robotic platforms. However, they have yet to be
tested over distances of greater than 10 m and in the
range of environments that Hymenoptera inhabit.

Visual route following approaches have also been
applied to an aerial context [18,41,47,62,72].In [41],
the mushroom body model from [2] was deployed
on a simulated agent that moves at a fixed offset
from the ground. The authors demonstrate that visual
route following can operate in digitally reconstructed
habitat of a honey bee experimentation site. In [18],
a simulated agent is used to consider the challenge
of extending visual homing to a three-dimensional
space. Here it is demonstrated that helical flight paths
could be used to scan in the vertical and horizontal
dimensions simultaneously. The authors in [47] use
a robotic gantry to demonstrate that visual homing
can be tolerant to height offsets between the inbound
and outbound routes without the use of special flight
paths. In the above studies a forwards facing camera
system has been adopted. Previous work has shown
that a downward view can be a useful perspective for
navigation [12, 13, 21], and it has been speculated
that the holonomic nature of insect flight (i.e. a honey
bee’s heading direction is often offset from its veloc-
ity direction) provides a good basis for translational
visual scanning [9]. However, these visual route fol-
lowing elements have yet to be combined in a robotic
agent with the purpose of addressing biologically rel-
evant questions.

In this paper, we explore the effectiveness of a
navigational strategy based on translational visual
scanning of the downward view. This imposes the
constraint that the view matching procedure should
have a degree of translational invariance to increase
the useful volumetric range of a given view memory
(often referred to as the ‘catchment area’), a key eval-
uation metric for visual homing algorithms [45, 85].
We therefore introduce an alternative to whole-image
pixel-wise mean squared error (MSE), which has been
the default method of choice for previous navigation
models based on visual matching. Despite its conve-
nience and simplicity, the MSE method makes little
reference to known processing steps in biological
vision. Orientated edge detectors have been previ-
ously proposed as a likely basis for visual processing
in natural scenes in insects [4, 8]. Isotropic band-
pass filters which provide this functionality are known
to feature in low level mammalian vision processing
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[5, 25, 26] and have also been detected in the brains
of honey bees [82] and other flying insects [56].

Modelling approaches have shown that a pop-
ulation of 42 orientated bandpass ring neurons in
fruit flies [56] can discriminate between locations
in natural scenes [15] and perform general pattern
recognition tasks [16]. Coarse receptive fields seem
to be an advantageous property for comparing natu-
ral scenes with this network [78]. While less is known
about properties of ring neurons in the bee brain, the
bandpass neurons from [82] have been modelled and
shown to be a useful processing step for the location
invariant identification of patterns of orientated bars
[53].

In recent years, studies have shown that Haar like
wavelet features can improve view discrimination in
the task of visual homing while reducing memory
requirements [31, 39]. Here, we adopt a bandpass fil-
tering approach, using a computational method that
was originally inspired by the orientated bandpass
filter properties of V1 neurons in vertebrates [48].
The complex wavelet structural similarity (CWSSIM)
image comparison method was chosen because it has
been shown to have a greater level of translational
invariance than whole image comparison metrics
such as the MSE [54, 75, 87]. In the following sections
we first provide an overview of how this image match-
ing approach is integrated into a behavioural con-
trol schema for route following, and then describe in
detail its implementation and evaluation on a flying
robotic platform.

2. Concept overview

The method for navigation that we propose in this
paper is illustrated in figure 1. In common with a
number of previous models [2, 3, 28] we assume that
during a learning phase, under guidance of other nav-
igational mechanisms, the insect captures a sequence
of visual snapshots as it moves along a route towards a
goal (see figure 1(a)). Then, on subsequent journeys,
it uses image comparison to evaluate the familiarity
of its current view, and thus determine its next action
so as to arrive at the goal. In a departure from most
previous work, we assume the insect utilises a narrow
field of view directed towards the ground to capture
snapshots, rather than panoramic views of the hori-
zon (see figure 1(b)). We also propose the use
of isotropic orientated bandpass filtering to obtain
greater translation invariance in image matching.
This allows robust familiarity detection of ground-
directed views when the insect enters a catchment area
near the same location. The set of catchment areas
thus forms a breadcrumb trail towards the goal, or
with sufficient overlap, a continuous ridge, as shown
in the familiarity manifold in figure 1(c). We pro-
pose that if a honey bee returning to its nest intercepts
this familiarity ridge, it can follow the ridge home by
using transverse oscillations modulated by the view
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Figure 1. Concept overview. (a) Schematic of our approach. View snapshots are acquired on the inbound portion of the learning
flight. Following a long foraging bout, the PI circuit is discharged before the animal reaches its destination. A searching phase is
then conducted until a familiar ground view is obtained, and from this point the animal uses TORF to reach its goal. The
background aerial image was modified from an OpenAerialMap image. Reproduced from [1]. CC BY 4.0. (b) Ventral views are
acquired at regular intervals on the inbound portion of the learning flight. (c) The search space of an effective view matching
scheme features a prominent ridge of familiarity as represented by the familiarity manifold. The agent centres its oscillatory flight
path on the familiarity ridge in order to stay in contact with this guide.
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familiarity to remain centred on the ridge. We refer to
this process as transverse oscillating route following
(TOREF).

We suggest this navigational mechanism is par-
ticularly appropriate for a honey bee trying to relo-
cate a previously visited destination in a relatively
open environment, complementing PI which facili-
tates long excursions but accumulates error. Learn-
ing flights in bees are relatively straight [10, 43]
which increases the likelihood that a returning insect
would intercept the familiarity ridge, either on the
inbound route itself or during a systematic search pat-
tern [51]. Our approach also exploits the holonomic
flight patterns observed in many insects [19, 46, 67],
as it assumes transverse sweeps can be made while
maintaining a relatively consistent heading direction.
Finally, as discussed above, there is some biological
precedence for the visual preprocessing method we
propose [82], but we also evaluate it against some
alternatives, under the constraints imposed by the
TORF method and by deployment on a quadcopter.

3. Methods

3.1. View matching pipeline

The view matching pipeline is required to evaluate
the familiarity of a current view based on previously
memorised views. The TORF approach places two
main requirements on this pipeline: (1) it must be
accurate at discriminating between familiar and unfa-
miliar views (2) it must provide a degree of trans-
lational invariance, that is, views acquired near to a
snapshot location should be classified as familiar.

We used the processes outlined in [6, 48, 49]
to implement the complex wavelet transform
with a filter mask arrangement (figure SI1(b)
https://stacks.iop.org/BB/16/055007/mmedia). This
process requires the algorithm designer to select a
predefined number of levels and orientations. The
number of levels defines how many times the image
is downsampled and the number of orientations
specifies the preferred directions of the complex
wavelet isotropic analysing function (see figure
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Figure 2. (a) The image processing pipeline. After preprocessing, images are either stored (on ‘train’ routes) or compared to the
database (on ‘test’ routes). (b) Overview of six image comparison pipelines that are tested in this work.

S1(d) for a visual impression). We used five levels to
provide a coarse insect eye resolution (equivalent to
approximately 2° acuity). We used two orientations
which equates to subbands that respond strongly
to edges in the horizontal and vertical directions.
In order to quantify the similarity of two views, the
normalised correlation was applied to coefficients
on the lowest level of the complex wavelet transform
in both the horizontal and vertical subbands. This
results in a familiarity score for each subband. The
CWSSIM score is the mean of these two values. Full
implementation details are included in section S
1.2.1.1.

We created a flexible view matching pipeline
framework (see figure 2(a)) that enables the
comparison of CWSSIM with state-of-the-art MSE
and structural similarity (SSIM) approaches. We
added Gaussian blurring, downsampling and con-
trast adjustment operations to the MSE pipelines
as these methods have previously been shown to be
beneficial for the task of view matching. An overview
of the configurations we trialled are summarised in
figure 2(b) and further implementation details are
provided in section S 1.2. The framework features
two modes of operation, test and train. In both
modes, incoming images are optionally preprocessed.

In train mode, images are sequentially indexed and
stored in a database in the processed state. In test
mode, new images are assessed for familiarity against
each of the training images. The pipeline outputs the
maximum familiarity score and its corresponding
database index. Although not necessary for following
the route, this index transpires to be a useful piece of
information for informing the agent to slow down
towards the end of the route as described later in
section 3.2.1.

3.2. Transverse oscillating route following

The TOREF route following procedure subscribes to
the familiarity output of the view matching pipeline
and uses this signal to locate and traverse learned
routes. A top down view of a trajectory generated by
TOREF is included in figure 3(a).

3.2.1. Implementation details

3.2.1.1. Control The agent is velocity controlled in
the horizontal (XY) plane and maintains a fixed
height above the ground via position control in the Z
axis. The horizontal control law independently com-
mands a longitudinal (V) and a transverse (V) com-
ponent of velocity (relative to the agent’s body frame)
which creates an angle of attack («) with respect to
the agent’s heading (see figure 3). Here 70° was used
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Figure 3. TORF schematic, biorobotic hardware and test locations. (a) Top down view from a visual homing run that has been
annotated with the key parameters for tuning the visual route followmg concept. (b) Photograph of the biorobot, annotated with
key components. (c)—(h) Photograph (c) and renderings (d)—(h) of the real and simulated test locations respectively. Images are
labelled with their associated environment name as referenced throughout this paper.

for o unless otherwise stated. The default magnitude
of commanded horizontal velocity of the aircraft is
1 ms '

The agent’s heading setpoint is constant through-
out the inbound portion of the learning flight and
the inbound route (equal in both cases). To date, the
heading (yaw angle) of insects returning to their nests
has only been recorded over short ranges [67]. This
fixed heading strategy is therefore entirely specula-
tive. However, insects are capable of perceiving their
heading in the global coordinate system with a pro-
jected accuracy of £2° [22]. This strategy is therefore
possible within the confines of honey bee physiology.

The oscillatory motion of the trajectory is pro-
duced by inverting the sign of V, forming a trans-
verse motion switchback. The segment of motion
between consecutive switchback events is referred to
as a sidesweep.

3.2.1.2. Searching pattern A simple searching pat-
tern enables the biorobot to locate the familiarity

ridge. If the familiarity signal has not exceeded the
familiarity threshold ¢t_unfamiliar (10 s) after the pre-
vious switchback, a new switchback event is triggered.
Note that this strategy was implemented to minimise
time spent searching during TORF trials, rather than
as a biologically informed mechanism.

3.2.1.3. Homingvia TORF During TORF the switch-
back timer, t_familiar (1 s), is triggered when a
predefined familiarity threshold (0.82 by default)
is exceeded. A switchback event is initiated once
t_familiar elapses. Note that once ¢ familiar is
activated, if the highest familiarity score on that
sidesweep is exceeded, t_familiar is reset such that the
oscillation is centered on the most familiar location.

3.2.1.4. Terminating TORF In addition to the best
score of each sidesweep, the index of the most famil-
iar training image is returned. This value can be
used as a quasimetric that describes the distance to
the nest. When this index falls below a threshold
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value (25 by default) V, is proportionally reduced
causing « to increase. If the matched image index falls
below six, the final sidesweep is initiated. On this final
sidesweep, the trial is terminated once the familiar-
ity threshold is exceeded or a secondary timer elapses.
It is assumed that the insect would be in visual con-
tact with its target at this stage causing a separate short
range visual homing behaviour to initialise (e.g. [67]).
Note that while there is some evidence that disrupt-
ing the sequence of views experienced by an insect can
impact its homing behaviour [55], the ability to index
image sequences (or more loosely, to distinguish those
images that were stored nearest to the nest) is purely
speculative.

3.2.1.5. Learning flight Because of the directed
nature of honey bee vision we assume that view
memories are acquired on the inbound portion of
their learning flights. However, for all trials in all
sections other than section 4.2.3 we rotated outbound
images by 180° so that they could be used as view
memories on the inbound route. This was purely to
reduce the duration of each test.

3.3. The biorobot

A quadcopter was used to deploy the behavioural
models presented in this work. A photograph of the
biorobot is included in figure 3(b), its construction
and software development is described in detail in
[58]. Of note, we made use of the PX4 flight controller
ecosystem [14] which includes state estimation, flight
control, and datalogging. It also includes realistic sim-
ulation functionality. We used a mix of real hardware
and simulation trials when testing our concept. The
hardware solution was used to verify that the system
operates in the physical world, whereas the simula-
tion environment was invaluable for rapid develop-
ment, parameter tuning and performing large batches
of tests [58].

The vision system comprised of a global shut-
ter camera (MatrixVision Bluefox2, 200w) which was
mounted on a custom built gimbal. We used a lens
that provided a 42° horizontal field of view. Image
processing took place on the onboard companion
computer (Odroid XU4). The image sampling rate
is set at 10 Hz, a somewhat arbitrary value but one
that matches the sampling rate of the model in [2]
and therefore memory capacity assumptions can be
retained as well as being well within the refresh rate
of a honey bee’s vision system. Images were sub-
scribed at a software adjusted resolution of 235 x
150 (downsampled from the native resolution of
752 x 480).

3.3.1. Biorobot test procedures

Evaluation flights conducted in this work were either
active (where the agent was steered home via TORF)
or passive (where the agent oscillated over the out-
bound route using an open-loop control strategy (i.e.
without the aid of visual feedback)). Both flight types
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involved a predefined outbound route with a constant
heading. At the end of this route the biorobot’s com-
manded heading is offset by 180°. The biorobot is typ-
ically allowed to drift for a configurable amount of
time before the homing procedure starts. This drift
time provides some variance in the starting condi-
tions. In an active flight, the biorobot is driven accord-
ing to the procedure outlined in section 3.2. In a pas-
sive flight the aircraft sweeps over the outbound route
but this is achieved with a predefined open loop flight
pattern, by default switchbacks are triggered every ten
seconds following a first switchback after five seconds.

3.3.2. Test location

Dryden farm was the test site used for the outdoor
experiments. A photograph of this location is shown
in figure 3(c) and satellite images of the site is included
in figure S4. This site comprises a relatively flat field
which is mown annually. We tested at various grass
lengths and found that the vegetation height had no
discernible effect on the performance of our model.
Vertical land marks in this scene are restricted to the
horizon at an effectively infinite distance from the
agent. A series of simulated worlds were also used to

evaluate our model. Renderings of these worlds are
included in figures 3(d)—(h).

3.4. Evaluation procedures

3.4.1. View matching pipeline metrics

There are three principle objectives of the view match-
ing procedure:

(a) All inbound/outbound route crossover points
should be detected.

(b) There should be no false positive (FP) detections.

(¢) Views should have wide catchment areas.

The metrics described in the following section
were established to evaluate these criteria.

3.4.1.1. Detection of crossover points The quantity
and location of instances where the inbound route
bisects the outbound route are manually identified.
Ten datapoints either side of the crossover points are
labelled as the valid detection region.

3.4.1.2. Median outlier detection The MATLAB®
isoutlier function was used to make median outlier
detections (MODs) of spikes in the familiarity value,
as a criteria for recognition. We set the outlier thresh-
old at three scaled median absolute deviations above
the median inbound familiarity value. Any datapoint
that exceeds this threshold was counted as a true posi-
tive (TP) if it was in a valid detection region, otherwise
it was counted as a FP.

3.4.1.3. Custom catchment area metric A shortcom-
ing of the MOD metric is the arbitrary selection of
the number of scaled median absolute deviations for
the familiarity threshold. In order to ensure that this
didn’t unduly penalise a pipeline’s score, we created
a custom metric in which the familiarity threshold is
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calculated by taking the highest familiarity value of
any datapoint outside of the valid detection region.
A second feature of our custom metric is that it
only includes datapoints that monotonically decrease
from the crossover point. This is a desirable property
because it allows navigation algorithms to use gradi-
ent descent [85].

Our custom metric counts out from the crossover
point centres (in both directions) until either: the
familiarity score is no longer monotonically decreas-
ing; or the familiarity score falls below a threshold
set by the highest familiarity score occurring out-
side any valid detection region (see figure S11). The
total number of valid detection regions with one or
more valid datapoints in is referred to as the recog-
nition rate (RR). The total count of valid datapoints
inside all of the valid detection regions that obey the
monotonic slope constraint is known as the familiar-
ity count (FC). This value provides an indication of
the catchment area of a view matching pipeline.

3.4.2. Route following metrics

3.4.2.1. Route success This metric is a boolean suc-
cess/fail measure that evaluates the overall efficacy
of TORE. A route trial is considered successful if the
agent detects all crossover points along the route and
if the trial is successfully terminated within 2 m of the
destination. If these conditions are not met we con-
sider the homing process on that trial to be a failure.
In a set of trials the reliability of TORF can be mea-
sured by identifying the percentage of routes that were
classified as successful.

3.4.2.2. Homing error The homing error is the
Euclidean distance in the XY plane between the start
and end locations of a trial in metres. Assuming that
the route has been successful, this metric primarily
quantifies how well the stopping procedure is working
but also acts as an automatic way of detecting route
failure (i.e. without the need to manually check if each
crossover point has been detected).

3.4.2.3. Mean familiarity ridge width This metric
quantifies the average width of the familiarity ridge
for each of the crossover points correctly identified
along a route. It allows a comparison of TORF in dif-
ferent environments or with different parameter con-
figurations. The width of a given familiarity ridge is
quantified using the sum of the transverse compo-
nents of velocity at each point in the familiarity ridge,
multiplied by the time interval between image sam-
ples (nominally 0.1 s). We then find the mean of all
the familiarity ridge widths for each route under test.
Note that we don’t include the data from the termi-
nating sidesweep as this only covers half of the route.
Note also that since detection of crossover points
requires a manual process, this metric is not suitable
for tests involving high quantities of trials.
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4. Results

4.1. Offline comparison of view matching
pipelines

We began with an offline comparison of the six view
matching pipelines specified in figure 2 with a dataset
collected from the biorobot, generated according to
the passive procedure outlined in section 3.3.1. For
each pipeline, the score for every possible combina-
tion of outbound and inbound views was computed,
resulting in a view correspondence matrix (figure S9).
The maximum value in each correspondence matrix
column will be the best match amongst all outbound
views for that inbound view, and is logged as the
familiarity score for the corresponding inbound route
location. A spatial representation of the familiarity
scores along the inbound route is included in figure 4
and the familiarity time series for each pipeline is
shown in figure 5. The results of the view matching
pipeline metrics (section 3.4.1), which summarise the
overall effectiveness of each view matching pipeline
for the complete inbound route, are shown in table 1.
The same analysis was performed on a second route
and the results are included in table ST1.

CWSSIM, NRMSE_DS_CA_GLOB, NRMSE_
DS_CA_GLOB and SSIM_DS are each able to
detect 100% of the crossover points. The failure of
NRMSE_DS to locate any crossover points confirms
that contrast adjustment is essential when using MSE
with a real-world agent [66]. CWSSIM was the only
method that didn’t produce any FPs according to the
MOD metric. This indicates that CWSSIM provides
a higher degree of discriminability than the other
methods.

Both the custom metric and the MOD method
indicate that CWSSIM has around twice the catch-
ment area of NRMSE_DS_CA_GLOB, the next best
method. The increased catchment areas of CWSSIM
are also perceptible in time series plots of figures 5
and S9. Previous work has shown that reducing the
image resolution can help to increase catchment areas
[79] with MSE approaches. We use a grid search
approach to find the optimal combination of blur and
image resolution for NRMSE_DS_CA_GLOB (see
figure S10). This exercise confirmed that the resultant
catchment area was still well below that of the CWS-
SIM. Note that the level of downsampling we have
selected to apply to the MSE pipelines in this section
matches the coefficient space of the sparsest level of
the complex wavelet pyramid (10 x 15 pixels). Given
the above analysis we conclude that CWSSIM outper-
forms MSE and standard SSIM approaches, at least in
our chosen test environment. Altogether our results
show that CWSSIM is an effective image compari-
son method for use in appearance based navigation
pipelines. We therefore adopted it for the remainder
of this paper.
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Figure 4. Plots of the familiarity scores that were generated offline for each pipeline on the same passive sidesweep flight
performed at Dryden farm. The outbound route is the straight path with small grey markers. The inbound route is the
zig-zagging formation with large filled markers. Each inbound datum is colour coded according to the pipeline under test. Red
markers indicate the top 15 scores for each pipeline on each journey segment.

4.2. TORF experiments

4.2.1. Hardware implementation tests

The TORF homing algorithm outlined in section 2
was evaluated on the biorobot at Dryden farm
using the active flight control procedure detailed in
section 3.3.1. Following an outbound (learning) route
of 20 m, the biorobot returned to within 1.5 m of
the starting location under the guidance of TORF on
five out of five test runs. A representative trajectory
is included in figure 6(a), and the displacement of
the landing site from the target location for each test
run is shown in figure 6(b); the full set of results are
plotted in S5.

On the day we collected the main set of results
(07/12/2019), there were 16 kph wind gusts at the test
location. The effect of these gusts can be observed in
the outbound routes by uncommanded lateral trans-
lations (see (a) and (d) from figure S5). While this
is not an in depth examination of environmental
robustness, the results go some way towards demon-
strating the tolerance of the system to windy condi-
tions. This is particularly encouraging for the view
matching subsystem which could be vulnerable to
in-scene motion. Additional trajectories detailing the
operation of TORF over some longer outbound routes
are included in figure Sé.

In some instances the biorobot overshot the route
end (see figures S5(a) and (e) but in each case the
procedure still terminates within 1.5 m of the goal
because of the translational invariance of visual mem-
ories in the longitudinal direction (i.e. the overshoot
is within the catchment area of the route). This

indicates that the parameters generated in the simu-
lation environment (section 4.2.2) did not translate
into the real-world setting, possibly because of the
previously mentioned wind gusts or the tendency of
the simulated gimbal to loose alignment with gravity
(investigated in S 1.7).

4.2.2. Simulated implementation tests

4.2.2.1. Batch testing We simulated TORF 64 times
in the Seville world. A plot of the resultant trajectories
is included in figure 6(c). Following a trial and error
tuning process (adjusting t_familiar and « to get the
default values outlined in sections 3.2.1.3 and 3.2.1.1
respectively), 100% of trials successfully tracked the
ridge of familiarity. A histogram of the homing errors
for each trial is included in figure 6(d). The worst case
homing error is 80 cm which represents a significant
reduction compared with PI circuits which are likely
to produce errors in the order of tens of meters [59].

4.2.2.2. Effect of topography The TORF procedure
was also simulated in five virtual worlds with a range
of visual texture and height profiles (see renderings in
figures 3(d)—(h) for a visual impression). As before,
the biorobot was commanded to fly at 5 m above the
ground. In one exception to this, the aircraft flew at an
elevation of 10 m in the forest world in order to avoid
collisions with the tree tops.

We first note that TORF is not suitable for use in
simple virtual worlds featuring tiled texture maps (see
the bottom row in figure S8). While it might seem
obvious that using repeating patterns will cause prob-
lems in visual place recognition tasks, we include this
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result to highlight the benefits of using realistic simu-
lation environments for vision behaviour modelling
exercises. In all other worlds we found that TORF
successfully detected 100% of encountered crossover
points.

In figure 6(e), we found that the homing error
was greater in the forest world than in other simu-

lated worlds. The homing error provides a measure of

how close the agent gets to its destination and there-
fore, how accurate the route termination procedure is.
As outlined in section 4.2.2, our hypothesis is that
the discrepancy between the forest and other sim-
ulated worlds can be explained by the fact that the
agent has to fly at a greater height in the forest world.
This is because misalignments between the camera’s
viewing direction and gravity can lead to localisa-
tion offsets with TORE. This effect is scaled by height
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Table 1. Pipeline performances according to the offline evaluation process. The RR indicates how many
crossover points were detected and the FC shows how many locations were correctly identified as familiar.
High values in these metrics are therefore desirable. Low FP MOD scores indicate that a pipeline is reliable
and a high number of TPs indicate that a pipeline has a wide catchment area.

Custom metric MOD
Strategy Crossover detection rate (%) RR FC TP FP
NRMSE_DS 0 0 0 0 0
NRMSE_DS_CA_GLOB 100 5 15 17 1
NRMSE_DS_CA_LOC 100 5 14 14 2
SSIM 60 3 7 6 0
SSIM_DS 100 5 14 14 4
CWSSIM 100 5 32 27 0

because for a given gimbal gravity offset angle, the
horizontal error is related to the aircraft’s height. In
order to confirm and quantify this effect we system-
atically raised the commanded aircraft ground height
in the forest plane world and monitored the effect this
had on the homing error of a TORF mission. The
results are summarised in figure S12.

We also compared the mean familiarity ridge
width (section 3.4.2) across all simulated routes col-
lected for this section. A boxplot of this metric across
the different worlds is included in figure 6(f). In gen-
eral there are only minor variations in the mean famil-
iarity ridge widths between the different worlds, sug-
gesting that TORF copes well with a range of terrain
textures and depth profiles. There are a couple of vari-
ations to note. Firstly, the familiarity ridge appears to
be wider in the real-world setting. This is somewhat
surprising because the amplitude of the CWSSIM
output is more consistent at crossover points in sim-
ulated trials. We attribute the better performance in
the real world to the gimbal which was less jittery than
the simulation environment. Amongst the simulated
worlds the forest environment had the widest mean
familiarity ridge width. While this can be explained
by the aircraft flying 5 m higher in this environment,
we note that the robustness of the model to the height
variations caused by the tree canopy is an encouraging
result.

4.2.2.3. Following curved routes In environments
with physical obstacles the ability to follow curved
routes could be required. We conducted tests with a
sinusoidal learning flight path and simulated TORF’s
ability to recapitulate this route. As with other tests,
the aircraft’s heading remained constant, rather than
tracking the profile of the route. We found that our
homing procedure could follow routes with small
deviations. However, to retain robust performance on
routes with tight radii, the angle of attack of the trans-
verse oscillations must be increased as illustrated with
the sample routes in figures 6(g) and (h). Note that
this process only works for turns with acute angles
(relative the agent’s heading). Furthermore, increas-
ing the angle of attack has the adverse effect of increas-
ing the overall distance travelled.

4.2.3. Robustness of transverse oscillating route
following

So far we have demonstrated that the TORF proce-
dure can be used to guide an aircraft along previ-
ously traversed routes. In this section we examine the
impact of adjusting biologically significant parame-
ters of the robotic system in order to gain an under-
standing of whether TORF could be realised with the
anatomy and physiology of honey bees. Due to the
requirement to accurately adjust the robotic system
and perform several trials at each configuration we
have performed this work in simulation. The general
approach was to systematically adjust the parameter
under test across a meaningful range of values. Ten tri-
als were performed at each parameter setting and we
used the Seville mesh throughout as it has the greatest
degree of realism in terms of ground structure texture
and depth profile.

4.2.3.1. Effect of view acuity In order for CWSSIM to
be considered a biologically plausible snapshot mech-
anism for scene recognition in foraging insects it must
be able to operate on images captured with the angu-
lar acuities commensurate with the compound eyes
of honey bees. Since visual acuity can be modified by
adjusting either the field of view or the image reso-
lution we tried adjusting both of these independently
while keeping the other variable constant (figures 7(a)
and (b)).

We first fixed the image size to 15 x 10 pixels and
adjusted the simulated camera’s field of view so that
we could try out different visual acuities. As shown in
figure 7(a), the scheme is tolerant to acuities as low
as 11°. This is the lowest angular acuity that can be
generated with a field of view lower than 180° (i.e.
without resorting to special optics). This indicates
that the regions in the compound eye’s of honey bees
with very low acuity, such as the ventral section, can
provide useful information for navigation purposes.

To test the effect of changing the resolution we
first fixed the field of view of the camera at 42° X
42°. We started with an image resolution of 11 x 11
pixels and decremented this by a row and column
of pixels between trial sets. The results are plotted
in figure 7(b). We found that FPs were produced by
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Figure 6. Efficacy of TORE Note that the axes in panels (a), (c), (g) and (h) have an unequal aspect ratio but the axis grid tick
interval is consistent for each plot. (a) Top down plot of a representative TORF trial with the biorobot. The homing route data are
coloured according to their associated familiarity (see colour bar). (b) Summary of the landing sites of the five 20 m routes
performed on the biorobot. There is a tendency to overshoot in the x dimension. (c) Top down plot of 64 trials in the Seville
simulation environment (same colour scheme as (a)). (d) Histogram of homing errors of the trials plotted in (c). (e)—(f) Boxplot
showing homing error and familiarity ridge width distributions respectively for different environments (n = 5 and n = 20 for real
and simulated environments respectively). (g)—(h) Plots of the TORF homing procedure operating on curved outbound routes
featuring a tight radii using the default transverse angle of attack ((g): & = 70) and an increased transverse angle of attack

((h): a = 85) (same colour scheme as (a).

the CWSSIM pipeline when image resolutions below
9 x 9 pixels were used, this resulted in the agent failing
to home. At 60° below the horizon, the visual acuity
is approximately 3° [71]. A9 x 9 patch in this region

would therefore occupy a 27° x 27° field of view. We
conclude that CWSSIM could be achieved with the
resolution and acuity of the fronto-ventral portion of
a honey bee’s vision system.
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4.2.3.2. Effect of camera pitch angle We have shown
that TORF is robust when the camera’s view direction
is aligned with gravity (facing the ground). Omma-
tidial maps of the eyes of bees however indicate that
they have little or no visual acuity directly beneath
them [71]. In order to establish whether TORF can
operate successfully with biologically plausible view
directions, the pitch angle of the camera was raised
from alignment with gravity in intervals of 10°. Due
to the limited size of the Seville mesh, the highest
pitch elevation trialled was 60°. Note that at 30° below
the horizon, the inter-facet angle of bumble bees and
honey bees is between 1 and 2° [71]. According to
section 4.2.3, this is well within the required acuity for
TOREF to operate.

The results are summarised in figure 7(c). It is
apparent that in the Seville simulation environment,
TOREF with CWSSIM is equally effective across each of
the trialled pitch angles. We therefore conclude that
the distribution of ommatidia in the eyes of honey
bees provides enough directed visual acuity towards

the ground plane to support a TORF-like visual hom-
ing strategy.

4.2.3.3. Effect of learning/homing route heading vari-
ation Honey bees are thought to be able to esti-
mate their global heading with a tolerance of around
£2° [22]. In order to verify that our homing system
could operate in this range we performed trials with a
fixed heading offset between the learning and homing
routes. The results are included in figure 7(d). This
data indicates that our approach is robustly tolerant
to image alignment offsets of around 4°. Beyond this,
the number of flights with at least 1 failure to iden-
tify the familiarity ridge steadily increases. While this
shows that our system operates within the required
tolerance, it does not leave a lot of scope for resilience
to environmental perturbations. We conclude that
a TORF-like visual homing strategy could exist in
honey bees provided that they are capable of control-
ling their heading with an accuracy of around +£2°
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in the natural world, or that they have a mitigation
strategy for large rotational disturbance events.

4.2.3.4. Effect of learning/homing route height varia-
tion Our biorobot uses a height control system which
includes a time-of-flight range sensor for state estima-
tion. This is clearly not a biologically plausible mech-
anism and is therefore currently a deficiency of our
model. It is not trivial to design a biologically plau-
sible height control mechanism and the variability
in height of the return flights of honey bees remains
unmeasured. Nevertheless, we can quantify the sen-
sitivity of TORF to variation between the height of
inbound and outbound routes as a means of evalu-
ating the biological relevance of TORF.

A series of simulations was conducted with a fixed
constant height offset between learning and the hom-
ing route pairs. Preliminary trials indicated that the
higher the ground height of the learning route, the less
sensitive CWSSIM is to absolute height variations on
the inbound route. We therefore conducted the pro-
cess at three different heights. Finally, we have been
relatively conservative with the familiarity threshold
throughout this paper to minimise the risks of FPs. In
this experiment we investigated the impact of reduc-
ing this threshold.

The results are included in figure 7(e). It is appar-
ent that with the default familiarity threshold, the
homing success rate is 100% when the inbound route
is within 10% of the height of the outbound route.
Reducing the familiarity threshold can increase the
homing reliability at greater height offsets but this is
at the expense of reliability at smaller height offsets.
Given that our model fails after a single FP, it is plau-
sible that a biological system could make use of a more
flexible familiarity classification process. Once travel-
ling along a route for example, the threshold could be
reduced. Alternatively, a Bayesian approach could be
used to incorporate familiarity information from the
previous sidesweep. Altogether, TORF and by exten-
sion CWSSIM display some robustness to height vari-
ation but it is likely that honey bees would have to
rely on additional mechanisms to stay on a route if
a TORF-like visual homing strategy does form part of
their navigational repertoire.

5. Discussion

Honey bees that are displaced from their nests in
wide open meadows can home using visual navigation
mechanisms [11]. This paper presents a new model
of visual route following which complements existing
paradigms. A transverse oscillatory motor pattern is
combined with an image matching process that acts
on a set of previously experienced downward views
to guide the animal efficiently along a familiar inward
path. Our approach yields robust performance when
tested on a flying robotic platform over distances of
up to 30 m. Our results indicate that the ostensibly
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self-similar textures of the meadow topography pro-
vide surprisingly unique and stable descriptors, even
in windy conditions and with ultra-low resolution
vision sensors. This suggests that downward views
could provide an important source of information to
the route following system of honey bees and other
flying insects.

Our model builds on previous work showing that
a memory of a set of familiar views along a route can
guide subsequent travel along that route for an insect.
However, previous models of this behaviour tend to
rely on the agent regularly scanning by rotating on the
spot [3], a motion that is not readily observed during
insect flight. Alternatively it has been suggested that
mental rotation of views [40] or rotation invariant
view matching procedures [60, 65, 68] could be used.
However, these approaches have to date assumed uni-
form spatial sampling, and neglect the fact that ani-
mals do scan when they are visually disorientated
[81]. Moreover, the frequency-based encodings pro-
posed in these models seem at odds with the gen-
eral view that biological vision systems rely on locally
supported Gabor-like basis functions [23, 26, 69].
We have suggested an alternative encoding, based on
wavelet decomposition, which provides a degree of
translational invariance. This allows an agent main-
taining a fixed heading to reliably recognise when it
crosses a familiar path, and to follow it home.

5.1. Using downward views

Most previous attempts to implement visual route fol-
lowing in flying agents ([18, 41, 47] for example) have
maintained the panoramic view input assumption
from terrestrial navigation models. As previously sug-
gested in [12, 21], we have found that a narrow
downward viewing frustum is sufficient for aerial
agents to navigate in a familiar area, for example,
from within the general range of their nest that they
could obtain after using PI to home. We suggest that
such views could be a better source of information
when the task is to locate a precise destination in
the open spaces that honey bees often inhabit, where
panoramic views of the horizon may be similar over
large areas. Furthermore, it is known that these ani-
mals attend ground level visual features for navigation
[38]. Nevertheless, views of the horizon could have a
role in both locating the familiarity ridge and in main-
taining a consistent heading in the relevant direction
via the visual compass. Indeed, adding information
from a wider range of view directions could increase
robustness of the TORF procedure. While previous
work has shown that panoramic visual information
can work in simulated route following, this tends to
require a critical density of vertical objects [18, 41]
which is not the case with TORF. Although, it should
be noted that while our approach is insensitive to
the level of horizontal clutter, it does depend on the
agent being able to plot a course that follows a reli-
able ground height. It would be interesting in future
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to systematically compare our approach with those
outlined in [18, 41] in environments of different levels
of vertical clutter. It would also be interesting to exam-
ine how a displaced agent could use different visual
navigation approaches with different fields of visual
attention to locate a destination most effectively. This
is something that has been previously examined in
terrestrial animals [77, 79].

5.2. Wavelet-based image matching

The complex wavelet steerable pyramid provides an
efficient means of decomposing images at multiple
scales. Combined with the SSIM component of the
CWSSIM algorithm, it provides an image match-
ing method with a degree of translational invari-
ance, as set out in section 2.2 of [87]. Our results
indicate that CWSSIM provides approximately dou-
ble the catchment area of MSE based methods for
a given reference image. Crucially, CWSSIM’s out-
put monotonically declines with horizontal distance
from a reference image. By increasing the width of
the monotonic region of the search space generated
by an image/image difference pipeline combination,
the number of view memories that is required can be
reduced. Our work also demonstrates for the first time
that CWSSIM can operate on low resolution images
commensurate with the insect vision system.

The CWSSIM approach is biologically relevant in
that orientated bandpass filters are known to receive
input from the invertebrate vision system [56, 82]
and mammalian vision systems [5, 25, 26]. However,
as implemented here, the CWSSIM pipeline (figure
Sl(a) involves a fast Fourier transform operation
which we do not consider to be a biologically plausi-
ble process. This operation however, is purely for per-
formance reasons and unlike view matching schemes
which operate in the frequency domain [60, 65, 68],
our view matching is conducted in the spatial domain
(i.e. following an inverse fast Fourier transform). Nev-
ertheless, it would be useful to verify biological plau-
sibility by implementing a bandpass filter array that
operates on a biologically relevant eye model model
such as those detailed in [17, 63].

We have not as yet exploited the multi-resolution
aspect of our wavelet function since adding finer
levels added computational burden. As discussed in
[39], weighting coefficients at different scales could
provide more scene recognition discriminability. In
initial trials, we found that adding the higher resolu-
tion frequency bands tended to reduce the catchment
area of reference images. However, it is possible that
multi-resolution approaches would be beneficial in
images with wider fields of view. The low frequency
information in ultra-low resolution images could for
example be used to prune image search spaces or net-
work parameters, an approach that has been recently
investigated in deep neural network architectures [32,
70].
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An additional feature of CWSSIM is that it is
inherently amenable to compression. High value
CWSSIM coefficients represent strong edges at a par-
ticular scale and low value coefficients can be dis-
carded with limited impact on the view comparison
process. Previous work has shown that surprisingly
few coefficients can describe a view memory [16, 53]
and that in mammalian vision, surprisingly few V1
cells are active in when a mouse is presented with
a visual scene [83]. The level of compression that is
achievable with a biologically relevant circuit will be
examined in future work. Using a mushroom body
network to sparsely encode views could further reduce
the memory overheads for a given number of views
and also speed up processing time by making the com-
parison of the current view to all stored views a simple
parallel operation.

5.3. Transverse oscillating route following

TOREF differs from the existing visual route following
approaches in that it uses a translational rather than a
rotational image difference function to evaluate view
familiarity over time. We have achieved translational
scanning via a component of velocity that is trans-
verse to the agent’s principle direction of travel. While
this additional motion increases the overall distance
that an agent travels along a particular route, faster
journey times are obtained by eliminating the need to
stop and scan. While flying insects are more obviously
suited to holonomic translational motion, it is inter-
esting to note that oscillations have also been reported
in desert ants on the micro-scale [33], although recent
works suggest that these oscillations could be emerg-
ing from an opponency process that acts between the
left and right eye visual streams [80] or steering cir-
cuits [24, 50]. It would be interesting to evaluate the
visual opponent process from [80] onboard a quad-
copter to see if TORF levels of reliability are attainable
with this approach.

A criticism of previous implementations of visual
route following algorithms is that they have often
been deployed in low polygon count simulation envi-
ronments [2, 3]. In recent years high fidelity recon-
structions of animal habitats have been used to
improve simulation environment realism [52, 64].
However, these tools still amount to a simplification
of the real world as they provide light intensity scales
with a low dynamic range, built in colour constancy
properties and a lack of in-scene physics. Deploying
visual route following algorithms on mobile robots
forces the algorithm designer to consider how real
world signals can be reliably used [27, 28], but this
approach requires considerably more design effort
and the validation process is similarly laborious.

In this paper we have made use of the open
source Pixhawk flight controller and PX4 software
stack [14] to deploy our algorithm in both simulation
and on real hardware. This approach has enabled us
to verify that our algorithm can operate in real world
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conditions while maintaining the flexibility to also
systematically examine the impact of adjusting key
parameters. We were able to incorporate the 3D
meshes from [52] in order to maximise the bio-
logical relevance of the simulated worlds. We have
made our codebase open source and we encourage
other researchers to make use of this platform and
the underlying robotics framework. In future we aim
to further explore the impact of real world lighting
schemes by adding different time intervals between
the learning and homing flights.

In our current implementation of TORF, we opted
to use transverse oscillations with relatively large
amplitudes in order to minimise the impact of rolling
oscillations that were experienced at the simulated
gimbal whenever the sign of transverse velocity was
reversed. As a consequence, a large angle of attack
was set to ensure smooth gimbal action at crossover
locations. We predict that the amplitude and angle-
of-attack of the transverse oscillations would be con-
siderably smaller in nature, such that flying insects
remain on the familiarity ridge most of the time,
and their velocity vector is more biased towards
their direction of travel. Preliminary routes with an
improved gimbal system are included in section S
1.4.2. In future work we will try to optimise the
oscillation profile of our approach by minimise the
energy expended on lateral motion while preserving
the homing reliability. A more direct flight path could
also make TORF a more attractive solution for robotic
applications such as point-to-point navigation under
a tree canopies.

Given the lack of supporting biological data, we
have used a simple route termination profile which
simply used open loop control to center on the route
familiarity ridge when the agent detected it was near-
ing the end of the route. An obvious way to improve
this method would be to use a closed loop system
which continues to oscillate until the nest itself is
detected. This method would require the agent to
move backwards in the longitudinal direction so that
nest overshoot scenarios can be recovered from. In
recent work, the use of negative training views have
been explored, whereby the agent learns views that
inform the animal it is going in the wrong direction
[30]. It would be interesting to develop this approach
in the TORF route termination process. l.e. in the
learning flight the agent would over run the nest
slightly in order to acquire some downward views that
can be used to inform the agent that it has overshot its
goal. If this strategy is implemented in the biological
system, it should be detectable in honey bee learning
flights.

A requirement of the TORF method is that the
homing agent must assume the same heading as when
the route was learned. In this work we have minimised
this challenge by using straight learning flights and
by assuming that the animal maintains a fixed, route-
aligned heading on both the learning and homing
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flight. This has the advantage of reducing the search
effort to find the route, and then once on the route
it allows the agent to use purely translational motion
to stay on the route. The straightness of the route was
justified by noting that the inbound leg of honey bee
[10] and bumble bee [43] learning flights appear to
be straight. However, in more cluttered environments
it is also likely that honey bees would have to change
course in the process of avoiding obstacles resulting
in curved routes. In section 4.2.2, we demonstrated
TORF’s ability to handle curved routes, it is also pos-
sible that using the indexing approach outlined in
section 3.2.1, changes in heading could be built-in to
the route memory.

While the straightness constraint of a TORF
learning flight can be justified with biological data,
there is currently no evidence to suggest that honey
bees maintain a constant alignment with their route
direction during homing flights. There are several
datasets which track the heading of various flying
insects on the final approach (<50 cm) to their nest
[46, 67, 84]. These studies indicate that while the
insects demonstrate TORF-like goal-directed zig-zags
and high degrees of sideslip on straight sections of
flight, the range of headings observed is far greater
than the 4° tolerance we specified in section 4.2.3. It
therefore seems likely that a honeybee’s route follow-
ing strategy can cope with a wider range of headings
than is predicted by our model. It is worth noting that
the average width of the familiarity corridor found
in figure 6(f) is around 50 cm which could provide
scope for a joint exploration of heading and transla-
tion exploration. For example, heading exploration is
performed at the switchback points and translational
exploration is achieved in the intervening straight
sections.

We have shown in this work that TORF is resilient
to height variations of approximately 10% which
would cover small disturbances and modest errors in
height estimation. However, it is reasonable to assume
that obstacles, height discontinuities and the landing
approach would cause considerably more than 10%
height variation. The degree to which a honey bee can
gauge its height is unclear since optic flow signals are
confounded by speed and height [57]. In [18], heli-
cal flight paths are suggested for extending the search
space to the third dimension. We propose the index-
ing approach of section 3.2.1 could be used to manage
large height variations along a route in conjunction
with the height estimation mechanisms proposed in
[61].

5.4. Ethological implications

We have shown that low resolution images of the
ground can be used as robust descriptors in the nat-
ural world provided that the right visual processing
is used. Navigation can be achieved using a chain
of these memories over long distances without any
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other navigation cues. This result casts an interest-
ing lens on previous studies which have assumed that
flat grassland does not afford this opportunity. For
example in [37], the authors state:

‘We were concerned about the possibility that
ground structures around the hive might provide
guiding posts over larger distances than the esti-
mated 60 m radius around the hive. There were
no structures on the ground 2—3 m in diame-
ter close to the hive, and larger patches of grass-
land with slightly different vegetation were dis-
tributed rather evenly in the whole study area.
Bees approached the hive from all directions, thus
excluding the possibility that they might have
seen a particular spatial arrangement of grass-
land patches. Therefore, we conclude that bees
were not guided to the hive by any beacons found
close to the hive, in its surroundings, or in the
profile of the horizon.’

The authors use this to justify their claim that
honey bees must be using a cognitive map to find their
way. Our work demonstrates that even with low res-
olution vision, arbitrary patches within continuous
grassland could be reliably distinguished and used to
navigate across this terrain without a cognitive map.
Other paradigms have used tents as beacons in grass-
lands [7, 36] in order to show that the visual odome-
ter is the dominant cue for judging range on forag-
ing journeys. We suggest that these results should be
interpreted with caution because the meadow surface
could be providing many other effective beacons. In
general we suggest that ethologists should consider
any terrain as a potential source of location informa-
tion for honey bees and other flying insects, even if
this is not obvious to the human eye.

If the TORF mechanism that we have proposed
is manifested in the nervous system of honey bees
it should be possible to observe: (1) the presence of
transverse oscillations in the flight path and (2) that
the return paths of a particular animal have a high
degree of spatial overlap on successive foraging bouts.
If return flights were not found to overlap this would
indicate a more horizon-centric viewing strategy such
as that proposed in [64]. It is worth re-iterating that
we believe that a blend of strategies may be observed
in different colonies depending on the hive surround-
ings. Our hypothesis is that honey bees process infor-
mation from all viewing directions simultaneously
and the incoming information is weighted down-
stream of the retina.

Unfortunately the trajectories of honey bees have
not yet been captured in sufficient detail over a suit-
able range for models like TORF to be evaluated. We
hope that high-resolution multi-camera rigs or other
technological advances (e.g. [73]) will be able to cap-
ture these details in the medium-term future. Con-
ventional experimental approaches may also help to
interrogate the plausibility of TORF, for example, by
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disrupting the ground level information that a tracked
insect experiences on its route home or by examining
the impact that masking a honey bee’s ventral vision
has on its ability to navigate close to its nest. We pre-
dict that the navigation abilities of displaced honey
bees would be temporarily but significantly disrupted
ifa substantially large area around their nest was mod-
ified. For example by mowing or ploughing the field
such that the ground structures around the nest are
fundamentally altered.
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