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Abstract

Many animal behaviours require orientation and steering with respect to the
environment. For insects, a key brain area involved in spatial orientation and navigation
is the central complex. Activity in this neural circuit has been shown to track the
insect’s current heading relative to its environment, and has also been proposed to be
the substrate of path integration. However, it remains unclear how the output of the
central complex is integrated into motor commands. Central complex output neurons
project to the lateral accessory lobes (LAL), from which descending neurons project to
thoracic motor centres. Here, we present a computational model of a simple neural
network that has been described anatomically and physiologically in the LALs of male
silkworm moths, in the context of odour-mediated steering. We present and analyze two
versions of this network, both implemented in the Nengo framework, one rate-based and
one based on spiking neurons. The modelled network consists of an inhibitory local
interneuron and a bistable descending neuron (‘flip-flop’), which both receive input in
the LAL. The flip-flop neuron projects onto neck motor neurons to induce steering. We
show that this simple computational model not only replicates the basic parameters of
male silkworm moth behaviour in a simulated odour plume, but can also take input
from a computational model of path integration in the central complex and use it to
steer back to a point of origin. Furthermore, we find that increasing the level of detail
within the model improves the realism of the model’s behaviour. Our results suggest
that descending neurons originating in the lateral accessory lobes, such as flip-flop
neurons, are sufficient to mediate multiple steering behaviours. This study is therefore a
first step to close the gap between orientation circuits in the central complex and
downstream motor centres.

Author summary

Targeted movements and steering within an environment are essential for many
behaviours. In insects, the brain’s center for spatial orientation and navigation is the
central complex, which processes information about the configuration of the local
environment as well as global orientation cues such as the Sun position. Neural
networks in the central complex also compute the insect’s heading direction, and are
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thought to be involved in generating steering commands. However, it is unclear how
these steering commands are transmitted to downstream motor centers. Output
neurons from the central complex project to the lateral accessory lobes, a neuropil
which also gives rise to descending pre-motor neurons that are involved in steering in
the silkworm moth Bombyx mori. In this study, we provide a computational model of a
pre-motor neural network in the lateral accessory lobes. We show that this network can
steer an agent towards the source of a simulated odor plume, but that it can also steer
efficiently when getting input from an anatomically constrained network model of the
central complex. This model is therefore a first step to close the gap between the
central complex and thoracic motor circuits.

Introduction 1

Insects display an astonishing range of behaviours that include highly directed 2

movements. For example, male moths navigate towards females emitting 3

pheromones [1] [2] and female crickets move towards singing males [3] [4]. Other insects 4

use visual cues to maintain a straight heading over short or long distances (dung 5

beetle: [5] [6]; Monarch butterfly: [7]; Bogong moth: [8]), and can even rely purely on 6

memory to navigate home [9] [10]. While the cues used for navigation are different in 7

these examples, they elicit very similar behaviours: upon encountering an appropriate 8

stimulus, the animal chooses a direction with respect to that stimulus and begins moving 9

in that direction. If the stimulus is temporarily lost, searching behaviour is initiated. 10

Thus, the motor patterns elicited by different kinds of stimuli can be remarkably similar. 11

The neural mechanisms underlying some of these behaviours are well-known, while 12

they are less well described for others. However, it is clear that the spatial context for 13

orientation and navigation is computed in the central complex (CX), which is the only 14

unpaired and midline-spanning neuropil in the insect brain (Fig. 1; [11]). In recent years, 15

progress has been made in modelling this ‘compass system’ of insects, showing that part 16

of the CX network can be modelled as a ring attractor. A ring attractor can be thought 17

of as a ring-shaped neural network, in which an activity ‘bump’ exists in one location, 18

while all other locations on the ring are inhibited. The activity bump can then be 19

moved around the ring by external inputs as well as self-generated angular velocity cues. 20

The position of the bump in the CX ring attractor corresponds to the heading direction 21

of the animal in its environment, thus providing a reliable internal representation of the 22

animal’s heading [12] [13]. An extended model of the CX network furthermore showed 23

that the CX is a possible substrate for the path integrator [14], i.e., continuously 24

integrating velocity to maintain an estimate of the direction and distance to a reference 25

location. This model also demonstrates how CX output can serve directly as a steering 26

command: the summed activity of columnar output neurons in each hemisphere is 27

compared and any imbalance between the two hemispheres should produce a turn 28

towards the relevant side, while a balanced output results in straight movement. 29

Despite our increasingly complete understanding of these networks, a question that 30

remains unanswered is how the CX output is actually translated into motor control; i.e. 31

how it might be integrated in thoracic motor centres to influence behavioural decisions. 32

CX output neurons project to the lateral accessory lobes (LAL; figure 1), a brain region 33

that has been described as a pre-motor centre, because several types of descending 34

neurons that project to thoracic motor centres have post-synaptic endings in the 35

LALs [15]. Whereas a direct effect of neuronal activity in the CX and LALs on thoracic 36

steering reflexes has been shown in cockroaches [16] [17] [18], the anatomical identity of 37

the involved neurons and their place in the CX circuit is not clear. Additionally, how 38

descending neurons encode motor commands on a population level is currently not well 39

understood, but multiple recent studies have been able to dissect single neural circuits 40
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that underlie specific behaviours (e.g. [19] [20] [21]). One such behaviour, which has 41

been examined in detail, is the pheromone-following behaviour of silkworm moths. Male 42

silkworm moths display a highly stereotyped behavioural sequence when following a 43

female’s pheromone plume. Upon first contact with the plume, the moth responds with 44

a ‘surge’, that is a straight movement towards the source of the odour. When the odour 45

plume is lost, ‘casting’ is initiated, during which the moths walks in a zig-zag pattern 46

until it finds a new odour pocket (review: [22]). Early studies have identified several 47

descending neuron types whose activity correlates with turning behaviour when a male 48

moth orients in a pheromone plume [23]. Among these, the most notable are “flip-flop” 49

neurons, which are bistable neurons that switch between a high-activity and a 50

low-activity state in response to a trigger stimulus [24] [25] [23]. That is, the same 51

stimulus can cause the neuron to increase or decrease its firing, depending on whether it 52

is in the low or high activity state, respectively, when that stimulus occurs. 53

These neurons have post-synaptic terminals in the LALs, and their axons descend 54

through the ventral nerve cord and synapse onto neck motor neurons, which in turn 55

activate neck muscles that control head movements [26] [27]. Thus, if the 56

left-descending flip-flop neuron is in its high-activity state, the left neck motor neuron 57

and the left neck muscle are also active, causing the head and consequently the moth to 58

turn left. Although this network has been described in the context of pheromone 59

following, other studies have shown that flip-flop neurons can also be triggered by light 60

flashes or sounds [24] [28]. It therefore seems likely that flip-flop neuron mediated 61

steering may constitute a general form of targeted steering, independent of the stimulus 62

modality that drives the behaviour [29]. 63

In this study, we aim at evaluating whether a basic flip-flop neuron network can 64

produce naturalistic steering in (a) a simulated odour plume and (b) when presented 65

with visual input via a neural model of the central complex. To this end, we present a 66

rate-coded and a spiking computational model of a simple flip-flop network. Both 67

models follow the same connectivity patterns, but vary in their level of biological detail 68

for the neurons. The rate model uses continuous-valued sigmoid neurons, while the 69

spiking model uses leaky integrate-and-fire (LIF) spiking neurons. These are the two 70

most common types of rate and spiking neural models, respectively. We examine these 71

two models in order to determine in what ways the neuronal details matter. That is, the 72

similarities in behaviour between the two models indicate aspects of the model where 73

these implementational differences do not result in behavioural changes. As we will 74

show, both models are effective at navigating towards a simulated pheromone source, so 75

the low-level neural details do not matter for obtaining the essential functionality. 76

However, we will also show that finer details of the behaviour resulting from the two 77

models does differ, with the spiking model producing more realistic trajectories that we 78

were unable to generate using the rate model. Importantly, the spiking model produces 79

this more realistic behaviour while still following the same connectivity patterns as the 80

rate model. 81

Of course, these two neuron models (rate-code and leaky integrate-and-fire) are not 82

the only options for neuron models. More neural details can always be added, bringing 83

the model closer to the real system. However, there are many potential details to add, 84

and no consensus on which features are the most important ones to include. Indeed, 85

part of the purpose of creating models using different types of neurons is exactly to find 86

out which details matter. 87

This is why we chose to create our spiking neural model using the Neural 88

Engineering Framework (NEF; [30]), which is a generic method for taking any neuron 89

model and connecting the neurons such that they perform a particular algorithm. 90

Instead of having a single rate-code neuron that can only produce an output that is a 91

sigmoid function of the sum of its inputs, we can instead have multiple neurons of any 92
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type in a small group. By weighting the outputs of these neurons in different ways, the 93

system can approximate a wider variety of functions, as opposed to just being able to 94

compute sigmoids. This allows us to specify what computations we would like to be 95

performed between neural groups, and the NEF will determine the precise weighting of 96

each connection between those groups of neurons that will best approximate the desired 97

computation. 98

Despite their differences, we show that both models reliably reproduce steering 99

behaviour. Comparing the behaviour of our models to behavioural data from male 100

silkworm moths, we find that a simple flip-flop based neural circuit is sufficient to 101

replicate the basic characteristics of the moths’ paths. Furthermore, we demonstrate for 102

the first time that the flip-flop network can work as a general steering network when 103

combined with a computational model of the CX [14]. This study is therefore a step 104

forward to close the gap between higher processing centres in the brain that make 105

navigational decisions, such as the CX, and the thoracic motor circuits that ultimately 106

move the insect. 107

Fig 1. Insect brain and central complex / lateral complex anatomy. A: The
central complex (CX) is located in the center of the insect brain and is the only
midline-spanning neuropil. It is flanked by the lateral complexes (LX). Also marked are
the optic lobes (OL) and the antennal lobes (AL). B: The CX consists of the
protocerebral bridge (PB), the fan-shaped body (FB), the ellipsoid body (EB) and the
paired noduli (NO). The LX consists of the lateral accessory lobes (LAL), the bulb (BU)
and the gall (GA). CX output neurons project to the LAL. The brain shown is a Bogong
moth brain (Agrotis infusa [31] [32]) retrieved from insectbraindb.org, species handle
https://hdl.handle.net/20.500.12158/SIN-0000002.1. Photo courtesy of Ajay Narendra.

Materials and methods 108

To implement the spiking model, we used the software toolkit Nengo [33] which includes 109

a software implementation of the NEF. All source code for both models is available at 110

https://github.com/stanleyheinze/insect steering. 111

Models 112

Rate model 113

For the rate model, we use sigmoid neurons, with one addition described below for the 114

“flip-flop” neurons. If the total input to the neuron is J , then the output r from the 115

neuron will be 116
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r = 1/(1 + e−aJ−b) (1)

where a and b are the gain and bias constants for the neuron, respectively. The total 117

input to the neuron is the weighted sum of the rates of the neurons connecting into that 118

neuron 119

Jj =
∑

wijri (2)

The weights w are either 0 (no connection), 1 (excitation), or -1 (inhibition), with 120

gaussian noise of standard deviation 0.01 added when the model is created. We also add 121

random noise ε ↪→ N (0, σ2) with σ2 = 0.02 to the input to each neuron on every time 122

step. These two sources of randomness are meant to give some individual variation to 123

the models. For the PBN and flip-flop neurons, we also add the neuron’s previous 124

output to its own input, in order to allow for the sustained activity that has been 125

described for these neurons. This gives them the following equation, where rt is the 126

output for time step t. 127

rt = 1/(1 + e−a(J+rt−1+ε)−b) (3)

The neurons modelled here were physiologically and anatomically described 128

in [24] [34] [23] [25]. We infer input and output regions of neurons from their anatomical 129

appearance, i.e. smooth terminals are assumed to be inputs, while varicose terminals are 130

assumed to be outputs. Two neurons are assumed to be connected if the input region of 131

one neuron overlaps with the second neuron’s output region. The model connections are 132

furthermore based on the network proposed in [23] with some small modifications. 133

The network consists of two pairs of neurons: A flip-flop neuron (FF) and a 134

protocerebral bilateral neuron (PBN; Fig. 2A). Both cell types receive input either 135

directly from the plume, or from the output neurons of the central complex (CPU1 136

neurons), when connected to the path integration network (PI). PBN neurons were 137

proposed to provide bilateral inhibition between the two LALs [23] [35] and are 138

therefore modelled to inhibit the contralateral FF neuron. FF neurons have excitatory 139

connections directly onto the contralateral motor (Fig. 2B), based on the finding that 140

FF neuron activity correlates with neck motor neuron activity [26]. For the FF neurons, 141

we needed to add some mechanism to produce the flip-flop behaviour, where an input 142

stimulus will switch a neuron from a high state to a low state. Since sigmoid neurons by 143

themselves are too simple to produce this behaviour, we added a feature to the 144

rate-code model where if the current output r is large (> 0.8) and the input is large 145

(> 0.5), then the output of this FF neuron is reduced by 0.5 and the opposite FF is 146

increased by 0.5. This produces the required flip-flop behaviour (Fig. 2B), but does not 147

postulate a plausible mechanism whereby this behaviour is produced. We present a 148

potential mechanism in the next section on the spiking neuron model. 149

Nengo model 150

Our second model is intended to explore how the basic operations of the rate-code 151

neural model described above - which uses sigmoid functions and flip-flop logic - can be 152

constructed out of more biologically realistic components. Specifically, we use the 153

Neural Engineering Framework (NEF; [30]) to define sets of spiking neurons with 154

weighted connections that can approximate the desired functions. Note, the spiking 155

model presented here is not meant to be an accurate model of the lateral accessory 156

lobes; rather, it is just meant to be more realistic in its basic operations than the 157

rate-code model, and to allow us to see what changes in behaviour result from this 158

change in implementation. 159
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We use groups of 100 leaky-integrate-and-fire neurons to represent each of the single 160

neural units used in the rate-code model. We use least-squares minimization to find the 161

optimal connection weights that will make the group of spiking neurons behave as 162

closely as possible to their rate-model equivalents. The same process is used to 163

approximate both the sigmoid input-output function and the flip-flop behaviour. In the 164

latter case, we assume recurrent connections between the neurons in the group 165

representing the flip-flop and find the appropriate weights between them to give the 166

desired property that an input will switch the output between high and low firing. Note, 167

however, that we are not suggesting the flip-flop neurons must have recurrent 168

connections, but rather that these neurons have a sufficiently complex internal state 169

that such feedback is necessary to capture their properties. 170

We call the model a Nengo model because we used the Python software package 171

Nengo (Bekolay et al., 2014) to automate the process of building our model. All source 172

code for our model is available at https://github.com/stanleyheinze/insect steering. 173

The resulting approximation is not perfect, and as can be seen in the right-hand column 174

of figure 2, and produces a notably different time course of response compared to the 175

rate model, although the key qualitative characteristics are maintained. 176

One crucial difference between the rate-code and Nengo models is in how 177

synchronization between the two flip-flop cells is achieved. In the rate-code case, we 178

have explicitly added a rule that forces the contralateral flip-flip to its up-state when an 179

input pushes the ipsilateral flip-flop to the down-state. However, the purpose of the 180

Nengo model is to build up the desired behaviour out of more basic components. The 181

components inside one flip-flop neuron can successfully switch the state of the flip-flop 182

in the Nengo model. However, there is no way for the basic components inside one 183

flip-flop neuron to affect the contralateral neuron. This means that the Nengo model 184

has mostly the same behaviour as the rate-code model, with one exception: when one 185

flip-flop changes to its down-state, it does not force the other flip-flop into its up-state. 186

The asynchronicity between the two flip-flop neurons is therefore forced in the rate-code 187

case, but emerges in the Nengo case. 188

Experimental situation 1: Following an odour plume 189

Our model is directly inspired by the flip-flop neurons that have been implicated in 190

pheromone tracking in moths, hence we first evaluate its ability to control the behaviour 191

of a simulated agent in an odour plume (figure 3A). The plume was simulated by the 192

python-based module pompy (https://github.com/InsectRobotics/pompy, by Matthew 193

Graham, Insect Robotics Group, Edinburgh University), using parameters that are 194

appropriate for a gypsy moth pheromone plume ( [36]; see table 1 for plume 195

parameters). The plume was dispersed by a weak constant wind flowing from the 196

direction of the odour plume source towards the agent’s starting point. The agent was 197

equipped with two fronto-lateral sensors which were designed to mimic antennae. The 198

antenna size and angle (away from the centre line) from each other was adjusted to 199

match real moths ( [37]; see table 1 for moth parameters). We set a maximum antenna 200

sensitivity, above which the response is saturated, i.e. any higher concentration does not 201

elicit a stronger response. We then choose a maximum response value to correspond to 202

this level of concentration, and scale the response linearly between this value and zero 203

for lower concentrations. These two parameters were adjusted by hand. At each point 204

in time, the network processes the input and makes a steering decision, which is applied 205

to the centre of mass of the agent and scaled by the maximum rotation speed (table 1), 206

analogous to [14]. The agent’s walking speed was determined by an acceleration and a 207

drag parameter, analogous to [14] (see table 1). The agent’s acceleration setting in the 208

simulation was adjusted to match the actual walking speed of moths [37]. The resulting 209

forward speed was not influenced by the headwind, but agents were given a weak 210

August 25, 2020 6/23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2020. ; https://doi.org/10.1101/2020.08.25.266247doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.266247
http://creativecommons.org/licenses/by-nc/4.0/


Fig 2. The flip-flop network. A: Schematic of the network. Protocerebral bilateral
neurons (PBN) and flip-flop neurons (FF) both get input directly from the ipsilateral
sensor. PBNs inhibit the contralateral FF. FF neurons activate the motor. LAL =
lateral accessory lobe. Note that in the rate model, a state switch in one FF neuron
explicitly affects the other neuron, which is not reflected in the anatomical connections
shown. B: Rate-code and Nengo network responses to the same artificial input. For the
Nengo PBN and FF neurons, the vertical lines show the activity of a random subset of
the internal components that are used to construct the neuron model, with the
components of the right neuron at the top and the left neuron at the bottom. The
output from the FF neurons is shown as the orange and blue lines, and is computed as
the weighted average of the internal activity. The rate-code model has an explicit rule
that when one FF is forced to the down state (at the second input pulse), the other is
forced into its up state. The internal components of the Nengo FF neurons cannot
approximate this part of the flip-flop behaviour, but even without this it still settles
into an asynchronous activity pattern (after the third input). For longer timeframe, see
S1 Fig.

tendency to turn upwind in the absence of plume input, in accordance with observations 211

in silkworm moths [22]. Unless otherwise specified, all parameters were tuned manually 212

to match the behaviour of real moths as closely as possible. Thus, certain arbitrary 213

parameters of the models, such as the maximum output value for that antenna and the 214

maximum rotation speed were set such that the resulting tracks approximated the 215

tracks of silkworm moths as reported in [38]. 216

Ando et al. (2013) [38] presented a robot that was steered through an odor plume by 217
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Table 1. Simulation parameters.

Parameter Value

Number of LIF components to implement one neuron 100
Random noise added to neurons N (0, 0.02)
Wind speed 2 m/s
Plume puff release rate 50 Hz
Plume puff initial radius 0.1 m
Antenna size 7.5 mm
Antenna angle 45◦

Antenna maximum sensitivity 100
Antenna maximum output value 3.0
Moth maximum rotation speed 8.0 rad/s
Moth acceleration 0.2m/s2

Moth drag 0.5 m/s
Moth turn-into-wind rate 0.1 rad/s

an on-board moth walking on a track ball. The moth’s movement on the trackball was 218

translated into wheel speeds for the robot. The authors presented trajectories for both 219

the moth-controlled robot and the moth only in the odor plume. Here, we adjusted the 220

parameters of this model such that the agent’s trajectories were similar to the moths’ 221

trajectories presented in [38], based not only qualitatively on the trajectories, but also 222

quantitatively on the turn duration, turn angle and turn velocity. 223

Using their robot, Ando and colleagues performed further experiments where they 224

added a bias to the turning of the robot. That is, a constant signal was added to the left 225

(or right) wheel, while the moth was controlling the robot. This causes the moth to drift 226

to the edge of the pheromone plume, but they show the moth is able to compensate for 227

this and continue to follow the plume. We performed the same experiment in our 228

simulation by adding a constant bias (in rad/s) to the moth rotation, causing the 229

simulated agent to have an extra tendency to turn in a particular direction. Ando and 230

colleagues show that moths plume-following behaviour is robust to this sort of 231

manipulation, and that the resulting paths tend to follow along the edge of the plume. 232

Behavioural measurement thresholds were defined in accordance with [38], to allow 233

for comparing the models to data from male silkworm moths. A turn was identified if 234

the agent’s turn duration was larger than 0.5 s, the turn angular velocity was larger 235

than 5 deg/s, and the turn angle was larger than 30° (figure 3B, C; [38]). Loops were 236

detected based on their high rotation rate, above 30 deg/s for at least 5 s. An 237

experiment was considered successful if the agent arrived within 5 cm of the goal. All 238

data was analysed in Python 3.5.5. 239

Experimental situation 2: Path integration 240

A second motivation for our model was to understand how output from the central 241

complex is translated to steering behaviour. Specifically, we connected our steering 242

system to a previously developed CX path integrator model using sigmoid neurons [14]. 243

This model is based on the neuroanatomy of the central complex, and we take the 244

output neurons from the model (CPU1; figure 6A) and project them to the lateral 245

accessory lobes in our model, where they may interact with the flip-flop descending 246

neurons as well as the protocerebral bilateral neurons modelled here. Since there are 8 247

CPU1 cells per hemisphere whose summed activity is thought to activate the motor, but 248

only one flip-flop neuron in our model, the activity of all 8 neurons was summed by 249

projecting onto the same flip-flop cell. 250
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Fig 3. Overview over the odor plume experiment. A: The pheromone plume is
released from the source and dispersed by wind. Shown is one frame of the plume, with
the grey value reflecting the pheromone concentration on a scale from 0 to 1. The agent
is expected to navigate towards the source using the odor plume. In the absence of
input, the agent turns upwind. B: Typical path of the rate-code model, with right turns
indicated by filled grey circles and left turns indicated by empty black circles. C: The
rotation rate defines whether a rotation is classified as a turn. Detected turns are
marked (right turn = grey, left turn = black). Definition as in [38].

In the plume experiments, the value of each sensor was between 0 and 1, so that the 251

difference between the two sensors could also fall between 0 and 1. However, the output 252

from the path integrator had a narrower spread (0.5 to 1). While our models worked 253

with that smaller difference, we also re-scaled the path integrator output to a scale of 0 254

to 1 to test whether this would improve the models’ behaviours. 255

To evaluate the behaviour in this situation, we used exactly the same simulator as 256

before (pompy), but removed the odour plume. We then caused the agent to take a 257

random exploratory path by setting its rotation rate to be a Gaussian white noise 258

process with σ = 0.1rad/s while moving forward at a constant speed (see table 1), for 15 259

seconds in total. The agent then attempted to return directly home using the CX 260

output combined with our steering model. The simulation was then continued for 261

another 40 seconds. An experiment was considered successful if the agent arrived within 262

5 cm of the starting location. 263

Results 264

In order to determine how realistic the behaviour of our model is, we compared the 265

simulated tracks qualitatively and quantitatively to data from silkworm moths (Bombyx 266

mori, originally published in [38], Fig. 4). The total turn duration of the rate-code 267

model falls within the standard deviation of real moth data but was slightly higher for 268

the nengo model (Fig. 4A). The total turn angle of both models fell within the standard 269

deviation of real moth data (Fig. 4C), while the mean turn velocity of both models was 270

10-15 % lower compared to real moths (Fig. 4B). However, both models performed well 271

with respect to finding the origin of the plume, with a success probability of 0.84-1.0 272

(Fig. 4D). Qualitatively, the tracks of both models display clear zigzagging (Fig. 4E, F), 273

with the rate-code model having overall straighter paths than the nengo model. Looping 274
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behaviour is seen in the nengo model and, to a lesser extent, in the rate-code model 275

(Fig. 4I). Since moths have been described to perform loops when they lose the odour 276

plume and search for a new pocket of odour, we checked the sensor values during 277

looping. Loops were detected automatically based on their high rotation rates, allowing 278

us to divide the trajectory into looping and non-looping stretches (Fig. 4H). Analysing 279

the difference in value between the two sensors during looping, we find that looping 280

occurs proportionally more often when the two sensors have similar or equal values (Fig. 281

4G), suggesting that looping emerges from the model when the sensor data is 282

non-directional, which is consistent with real moth behaviour. Overall, when comparing 283

the rate-code and nengo models to moths, we find that both models replicate real moth 284

data reasonably well. 285

Fig 4. Behavior of both models in a simulated odor plume. A-D: Comparison
of the rate-code and Nengo model to data from silkworm moths. Bar plots represent the
median, with the error bar giving the bootstrapped 95 % confidence interval. The moth
mean ± standard deviation (black line and grey area) and the moth median ± median
absolute deviation (dark blue line and blue area) are given for comparison. Moth data
reproduced with permission from [38]. E-F: Example trajectories for the rate-code (E)
and Nengo (F) models. G: Difference in sensor values during looping. During loops, the
values of the two sensors are very similar or equal. H: Example trajectory of the Nengo
model displaying automatically detected loops in dark blue, and non-looping stretches
in orange. G. The Nengo model displays substantially more looping than the rate-code
model. For additional paths, see S2 Fig

A further way of testing how well our models replicate real moth behaviour was to 286

add a turn bias to the simulation. When given a turn bias, silkworm moths were shown 287

to track the edges of the odour plume instead of the centre [38]. This was also the case 288

for our models (Fig. 5). When analysing the angle between the current position of the 289

agent and the source of the odour plume, we found that the models shift away from the 290
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centre of the plume already at a turn bias of 1 rad/s (Fig. 5A, B). With increasing turn 291

bias, the models’ success rate decreases, and at a turn bias of 3 rad/s, no agent 292

simulated by the rate-code model reaches the goal. The nengo model is more robust but 293

starts failing at a turn bias of 5 rad/s (data not shown). While these results are more 294

difficult to compare quantitatively to real moth data owing to the different ways of 295

implementing the turn bias, it is clear that qualitatively the models behave very 296

similarly to real moths, as they track the edge of the plume rather than the centre when 297

given a turn bias. 298

Fig 5. Turn bias. A: Proportion of time the agent spent at a specific angle relative to
the source of the odor plume. Only successful trials were included. When a turn bias
was added to the left motor, the agents shifted away from the center of the plume
towards the plume’s edge. At a turn bias of 3, the rate-code model failed consistently.
B: Paths of the rate-code and Nengo models with increasing turn bias. N = 40 per
condition. Dotted line = center of the odor plume; dashed outline = area of odour
concentration of at least 10 percent of the maximum detectable level, averaged across
3000 timesteps; blue dot = plume origin; grey circle = area around plume origin that
needs to be reached in order to count as success.

Having established that the simple flip-flop networks are able to reliably replicate 299

several characteristics of male silkworm moth behaviour, we then proceeded to test 300

whether the models could also take CX output, rather than odour plume information, 301

as input signals. For this experiment, we used a computational model of the CX that 302

computes path integration in an anatomically constrained network (Fig. 6A; [14]). In 303

short, path integration is a computation that combines, at each time step, the current 304

heading of the animal (represented in TB1 neurons, Fig. 6A) with its forward speed 305

(represented in TN neurons, Fig. 6A). The resulting vector (updated in the CPU4 306
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memory loop, Fig. 6A) points in the direction of the path’s origin, and the length of the 307

vector represents the distance of the animal from that origin. Thus, an animal that 308

continuously updates this vector during an outbound path has the possibility to return 309

back to its origin in a straight line. Once the animal decides to return, the desired 310

heading (encoded in the CPU4 vector) is compared to the current heading (TB1 311

neurons), and mismatches between the two are transferred to an unspecified motor via 312

CPU1 neurons. As CPU1 neurons project from the CX to the LAL, it is plausible that 313

they interact with flip-flop neurons there. Importantly, steering signals are encoded as 314

an imbalance between the summed activity of all CPU1 neurons in the right hemisphere 315

and those in the left hemisphere. We therefore used the summed CPU1 activity as input 316

to the flip-flop network. Using the same model parameters as for odour-plume 317

experiments, both the rate-code and the nengo model steer an agent back to its origin 318

based on path integrator output (Fig. 6B), albeit with a lower success rate than the 319

ideal path integrator (Fig. 6D). We assessed the accuracy of homing by analysing the 320

orientation of the agent relative to the origin, where 0° means that the agent is perfectly 321

tracking along the straight line between the end of the outbound path and its origin (Fig. 322

6C). Without any connections to the steering model, the ideal path integrator peaks at 323

an orientation of 0° and has a standard deviation of 15.4°. The nengo model also peaks 324

at 0° but has a wider standard deviation of 67.9°. Interestingly, the rate-code model has 325

one peak at 0°, a standard deviation of 50.2°, and two additional peaks at ± 90°. 326

Due to this odd distribution of orientations, and due to the relatively low success 327

rate for the two models (0.7 and 0.57, respectively), we examined different ways of 328

connecting the path integrator to our steering system. After all, there is no a priori 329

reason for expecting an output value of 0.5 from the path integrator to mean the same 330

thing as a 0.5 from the odour detection system. However, we do not want to postulate 331

complex neural mechanisms between these two systems. Two simple things to adjust 332

would be the gain of this connection (which would correspond to increasing the number 333

of synapses, or moving the synapse closer to the spike initiation zone) and adjusting the 334

bias current (which would correspond to changing the threshold at which the neuron will 335

fire). While neither of these on their own significantly improved behaviour, we found 336

that adjusting this gain and bias such that a path integrator value of 0.5 is mapped to a 337

0 input to the steering system and a value of 1.0 stays at 1.0 (and intermediate values 338

are linearly interpolated between these) greatly improved performance while keeping the 339

same qualitative effects (Fig. 6). When re-scaling the path integrator output to a scale 340

between 0 and 1, we find that both models are significantly more successful as well as 341

more accurate in tracking along a straight line back to the origin (Fig. 6E, F, H). At a 342

sensor difference of 0.5 or above, the rate-code model’s percentage of successful runs 343

increases from 0.7 to 0.78, and the Nengo model increases from 0.57 to 0.92 (Fig. 6H). 344

Discussion 345

We modelled a simple flip-flop network based on neurons that have been described in 346

detail in the silkworm moth. The computational model has only two pairs of neurons: 347

the flip-flops, which are bistable neurons, and the PBNs, which provide inhibition 348

between the two hemispheres. This network was modelled both as a rate-code model 349

and as a spiking nengo model. Surprisingly, both models were able to replicate the 350

behaviour of real moths in an odour plume reliably, despite their simplicity. We also 351

tested whether this simple steering network could serve as an interface between the CX 352

and downstream motor centres by combining it with the CX path integrator 353

network [14]. We could show that both the rate-code and the nengo model can take 354

input from the path integrator and use it for steering towards a target, and that the 355

efficiency of steering depends on the scaling of the input into the system. In the 356

August 25, 2020 12/23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2020. ; https://doi.org/10.1101/2020.08.25.266247doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.266247
http://creativecommons.org/licenses/by-nc/4.0/


Fig 6. Integrating the flip-flop models with the central complex path
integrator. A: Schematic of the integrated network. The path integrator receives
compass input via CL1a neurons, and speed input via TN neurons. TB1 neurons
compute the current heading direction. CPU4 and pontine (Pon) neurons form a
memory loop which integrates the current heading direction with the current speed,
resulting in a vector that points to the path’s origin. When the agent wants to return
home, CPU1 neurons compare the current heading (represented in TB1 neurons) to the
desired heading given by the CPU4 home vector. CPU1 neuron output is then fed
directly into the flip-flop networks, with the same input driving both the inhibitory
protocerebral bilateral neurons (PBN) and the flip-flop neurons (FF). B: Example paths
of the path integrator without a steering network (ideal), with the rate-code model, and
with the Nengo model. C: Success rate of the integrated models compared to the ideal
path integrator. The success probability of both models increases when the CPU1
output is rescaled to a range of 0 to 1. Error bars represent the bootstrapped 95 %
confidence interval around the median. D: Proportion of time the models spend at a
certain angle relative to the path’s origin. E: With rescaled input, the distribution of
the rate-code model becomes almost identical to that of the ideal path integrator. F:
With rescaled input, the distribution of the Nengo model has a smaller spread around 0°
and becomes more similar to the ideal path integrator. N = 50 for all path integrator
experiments. Only successful runs were considered in D-F.

following, we will discuss our findings with respect to the models, their behaviours and 357

the predictions and conclusions we can draw from these experiments specifically as well 358

as computational models of insect neural networks in general. 359
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Rate vs. Nengo model 360

When comparing the rate-code and the Nengo models, both produced very similar 361

overall plume-following behaviours, despite the difference in complexity. This shows 362

that rate-code models are, to a certain degree, a valid way of modelling neural networks, 363

despite the many simplifications they involve by default. However, the more subtle 364

behaviours of the system seem to be more realistic in the Nengo version, in particular 365

for looping behaviour and for the influence of turning bias. 366

For the looping behaviour, Figure 4 E and F show that the Nengo model provides 367

frequent tight looping movements that are much less common in the rate model. We 368

were unable to find ways of modifying the rate model to create these tight loops while 369

still being able to successfully follow the plume. Similarly, for the behaviour when a 370

turning bias is introduced (Figure 5B), the Nengo model produces the same 371

edge-following behaviour observed in the original experiment, while the rate version 372

does exhibit some shift, but with a wider spread. Overall, this indicates that the Nengo 373

model produces more realistic behaviour, with its approach of using low-level 374

components to approximate more complex neural functions. For this reason, we believe 375

the Nengo model is worthy of future study. 376

Steering network 377

The simple steering network presented in this paper appears to be sufficient to mediate 378

efficient and realistic steering behavior. However, many more neuron types than the two 379

modelled here were described to be part of the pheromone-responsive network in the 380

LALs of the silkworm moth [34] [25] [23] [39] [40]. Thus, while producing realistic 381

steering behavior, our models are a gross simplification of the actual neural circuit that 382

likely computes pheromone-following. For example, two neuron types that were 383

proposed to play a role in steering are GII-A and GII-C descending neurons [23] [35]. 384

We found that they were not necessary to produce the behavior presented in this paper 385

(S2 Fig). Including more neuron types in this steering network was beyond the scope of 386

this paper, but will certainly refine the resulting behavior and potentially lead to 387

unexpected emerging behaviors (see discussion of looping behavior below). 388

A major open question is how flip-flopping can be achieved in a real neuron. In the 389

Nengo model presented here, we use an optimization method to combine low-level 390

components, which consist of voltage build-up and spikes, to approximate the flip-flop 391

behavior. While this produces more realistic behavior than the idealized rate-based 392

approach, more realistic details could be added. In particular, various models of neural 393

bistability currently exist (e.g. [41] [42]) that might serve as the basis for a more 394

accurate model of these flip-flop neurons. Importantly, since these theories postulate 395

internal mechanisms as the basis of the flip-flop behavior, we can use the same Nengo 396

software and the same function approximation process to generate these more accurate 397

models, and see if the resulting behavior is also more accurate. 398

Model behavior 399

When evaluating the behavior of both models, the turn angle, turn angular velocity and 400

turn duration agree well with values reported for male silkworm moths and fall within 401

the mean ± one standard deviation of moths [38]. The high positive deviation of the 402

Nengo model’s turn duration (Figure 4A) can be explained by this model’s tendency to 403

loop, leading to more and longer turns. The rate-code model also produced looping 404

behavior, but at a much lower rate than the Nengo model. Interestingly, loops occurred 405

when the difference between the two sensors’ values was very low, up to 0.1. While 406

many insects perform loops (e.g. [43] [44] [45]), this locomotion strategy would not be 407
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expected in simple taxis behaviors, in which the animal navigates purposefully towards 408

or away from a sensory cue. In this situation, a very small difference between the two 409

sensor values would be expected to elicit a straight walk, with the aim of keeping the 410

difference as small as possible. On the other hand, looping allows the insect to sample 411

its entire immediate environment, which may be especially useful if the insect orients 412

relative to an external cue, or towards the source of an intermittent cue such as an odor 413

plume. For example, fruit moths perform a loop as a search mechanism when they lose 414

the odor plume [43]. Dung beetles perform a circular dance on their dung ball to sample 415

their environment and to take a ‘snapshot’ of skylight cues before rolling their dung ball 416

in a straight line relative to these cues [6] [44], and perform another dance after losing 417

their bearing. Desert ants use a similar strategy to learn their visual surroundings 418

during learning walks [45]. Looping therefore appears to be a robust strategy to sample 419

and learn the immediate sensory environment, as well as to re-acquire a sensory signal 420

that has been lost. It is intriguing that the network architecture of our simple model 421

gives rise to looping as a search behavior. This finding suggests that looping may not be 422

an active search strategy, but one that simply emerges from the connections within the 423

network in situations where sensory information is ambiguous. Exactly how this 424

behavior emerges is outside the scope of this paper, but our initial hypothesis is that it 425

is a side effect of the timing behavior of the Nengo model. The Nengo model consists of 426

LIF neurons and synapses, organized to approximate flip-flop neurons and sigmoid 427

neurons. But these LIF neurons and synapses have intrinsic timing (membrane time 428

constants and post-synaptic time constants, respectively). These are both on the order 429

of tens of milliseconds, allowing the neural system to hold information over time. This 430

may allow the moth to continue its tight loop during times when the odor plume is 431

intermittent in a way that the rate model (with its lack of temporal dynamics) does not. 432

Central complex output can be used for steering 433

In addition to steering towards the source of an odor plume, we could show that the 434

models also steer well when getting input from the CX path integrator (PI) network 435

published in Stone et al. (2017) [14]. The PI network itself computes a home vector 436

based on visual information, using a visual compass signal for estimating its current 437

heading, combined with optic flow to estimate its current speed. Both types of 438

information are integrated in a memory loop and result in a vector that always points to 439

the agent’s point of origin. When the agent wants to return home, it can use the vector 440

to return there in a straight line by comparing its desired heading to its current heading 441

and adjusting for any mismatches. Thus, the output from this network is in essence a 442

steering signal that represents the difference between the intended heading and the 443

current heading. The output is asymmetric between the right and left hemisphere, 444

depending on whether the agent needs to correct to the right or to the left. 445

Our steering models can take this input and steer the agent towards its point of 446

origin, using the same parameters that were used for odor-based steering. This was 447

surprising, considering that the sensory input experienced in an odor plume is quite 448

different from the input provided by the path integrator. Odor plume input is 449

intermittent and varies at a high temporal frequency between 0 (no input at all) and 1 450

(the highest odor concentration possible), whereas path integrator output is constant, 451

changes smoothly without sudden jumps, and ideally varies within a relatively small 452

range around the intended heading. As the steering model was calibrated using odor 453

plume input, it was not unexpected that the steering network steered less reliably using 454

path integrator output, with the rate-code model in particular often steering at a 90° 455

angle to the home vector. Re-scaling the difference to a range between 0 and 1 456

improved the success rate and accuracy of both models. 457

The finding that the steering networks can steer based on CX output shows that in 458
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principle, the flip-flop network is not restricted to using odor cues but can use signals 459

from other modalities as well. One important limitation is that the input signals need to 460

be directional, that is, there must be an imbalance between the signals in the right and 461

left hemisphere. Here we specifically tested input signals that are derived from visual 462

cues, but there is no reason that the input should be restricted to olfactory and visual 463

cues alone. This agrees well with data from the silkworm moth, whose flip-flop neurons 464

are known to switch state in response to odor cues as well as light flashes. Furthermore, 465

bistable neurons of a similar morphology were found to switch state in response to 466

auditory input in the cricket [28]. These data, taken together with our findings, make a 467

strong case that the flip-flop network is not specific to mediating odor plume-following 468

behaviors, but can take multimodal input, including input from the heading direction 469

network in the CX, and produce robust steering. Our data therefore supports the idea 470

that this neural network may work as a general purpose steering network at least in the 471

context of targeted orientation behaviors (excluding taxis behaviors). 472

Predictions 473

Our analysis generates several interesting and testable predictions. First and foremost, 474

CPU1 neurons that project from the CX to the LAL are expected to have either direct 475

or indirect excitatory synaptic connections with flip-flop neurons. To our knowledge, 476

only one similar connection has been described so far: In the fruit fly, a CPU1 neuron 477

(PF-L in Drosophila nomenclature) was shown to synapse onto bilateral LAL 478

interneurons [46] (see also [47]. However, whether CX output neurons also project onto 479

descending neurons in the LAL remains unknown. Finding the interaction sites between 480

CX output neurons and LAL descending neurons, such as the flip-flop neurons modelled 481

here, will be an important step towards understanding how the CX controls behavior. 482

Secondly, we propose that the flip-flop network does not only underlie olfactory 483

steering, but that it can be a multimodal steering network. If this is correct across 484

insects, we would expect flip-flop neurons to switch state in response to any stimulus 485

that elicits targeted locomotion. Here, we will discuss three examples of targeted 486

locomotion: straight line orientation, migration and path integration. 487

Dung beetles perform short-distance, straight-line orientation when rolling their ball 488

away from the dung pile [48]. To keep their path straight, they rely on skylight cues 489

such as the position of the Sun, the polarization pattern of the sky, and the sky’s 490

spectral gradient [5] [49] [50] [51]. These cues are integrated in the CX to generate a 491

current heading [44], which can be used to steer the animal along its straight path and 492

adjust for deviations. We therefore expect that dung beetle flip-flop neurons should 493

respond to a sudden change of the skylight cue, such as a sudden rotation of the 494

polarization pattern, with a state change. 495

When it comes to long-distance migration, the Monarch butterfly and the Bogong 496

moth are well-known insect models for diurnal and nocturnal migration, 497

respectively [52] [53]. The Monarch butterfly uses a time-compensated Sun compass to 498

migrate from its breeding grounds in North America to overwintering regions in central 499

Mexico [7]. Additionally, it can use the geomagnetic field [54]. The Bogong moth uses 500

the geomagnetic field in combination with visual landmarks to migrate from its 501

breeding grounds in southern Queensland and western New South Wales (Australia) to 502

its overwintering sites in the Australian Alps [8]. If the Monarch butterfly or the 503

Bogong moth get off course and miss their target, they likely perish, thus precise course 504

control is essential during their migration. The CX path integration network has been 505

proposed to be a possible substrate for computing long-distance migration [10], and Sun 506

compass information is also processed in the CX [55], thus making it likely that the 507

resulting steering commands are passed on to LAL descending neurons. We would 508

expect flip-flop neurons in the Monarch butterfly and the Bogong moth to switch state 509
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in response to sudden changes in the skylight cues or landmark configuration that they 510

use to orient. Furthermore, many flying insects use optic flow for flight control, 511

including moths [56] [57] [58] [59]. One might therefore expect flip-flop neurons to also 512

respond to optic flow with a state change. 513

Finally, path integrating ants and bees are obvious targets for measuring flip-flop 514

neuron responses, considering that we use the PI network as an input for our steering 515

models. However, since the flip-flop neurons are not driven directly by sensory input 516

that could be controlled in an experimental situation, but rather by a memory state, it 517

is more difficult to test how flip-flop neurons respond during homing. One could 518

however test optic flow cues and compass cues separately, to dissect how the different 519

components of the path integrator drive the flip-flop neurons. Alternatively, it may be 520

possible to perform extracellular tetrode recordings from flip-flop neurons during 521

natural homing on a track ball [60]. 522

Conclusions and outlook 523

Of course, motor control mediated by descending neurons is much more complex than 524

the simple model presented here. In the silkworm moth, several other neuron types were 525

described to play a role in pheromone-mediated steering, which can be added to the 526

model for increased complexity and biological relevance. Additionally, complex motor 527

patterns are most likely mediated by not just one cell type, but by a population code 528

across a number of descending neurons [15]. Creating larger and more integrated models 529

of this form is a useful tool for a more complete understanding of these complex 530

interactions. 531

We believe that the model we have developed and presented here is one small step 532

towards understanding the connection between the heading direction system in the CX 533

and downstream motor centers. Importantly, the approach we have taken to develop 534

this model is flexible and suitable for a wide range of model features. While this is the 535

most complex insect-based model developed using the Nengo neural modelling software, 536

Nengo has also been used for a wide variety of mammal-based models, including Spaun, 537

the first large-scale functional model of the human brain [61]. This involved modelling 538

30 different brain areas, including motor cortices, primary visual areas, the basal 539

ganglia, and the thalamus, as well as modelling a simple environment for interaction. 540

While modelling insect brains offers different challenges than mammalian brains, we 541

believe our work has shown that this sort of large-scale model is possible, and can lead 542

to more realistic behavior than some traditional modelling approaches. 543

Developing a more complete model cannot be done by a single group of researchers. 544

We have made our model freely available at 545

https://github.com/stanleyheinze/insect steering, and we hope that a community of 546

researchers can, over time, add additional neuron types and neural system to increase 547

the complexity of the model and advance our understanding of this general steering 548

system in insects. 549
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S2 Fig.

Model results including descending neurons GII-A and GII-C.
The GII-A and GII-C cell populations were modelled as inhibitory (-0.5; 50 percent

inhibitory input on the motor) or excitatory (0.5; 50 percent excitatory input on the
motor).
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