

Edinburgh Research Explorer

Approximating solutions of the chemical master equation using
neural networks

Citation for published version:
Sukys, A, Öcal, K & Grima, R 2022, 'Approximating solutions of the chemical master equation using neural
networks', iScience, vol. 25, no. 9, 105010. https://doi.org/10.1016/j.isci.2022.105010

Digital Object Identifier (DOI):
10.1016/j.isci.2022.105010

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
iScience

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 01. Nov. 2022

https://doi.org/10.1016/j.isci.2022.105010
https://doi.org/10.1016/j.isci.2022.105010
https://www.research.ed.ac.uk/en/publications/a7417ef0-a933-4582-91ad-d0dd7b67377f

ll
OPEN ACCESS
iScience

Article
Approximating solutions of the Chemical Master
equation using neural networks
Train

Copy number

Model
Parameters Copy number

Copy number

Emulate

Compare

Simulator

Biochemical
Reaction Network

Neural
Network

Neural Emulation of
 Stochastic Simulations

for Inference & Exploration

Stochastic Simulations

Augustinas Sukys,

Kaan Öcal, Ramon

Grima

asukys@turing.ac.uk (A.S.)

kaan.ocal@ed.ac.uk (K.Ö.)

ramon.grima@ed.ac.uk (R.G.)

Highlights
We approximate solutions

of the Chemical Master

Equation using neural

networks

Simple networks suffice to

learn complex

distributions over a wide

parameter range

Neural emulation can

significantly speed up

parameter exploration

and inference

Sukys et al., iScience 25,
105010
September 16, 2022 ª 2022
The Author(s).

https://doi.org/10.1016/

j.isci.2022.105010

mailto:asukys@turing.ac.uk
mailto:kaan.ocal@ed.ac.uk
mailto:ramon.grima@ed.ac.uk
https://doi.org/10.1016/j.isci.2022.105010
https://doi.org/10.1016/j.isci.2022.105010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.105010&domain=pdf

ll
OPEN ACCESS
iScience
Article
Approximating solutions
of the Chemical Master equation
using neural networks

Augustinas Sukys,1,3,4,* Kaan Öcal,1,2,4,* and Ramon Grima1,5,*
1School of Biological
Sciences, University of
Edinburgh, Edinburgh EH9
3JH, UK

2School of Informatics,
University of Edinburgh,
Edinburgh EH8 9AB, UK

3The Alan Turing Institute,
London NW1 2DB, UK

4These authors contributed
equally

5Lead contact

*Correspondence:
asukys@turing.ac.uk (A.S.),
kaan.ocal@ed.ac.uk (K.Ö.),
ramon.grima@ed.ac.uk (R.G.)

https://doi.org/10.1016/j.isci.
2022.105010
SUMMARY

The ChemicalMaster Equation (CME) provides an accurate description of stochas-
tic biochemical reaction networks in well-mixed conditions, but it cannot be
solved analytically for most systems of practical interest. Although Monte Carlo
methods provide a principledmeans to probe systemdynamics, the large number
of simulations typically required can render the estimation of molecule number
distributions and other quantities infeasible. In this article, we aim to leverage
the representational power of neural networks to approximate the solutions of
the CME and propose a framework for the Neural Estimation of Stochastic Simu-
lations for Inference and Exploration (Nessie). Our approach is based on training
neural networks to learn the distributions predicted by the CME from relatively
few stochastic simulations. We show on biologically relevant examples that sim-
ple neural networks with one hidden layer can capture highly complex distribu-
tions across parameter space, thereby accelerating computationally intensive
tasks such as parameter exploration and inference.

INTRODUCTION

The past decades have seen great progress in our understanding of the complex dynamics that underlie

noisy cellular processes, both from an experimental and a theoretical perspective. Modern experimental

techniques have shown that mRNA and protein levels can vary enormously at the single-cell level, but build-

ing detailed quantitative models that take into account the stochasticity of biochemical systems remains a

daunting task. Owing to the numerous challenges involved in describing the stochastic dynamics of these

systems, modeling frequently relies on deterministic and small noise approximations which do not paint an

accurate picture in many situations. Such simplified descriptions are often insufficient to describe how

biochemical networks function in the presence of molecular noise (Maheshri and O’Shea, 2007; McAdams

and Arkin, 1999) and do not capture intricate noise-driven phenomena involved in cell fate decision (Elowitz

et al., 2002; Choi et al., 2008) and phenotypic regulation (Raser and O’Shea, 2005).

Themost commonly used formalism for modeling biochemical reaction networks in a fully stochastic frame-

work is the Chemical Master Equation (CME) (Schnoerr et al., 2017), which describes how the probability

distribution over states evolves with time. The CME cannot be solved analytically for most biologically rele-

vant cases, and as the state space is typically infinite, numerical solutions to the CME often involve state

space truncation methods such as the Finite State Projection (FSP) (Munsky and Khammash, 2006). Howev-

er, owing to the combinatorial explosion of the state space in the number of species, using the FSP to solve

the CME quickly becomes too computationally intensive for most non-trivial systems (Kazeev et al., 2014;

Kazeev and Schwab, 2015; Dinh and Sidje, 2020). A wide variety of other approximation methods exist for

the CME (see Schnoerr et al. (2017) for an overview), but these often trade computational efficiency for ac-

curacy and are generally difficult to apply to complex systems involving many species and interactions.

While solving the CME remains challenging, sampling realizations of a system is possible thanks to the Sto-

chastic Simulation Algorithm (SSA) (Gillespie, 1976). Many physical quantities such as moments of molecule

number distributions can be computed to arbitrary accuracy by repeatedly simulating samples from the

system. Nevertheless, the SSA can be prohibitively computationally expensive when many repeated sim-

ulations are needed for the accurate estimation of these quantities. As simulations have to be performed

anew for all parameters of interest, investigating system properties over time and parameter space with this
iScience 25, 105010, September 16, 2022 ª 2022 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:asukys@turing.ac.uk
mailto:kaan.ocal@ed.ac.uk
mailto:ramon.grima@ed.ac.uk
https://doi.org/10.1016/j.isci.2022.105010
https://doi.org/10.1016/j.isci.2022.105010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.105010&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

ll
OPEN ACCESS

iScience
Article
approach can quickly become intractable. Furthermore, likelihoods are hard to estimate reliably using

Monte Carlo methods, rendering likelihood-based inference particularly difficult (Wilkinson, 2018).

Given the difficulties inherent in solving the CME exactly, it is natural to explore whether we could tackle

this problem using neural networks, which in recent years have found diverse applications in the physical

and biological sciences (Angermueller et al., 2016; Min et al., 2017; Carleo et al., 2019; Mehta et al.,

2019). Their ability to detect patterns and learn complex representations given enough data is particularly

useful when combined with simulator-basedmodeling, where such data can often be generated aplenty. In

the context of systems biology, neural network-based approaches have been used to perform parameter

inference on deterministic models, accelerate parameter exploration for models described by partial and

stochastic differential equations (Wang et al., 2019), and even learn Markovian approximations to non-Mar-

kov models, translating them into the CME framework (Jiang et al., 2021), among other applications.

Moreover, a number of recent studies have investigated the use of neural networks to learn various prop-

erties of stochastic biochemical reaction networks modeled using the CME (Gupta et al., 2021; Bortolussi

and Palmieri, 2018; Repin and Petrov, 2021; Davis et al., 2020; Cairoli et al., 2021). Schnoerr et al. (2017) pre-

sented DeepCME, an approach that uses reinforcement learning to estimate summary statistics such as

means and variances from stochastic simulations. The model abstraction procedure introduced by Borto-

lussi and Palmieri (2018) employs Mixture Density Networks (Bishop, 1994) to learn the transition kernel of

the CME and has been further extended into a framework providing automated neural network architec-

ture search (Repin and Petrov, 2021). In the same vein, mixture density networks have been used to directly

predict the probability distributions characterizing the dynamics of an SIR-type model (Davis et al., 2020).

Finally, Cairoli et al. (2021) demonstrate how Generative Adversarial Networks can be trained to generate

full trajectories resembling the output of the SSA.

In this article, we introduce Nessie, a framework for the Neural Emulation of Stochastic Simulations for

Inference and Exploration, based on using neural networks to learn solutions of the CME from stochastic

simulations. Using only a moderate number of simulations of the specified reaction system at different

parameter values, we train a neural network to learn the marginal probability distributions predicted by

the CME over the whole parameter region of interest. We approximate the target distributions using

mixtures of negative binomials, a flexible class of distributions particularly well-suited for this task

(Perez-Carrasco et al., 2020; Öcal et al., 2022). Once trained, Nessie becomes a surrogate for the CME

that can efficiently and accurately predict the solution of the CME at different times for a wide range of

parameters, bypassing the need to use further simulations or expensive approximation techniques to

analyze the reaction network in question.

Our work differs from related approaches (Gupta et al., 2021; Bortolussi and Palmieri, 2018; Repin and Pet-

rov, 2021; Davis et al., 2020; Cairoli et al., 2021) in several regards. Unlike Bortolussi and Palmieri (2018) and

Repin and Petrov (2021) or Cairoli et al. (2021), we do not aim to learn the transition kernels or the distribu-

tions of trajectories, i.e. the dynamics of the chemical system in question, but to capture the marginal dis-

tributions directly. In this sense, Nessie is also different from DeepCME (Gupta et al., 2021), which focuses

on the task of learning summary statistics such as moments of molecule numbers. The relevant expectation

values can be computed directly from the distributions predicted by Nessie, and we verify in our examples

that Nessie can predict means and variances to a high degree of accuracy. Although our neural network is a

variant of mixture density networks, in contrast to Bortolussi and Palmieri (2018) and Repin and Petrov

(2021) we do not use continuum approximations based onmixtures of Gaussians, thereby avoiding training

and numerical stability issues that can arise in this context (Hjorth, 1999; Bortolussi and Palmieri, 2018; Re-

pin and Petrov, 2021; Goodfellow et al., 2017). As our approach directly targets experimentally observable

distributions, it can also be used to perform parameter estimation based on comparing the neural network

output with experimental data.

The article is organized as follows. In STAR Methods we summarize the relevant theory on the CME and the

basics of artificial neural networks. In Results we describe Nessie, providing an overview of the technical

details of our neural network implementation and the workflow we use to predict the marginal probability

distributions for a given system. We test our approach on several biologically relevant examples: an autor-

egulatory feedback loop, a genetic toggle switch involving mRNA and protein dynamics for two genes, a

detailedmodel of mRNA turnover, and amodel of themitogen-activated protein kinase (MAPK) pathway in
2 iScience 25, 105010, September 16, 2022

ll
OPEN ACCESS

iScience
Article
S. Cerevisiae. The results indicate that Nessie can learn the dynamics of biochemical reaction networks for

a wide range of parameters, allowing us to investigate the physical properties of a given system such as

multimodality and parameter identifiability. Furthermore, we demonstrate how Nessie enables us to build

on Öcal et al. (2022) and perform efficient parameter inference from population snapshot data, a chal-

lenging problem for CME-based models. We conclude by discussing the results and the limitations of

our study.
RESULTS

Nessie

Our goal in this article is to learn marginal distributions predicted by the CME for different parameters and

measurement times. As such the inputs to our neural network will consist of the chemical reaction network

parameters W and the time t; as these can span several orders of magnitude we log-transform them first.

Although we work with fixed initial conditions for each reaction system, this constraint could be relaxed

by adding the molecule numbers at time t = 0 as extra inputs to the neural network.

We approximate the marginal distribution of interest by a mixture of negative binomials, a flexible para-

metric class of distributions that have been shown to be very accurate for a large class of reaction networks

(Öcal et al., 2022; Perez-Carrasco et al., 2020). Indeed, it is known that single-timemarginal distributions pre-

dicted by the CME for many different reaction networks can bemodeled as a mixture of negative binomials

in the presence of timescale separation (Friedman et al., 2006; Shahrezaei and Swain, 2008; Z. Cao and

Grima, 2020; Perez-Carrasco et al., 2020; Jia and Grima, 2020). Experimental measurements of mRNA

and protein distributions in bacterial, yeast, and mammalian cells show that these often fit well by such mix-

tures, even when timescale separation is not applicable (Cai et al., 2006; Taniguchi et al., 2010; Singer et al.,

2014; Phillips et al., 2021). We remark that a mixture of negative binomials always has a Fano factor (variance

over mean) greater than 1, and systems whose Fano factor is significantly less than 1 (see e.g. Braichenko

et al. (2021)) would benefit from a different parametric approximation which we shall not consider here.

A mixture of negative binomials can be parameterized as

q4ðnÞ =
XK

i = 1

wi$NB
�
n; ri; pi

�
: (Equation 1)

where K is the number of mixture components, wi is the weight of the i-th component and NBðri ; piÞ is a
negative binomial distribution with parameters ðri; piÞ. The number of components is fixed a priori and

the weights are subject to the normalization constraint w1 +.+wK = 1. Our task is, therefore, to learn

a mapping ðt; qÞ1ðwi; ri ;piÞKi = 1 from the input parameters to those of the output distribution.

Each parameter characterizing the output distribution is represented by a single neuron in the output layer.

To respect the constraints on the weights wi we apply the softmax activation function to the corresponding

neurons: the outputs are exponentiated, then normalized to sum to 1. For the neurons corresponding to

the count parameters ri we choose exponential activation functions, and for the probabilities pi we use sig-

moid activation functions. The architecture of our neural network is shown in Figure 1.

The number of hidden layers and the number of neurons per hidden layer can have a large impact on the

representational power of a neural network (see Background on Neural Networks). The networks we build

throughout this article contain only a single hidden layer as we have found such architecture in our case to

be easier to train and provide better predictive performance than ‘‘deeper’’ networks (see Hyperparameter

Tuning), an observation corroborated in Jiang et al. (2021). We choose the number of neurons in the hidden

layer depending on the complexity of the chemical reaction network at hand and use the ReLU activation

function as it enables efficient training (Glorot et al., 2011).

In our setup, a single training point consists of an input point x = ðt; qÞ and a reference distribution p of

target molecules at time t for the specified reaction network with parameters W, obtained by averaging

over a number of SSA trajectories (or by using the FSP). We build the training set by sampling parameter

sets W in the parameter region of interest and running simulations at each W; this can be conducted in par-

allel for all parameters. We then use the simulation results at fixed times as training inputs to Nessie, using

its ability to interpolate between these times to learn general time-dependent distributions. In order to
iScience 25, 105010, September 16, 2022 3

Input layer Hidden layer Output layer
Component 1

Component 2

Component K

P
ro

ba
bi

lit
y

Copy number

Neural net prediction

Figure 1. Architecture of Nessie, a simple feedforward neural network with one hidden layer

The input layer takes in the time t and the model parameters W, and the output layer returns the corresponding negative

binomial mixture components. Activation functions are indicated at the bottom.

ll
OPEN ACCESS

iScience
Article
ensure that the training data evenly cover the entire parameter region, we use Sobol sequences (Sobol,

1967), which generally provide more uniform coverage than random sampling.

A common method to match distributions in the statistics literature is to minimize the Kullback-Leibler (KL)

divergence DKLðp k q4Þ, where p is the target distribution and q4 the prediction; this procedure is math-

ematically equivalent to maximizing the average log-likelihood under q4 of a sample drawn from p (Good-

fellow et al., 2017). Hence we use the KL divergence as our loss function for each point in the training set:

L�4; xðiÞ; pðiÞ� = DKL

�
pðiÞ kq4

�
xðiÞ

��
: (Equation 2)

This is equivalent to the cross-entropy, up to the addition of a constant that does not depend on the

network weights 4. Computing the mixture of negative binomials q4 for a given input point is straightfor-

ward using Equation 1. The complete workflow for training Nessie is shown in Figure 2.

We note that maximizing the average log-likelihood for a mixture of Gaussians, as is commonly conducted

withMixture Density Networks (MDNs) (Bishop, 1994), can lead to stability issues for more than one compo-

nent. For example, the neural network can learn to place a Gaussian component at zero with arbitrarily low

variance, which will give an arbitrarily high likelihood if 0 occurs anywhere in the training dataset, irrespec-

tively of the overall quality of fit— an example of overfitting (see Training Neural Networks). This is because

in the continuous case one deals with probability densities, which can become arbitrarily large in contrast to

probabilities. We believe that this phenomenon is responsible for some common numerical issues

observed e.g. in Goodfellow et al. (2017), Hjorth (1999), and Repin and Petrov (2021). One can attempt

to remedy this issue by integrating the density over a finite interval (say, ½ � 0:5; 0:5�), or by regularizing

the precision of each component (thereby adding hyperparameters to the training procedure). In contrast,

mixtures of negative binomials were not prone to overfitting in our experiments and did not require any

form of regularization.

In what follows, we quantify the relative accuracy of the trained neural networks by computing the Hellinger

distance between the predicted and test distributions. Although the KL divergence is more suited as a loss

function (Goodfellow et al., 2017) to train the neural network for its computational efficiency, the Hellinger

distance is a bounded metric and a more interpretable measure of the model’s predictive performance.

We used Julia (Bezanson et al., 2017) with Flux.jl (Innes. 2018) to implement neural networks. Gradients of

the loss function were computed directly by Flux using the built-in Zygote.jl automatic differentiation sys-

tem (Innes et al., 2019). The training datasets were constructed by defining chemical reaction networks via

Catalyst.jl (Loman et al., 2022) and simulating them using DifferentialEquations.jl (Rackauckas and Nie.

2017) (SSA) and FiniteStateProjection.jl (FSP). Minimization of the Hellinger distance in the MAPK inference
4 iScience 25, 105010, September 16, 2022

Update weights:

Copy number

Model
Parameters

Copy number

Copy numberPredict

Compare

Compute gradients

Simulator

Nessie

Compute loss:

Training data

Neural net output

Figure 2. Workflow for training Nessie

Givenmodel parametersW, the reaction network is simulated repeatedly using the SSA to obtain empirical distributions at training time points t1;t2;.. These

are then compared with the output of the neural network and the total loss L is computed. In order to decrease the loss, the neural weights 4 are updated

iteratively via gradient descent until the loss has converged. In the figure h denotes the learning rate (see Training Neural Networks) and DKLðp k q4Þ the KL

divergence between the true distribution p and the neural network prediction q4.

ll
OPEN ACCESS

iScience
Article
example was performed using BlackBoxOptim.jl. All numerical experiments were performed on a Intel

Xeon Silver 4114 CPU (2.2 GHz) using 16 threads.

Autoregulatory feedback loop

We first consider a simple autoregulatory feedback loop illustrated schematically in Figure 3A, consisting of

the following reactions:

Gu +P #
sb

su
Gb; Gu /

ru
P; Gb /

rb
P; P /

1
B:

This system contains a single gene with two promoter statesGu andGb, each associated with different pro-

tein P production rates ru and rb (mRNA dynamics are not modeled explicitly). The feedback is introduced

via reversible binding of a protein molecule to the promoter region with binding rate sb and unbinding rate

su, which causes switching between the two promoter states. Finally, protein degradation is modeled by an

effective first-order reaction. This system is a rudimentary example of stochastic self-regulation in a gene:

the model functions as a positive feedback loop if rb > ru, and a negative feedback loop if rb < ru.

Although the CME of the autoregulatory feedback loop has only been solved analytically in the steady-

state (Grima et al., 2012), an efficient time-dependent numerical solution can be obtained with the FSP

in this specific case as the model contains few molecular species and chemical reactions. Estimating the

probability distributions for the autoregulatory feedback loop via the FSP is much faster than using the

SSA. This makes the autoregulatory feedback loop an ideal toy model for our initial experiments as we

can relatively quickly build arbitrarily large training datasets with the FSP, calibrate the neural network,

and probe the performance of Nessie in capturing the marginal distributions of protein numbers.

We use a training set of size 1k, a validation set of size 100 and a test set of size 500, sampled using a Sobol

sequence in the parameter region indicated in Table S1. For each datapoint, we take four snapshots at

times t = f5; 10; 25; 100g and construct the corresponding histograms using the FSP. Our neural network
iScience 25, 105010, September 16, 2022 5

A B

C D

i ii iii

Nessie

VarianceMean

Nessie

Pr
ob

ab
ilit

y

FSP

FS
P

Nessie

FSP

Protein number

Figure 3. Nessie applied to an autoregulatory genetic feedback loop

(A) Schematic of the reaction network. We assume mass action kinetics for all reactions.

(B) Protein distributions for three different test parameter values (indicated in Table S1). The ground truth distributions were computed using the FSP.

(C) Comparison of true and predicted means and variances of protein numbers at time t = 100 for the test set containing 500 parameter values. True means

and variances were again computed using the FSP.

(D) Exact and predicted bimodality coefficients as a function of rb and sb, where we set su = ru = 1 and t = 100. Here the bimodality coefficients predicted

by Nessie closely agree with their ground truth values.

ll
OPEN ACCESS

iScience
Article
consists of a single hidden layer with 128 neurons and outputs 4 negative binomial mixture components; we

use a batch size of 64 for training. More details on the training procedure and the hyperparameter choices

are given in the STAR Methods.

In Figure 3B we show the protein distributions for three test parameter sets, comparing the predicted dis-

tribution with the FSP results. Our approach provides highly accurate fits for the different distribution

shapes obtained at these points in the parameter space, showcasing the flexibility of negative binomial

mixtures in approximating the CME of the autoregulatory feedback loop.

Having learned the output distributions for this chemical system we can compute various quantities of in-

terest from these. In Figure 3C, we compare the means and variances of the protein number predicted by

Nessie to the true values computed using the FSP for all points in the test dataset. Furthermore, in Figure 3D

we analyze the bimodality coefficient as defined by Xu et al. (2016). The bimodality coefficient of a distri-

bution is defined as 1=ðk � g2Þ, where k and g are the skewness and kurtosis respectively, and is a measure

of bimodality with higher values corresponding to strongly bimodal distributions. We see that Nessie pro-

vides a good approximation to this quantity and closely matches the FSP results.

Numerically estimating the bimodality coefficient for many different parameters is a computationally inten-

sive task, whereas predicting it using the neural network, once trained on its 1k datapoints, is very quick:

using Nessie we can produce the plotted heatmap in 0.03 s, in contrast to the FSP which takes 240s.

This example illustrates how we can apply the neural network to rapidly and efficiently analyze large

swathes of parameter space and, in turn, to determine the regions of bimodality in the system. Note

that in evaluating the model performance we did not take into account the time required to generate

the initial training data and to train the neural network, which is given in Table S5. Although this does incur

a notable overhead, it becomes largely insignificant in comparison to the computational gains provided

by the trained neural network in large parameter exploration studies. Similarly, our approach scales to

more complicated chemical reaction networks that are not amenable to study using the FSP, allowing us

for example to perform global sensitivity analysis for the genetic toggle switch presented in the next

section.
6 iScience 25, 105010, September 16, 2022

A B

Protein number

Pr
ob

ab
ilit

y

Nessie
SSA

samplessamplessamples

H
el

lin
ge

r d
is

ta
nc

e

Number of SSA samples

Figure 4. Training Nessie using the SSA

(A) Mean Hellinger distance computed over the validation dataset versus the number of SSA trajectories used to construct the histogram of each training

datapoint. Here the validation dataset consists of 100 different parameter values at 4 time snapshots, constructed with the corresponding number of SSA

trajectories. The error bars are obtained by averaging over 10 independent Nessie training runs, where for each run we resample the training and validation

datasets and train a newmodel, as conducted for the manual tuning of other hyperparameters discussed in Hyperparameter Tuning and shown in Figure S1.

The red dashed line indicates the accuracy of Nessie trained on the FSP data.

(B) Example distributions constructed with 100, 1k, and 10k SSA samples (indicated in red at the top) compared to the neural network predictions. We retrain

Nessie for each plot using the respective number of trajectories per training point. Parameter values and ranges are given in Table S1.

ll
OPEN ACCESS

iScience
Article
Finally, in Figure 4 we consider using the SSA as an alternative to the FSP for constructing the training data-

set. As each training histogram is built from a number of SSA samples, we investigate how many samples

per training point are required to accurately train the network. Note that the numerical FSP solution is virtu-

ally indistinguishable from the exact CME solution as its approximation error can be systematically reduced

by increasing the size of the truncated state space (Munsky and Khammash, 2006), and hence it is effectively

equivalent to an infinite number of SSA trajectories. We see in Figure 4A that for the autoregulatory feed-

back loop using as few as 100 trajectories per training point enables Nessie to produce good approxima-

tions of the true distributions. In contrast, obtaining similar quality fits using the SSA alone would require

two orders of magnitude more samples per parameter, as demonstrated in Figure 4B where we compare

the histograms obtained using 100, 1k, and 10k SSA trajectories. Onemay expect this effect to be amplified

for larger system sizes andmore widely spread out distributions, where manymore simulations are typically

needed to obtain smooth histograms.

Genetic toggle switch

For our next experiment, we consider a stochastic model of the genetic toggle switch, one of the first syn-

thetic biological circuits (Gardner et al., 2000). The reaction network, introduced in Thomas et al. (2014), is

composed of two mutually interacting genes (which we label A and B) and takes into account transcription,

translation, and the subsequent degradation of the produced mRNA and proteins (see Figure 5A), consist-

ing altogether of the following reactions:

GA
u +PB #

sA
b

sAu

GA
b ;G

B
u +PA #

sB
b

sBu

GB
b;

GA
u /
rAu

GA
u +MA;GA

b /
rAb

GA
b +MA;MA /

gA

MA + PA;MA /
dAm

B;PA /
dp

B

GB
u /
rBu

GB
u +MB;GB

b /
rBb

GB
b +MB;MB /

gB

MB +PB;MB /
dBm

B; PB /
1

B

MB + PA #
sM
b

sMu

MBPA /
dpm

B:

The translated protein A can bind to the promoter region of the gene that produces protein B, and vice

versa with protein B binding to the gene promoter of proteinA. This results in effective transcriptional regu-

lation: depending on the mRNA production rate associated with each promoter state, the process can

either lead to the repression or activation of transcription for each species. In addition, the system contains

post-transcriptional regulation mediated by protein A binding to the mRNA of species B and modulating

its translation accordingly (Hafner et al., 2010).

The toggle switch is noticeably more intricate than the autoregulatory feedback loop considered previ-

ously. It exhibits rich dynamics highlighted by diverse protein distributions that can be highly multimodal
iScience 25, 105010, September 16, 2022 7

Protein B number

Most sensitive Least sensitive

Nessie

VarianceMean

iiiiii iv

A

C

B

D

Nessie
SSA

Pr
ob

ab
ilit

y

SS
A

Figure 5. Nessie applied to a genetic toggle switch with post-transcriptional regulation

(A) Schematic of the reaction network (assuming mass action kinetics for all reactions).

(B) Comparison of true and predicted means and variances of the protein B numbers for the test set consisting of 1k different parameter values at time t =

100 constructed using 100k SSA trajectories.

(C) Protein B distributions for four different test parameter values (specified in Table S2). The SSA distributions were computed by averaging over 100k

trajectories.

(D) Sensitivity of the Fano factor of protein B to parameter perturbation at time t = 100, where the pie charts show the most and least sensitive parameters.

The results are obtained by using Nessie to compute the logarithmic sensitivity of the Fano factor to the 16 model parameters for 100k parameter values

drawn from a Sobol sequence covering the training range given in Table S2. We observe that only a few reaction parameters can be identified as typically the

most/least sensitive (indicated in bold).

ll
OPEN ACCESS

iScience
Article
(Thomas et al., 2014). Owing to the considerable number of reaction parameters, the frequent occurrence

of high copy numbers (> 1000), and the complexity of the observed distributions, studying this system

poses significant problems both analytically and computationally. This makes it a good challenge for

Nessie.

Our aim is to predict the probability distributions of the target protein B in the genetic toggle switch. Note

that we could similarly consider the distribution of protein A or, alternatively, the neural network architec-

ture itself could be extended to predict both marginal distributions for the two proteins in parallel. If,

however, joint distributions are required, the univariate mixture of negative binomials we use needs to

be replaced by a multivariate equivalent; we briefly mention possible approaches in the Discussion.

We draw 40k, 100, and 1k parameters for the training, validation, and test datasets respectively using a So-

bol sequence in the parameter region indicated in Table S2. For each parameter set we take 8 snapshots at

times t = f2; 4; 10; 16; 32; 50; 74; 100g. The complexity of the system prevents us from using the FSP to

construct the reference histograms and hence we resort to the SSA. As discussed previously, a relatively

small number of SSA samples can be used to successfully train the neural network. For this reason, we
8 iScience 25, 105010, September 16, 2022

Nessie
SSA

Pr
ob

ab
ilit

y

Protein B number

Time

H
el

lin
ge

r d
is

ta
nc

e

Figure 6. Using Nessie to interpolate and predict protein B dynamics in time

Bottom: Mean Hellinger distance computed over the test dataset made up of 1k different parameter values (constructed using 100k SSA trajectories)

evaluated at times t = f1; 2;.;100g. The vertical gray dashed lines indicate the time snapshots used for training the neural network, showing that the

predictive error does not notably increase between the training points. Top: Time evolution of the protein distribution predicted by Nessie and the SSA

(averaged over 100k trajectories) for an example parameter set, demonstrating Nessie’s ability to accurately capture the time evolution of the protein B

distribution.

ll
OPEN ACCESS

iScience
Article
use 1k simulations for each training datapoint and 100k simulations for the validation and test data (in order

to ensure a more accurate comparison to the true distributions). In this case, we use a neural network with a

single hidden layer of 1024 neurons and 6 output mixture components and fix the batch size to 1k for the

training procedure (see Training Neural Networks for more details). The remainder of our setup is the same

as in the previous example. The data generation and neural network training times are given in Table S5.

In Figure 5B we verify that the moments (means and variances) of the protein B numbers predicted by Nes-

sie closely match those computed using the SSA for all test datapoints. Furthermore, in Figure 5C, we

compare the predicted protein distributions to the true distributions constructed by averaging over

100k SSA realizations. Notably, the trained neural network is able to reconstruct the complex distributions

and provides a good approximation to the CME solution of the genetic toggle switch. The promising

performance of Nessie highlights the usefulness of neural emulators for dealing with stochastic chemical

reaction networks that go beyond the more tractable examples that are typically studied in the literature;

we demonstrate this further by applying Nessie to a detailed model of mRNA turnover in the next section.

Next, we explore the sensitivity of the genetic toggle switch to noise. The Fano factor, which is defined as the

ratio of the variance of molecule numbers to the mean molecule number, is a commonly used measure of

deviations from Poisson noise and the extent of transcriptional/translational bursting. We investigate

how the Fano factor of the protein B number changes on parameter perturbation. Using the trained neural

network we have computed the logarithmic sensitivity (Ingalls, 2008) of the Fano factor of protein B to all

reaction parameters over a wide parameter range and identified the most and least sensitive parameters

on average, as shown in the pie charts in Figure 5D. In particular, we can identify a few parameters that

are the most or least sensitive to noise in the majority of cases. For example, for over 60% of the parameter

space, themRNAproduction rates rBu and rBb are themost sensitive, and hence tweaking these parameters is

usually the optimal way to control the fluctuations in theproteinB number. Note that performing such global

sensitivity analysis is highly computationally expensive using the SSA, whereas with Nessie it can be approx-

imated within minutes, making it possible to significantly accelerate further parameter exploration studies.

Although we trained Nessie with distribution snapshots only at a few fixed time points, an obvious question

of interest is whether the neural network can capture the temporal dynamics of the chemical system over its

whole trajectory. In Figure 6 we plot the Hellinger distance between the predicted and true (SSA)
iScience 25, 105010, September 16, 2022 9

A

B C

Pr
ob

ab
ilit

y

i ii
Nessie
SSA

Nessie

SS
A

Mean Variance

FL mRNA number

Figure 7. Nessie applied to a detailed model of mRNA turnover

(A) Schematic of the reaction network (assuming mass action kinetics for all reactions). We are interested in modeling the sum of full-length mRNA segments

(the FL mRNA number), highlighted in red. Note that the mRNA fragment G is not related to the gene states GON and GOFF (the notation is kept consistent

with the original model (D. Cao and Parker, 2001)).

(B) FL mRNA number distributions for two different test parameter values. The SSA distributions were computed by averaging over 1M trajectories.

(C) Comparison of true and predicted means and variances of the FL mRNA numbers for the test set consisting of 1k different parameter values at time t =

500 constructed using 100k SSA trajectories. Parameter values and ranges are given in Table S3.

ll
OPEN ACCESS

iScience
Article
distributions at times t = f1; 2;.; 100g averaged over the 1k test parameter sets. Remarkably, the predic-

tive accuracy is largely similar throughout the whole time range, indicating that the neural network is able to

effectively interpolate between the time points it has seen during training. Note that the worse perfor-

mance at t < 2 is expected as we do not train on the initial transient during which the dynamics rapidly

evolve from the initial condition.
Model of mRNA turnover

In this section we consider a detailed model of eukaryotic mRNA turnover, first proposed by D. Cao and

Parker (2001) and consisting of the following reactions:

GON #
sb

su
GOFF ;GON /

1
A;A /

k2
B;

B/
r1

BC1;BC1 /
r2

BC2;BC2 /
r3

BC3;BC3 /
r4

BC4;BC4 /
r5

BC5;BC5 /
r6

C;

C /
r7

E;C /
k3

D;E /
k8

G;E /
k9

F;D /
r7

F;D /
k4

L;

G /
k10

M;G /
k11

B;F/
k8

M; F /
k4

I1; L/
r8

I2;

M /
k11

B;M /
k4

B; I1 /
k5

B; I2 /
k5

B:

This reaction network contains a single gene with two states GON and GOFF, which in the active state GON

produces nuclear mRNA molecules A that are then degraded in a complex downstream pathway. The Nu-

clear mRNA A is transported to the cytoplasm where it undergoes deadenylation followed by decapping

and exonucleolytic degradation either in 30/50 or 50/30 direction (Cao and Parker, 2001), modeled as a

complex sequence of first-order reactions (see Figure 7A). Note that although in the original model

mRNA production is described as occurring constitutively, we have extended it to include gene state

switching in order to account for transcriptional bursting (Suter et al., 2011).

The mRNA degradation model contains even more species and reaction parameters than the genetic tog-

gle switch presented in the Main Text, and approximating it using our framework is a further example of

howNessie can be applied to study large reaction networks. Our focus here is on predicting the probability

distributions of the total number of full-lengthmRNA segments (FL) that have not yet been exposed to exo-

nucleolytic degradation, given by the sum A+B+BC1 +.+BC5 +C +D +E +F.
10 iScience 25, 105010, September 16, 2022

A

B

C

Mean Variance

Nessie

SS
A

Protein number

Pr
ob

ab
ilit

y

Experiment
Predicted (SSA)

Figure 8. Nessie applied to a model of the MAPK pathway

(A) Schematic of the reaction network (see supplemental information for details). The hog1 concentration over time is taken from Zechner et al. (2012).

(B) True and predictedmeans and variances of the protein distribution for the test set consisting of 100 different parameter values at time t = 27 constructed

using 100k SSA trajectories.

(C) Comparison of the experimental distribution (black) with those predicted by the CME for the parameters inferred using Nessie (blue). To probe

parameter uncertainty we performed 10 independent estimation rounds. SSA distributions were computed by averaging over 1M trajectories. Parameter

values and ranges are given in Table S4.

ll
OPEN ACCESS

iScience
Article
We draw 100k, 100, and 1k parameters for the training, validation, and test datasets respectively using a

logarithmic Sobol sequence in the parameter region indicated in Table S3 For each parameter set we

take 8 snapshots at times t = f100; 230; 360; 500; 620; 750; 880; 1000g. We generate 1k SSA trajectories

for each training datapoint and 100k simulations for the validation and test data. The number of hidden

neurons is 1024 neurons, and we used 4 output mixture components, using a batch size of 1k for the

training procedure. The times required to generate the data and train the neural network are given in

Table S5.

In Figure 7B we show that the predicted FL mRNA distributions closely match the true distributions con-

structed using 1M SSA realizations. Furthermore, in Figure 7C, the means and variances of the FL mRNA

numbers predicted by Nessie accurately compare with those computed using the SSA thus demonstrating

that Nessie can perform well even in larger-scale applications.
Mitogen-activated protein kinase pathway

We finally apply Nessie to a biological model of the MAPK pathway in S. Cerevisiaewith the aim of inferring

system parameters using experimental data from Zechner et al. (2012). The reaction network can be seen in

Figure 8A and is modified from Zechner et al. (2012), removing extrinsic noise contributions. It consists of

the following reactions:

G�� #
hbðtÞ

hu

G�;G� + CR #
sb

su
G;G/

rm
G+M;M /

rp
M+P;M/

dm
B;P /

dp
B:

where hbðtÞ depends on the current Hog1 concentration, which was measured experimentally, via the

formula

hbðtÞ =
Vmaxðhog1ðtÞ+bÞh
Kh
m + ðhog1ðtÞ+bÞh

The number of ribosomes and chromatin remodellers in Zechner et al. (2012) were treated as constant

and absorbed into the reaction rates rp.
iScience 25, 105010, September 16, 2022 11

ll
OPEN ACCESS

iScience
Article
This reaction network describes the pSTL1 gene and includes activation owing to a time-varying hog1

signal, chromatin remodeling, transcription, and translation. When yeast is subjected to external osmotic

pressure, activation of the MAPK signaling cascade results in doubly phosphorylated hog1 molecules

entering the nucleus. These bind to the pSTL1 promoter, which is initially in an inactive state (G��). Upon
binding of hog1 to the gene, subject to chromatin structure remodeling via the chromatin remodeling com-

plex (CR), starts transcribing mRNA, which after translocation into the cytosol is translated into protein.

Zechner et al. (2012) used flow cytometry to measure protein number distributions for the MAPK pathway,

for which they proposed the above model. Protein distributions predicted by this model tend to be

bimodal with a sharp peak at 0, as depending on the parameters a sizeable fraction of cells never starts

transcribing mRNA before the hog1 signal decays.

The data measured by Zechner et al. (2012) consist of intensity measurements (in arbitrary units, AU) at

times t = f3; 9; 15; 21; 27; 33; 39; 45g (in minutes) after salt was added to the solution to induce osmotic

shock in the cells, which triggers the MAPK pathway. As the fluorescence intensity per protein (I= P) was

not measured in these experiments we assumed a value of 1AU per protein and rounded the estimated

protein number to the nearest integer (Zechner et al. (2012) noted that identifying all parameters is not

possible from these experiments).

Observing that the experimental distributions at most times had a peak near 0 whose width was consistent

across time points, we binned all observations less than 100AU, the approximate width of the peaks. The

observed peaks are best explained by measurement noise that does not allow us to identify the exact pro-

tein numbers in the low copy number regime. Binning in this case, while potentially losing some informa-

tion, renders the procedure more reliable than the alternative of discarding observations below the

threshold (Fu et al., 2022; Chen et al., 2022). As measurements at time t = 3 were almost entirely below

the threshold we discarded that time point for inference purposes.

Our goal is to find parameters consistent with the data by minimizing the discrepancy between the exper-

imentally observed distributions and themodel output as predicted by Nessie. The training, validation, and

test sets consist of 15k, 250, and 100 points, respectively, which were generated from a logarithmic Sobol

sequence in the parameter region indicated in Table S4, chosen around the maximum a posteriori esti-

mates reported by Zechner et al. (2012). We use 1k simulations for each training datapoint and 100k sim-

ulations for the validation and test data. The size of the hidden layer was set to 2048 and the number of

mixture components was 5. As a significant fraction of the simulated trajectories had 0 proteins we added

a sixth component that was set to be a Dirac delta at 0; this was performed by adding a single output

neuron predicting the weight of this peak. To speed up training we split the procedure into two rounds,

first training with 10% of the training data for 100 rounds and then with the entire training set for 400.

We used a batch size of 1k throughout. Figure 8B shows that the means and variances predicted by the

resulting neural network are close to those obtained using the SSA.

Once Nessie is trained we estimate the model parameters by minimizing the sum of Hellinger distances

between the experimental distributions and Nessie’s predictions, treating all observations below 100

AU as lying in one bin as discussed above. As the outputs of the neural network are fully differentiable

with respect to its inputs, including themodel parameters, we can performminimization using any standard

gradient-based algorithm. This is similar to the training procedure discussed in Section 2, except that we fix

the neural weights and vary the model parameters instead. To evaluate the accuracy of the estimation

scheme we ran the SSA at the predicted parameters, verifying that the results match the experimentally

observed distribution (see Figure 8C for the results using 10 estimated parameter sets). As can be seen

in the figure our results do not reproduce the peak near 0 found in the experimental input, and an extensive

parameter search did not lead to any parameters which exactly reproduce the experimental data. We,

therefore, suspect that the model we used does not fully describe the dynamics of hog1-mediated gene

expression and that obtaining better results will require a more detailed model than the one we are using.

While neural networks could be used to perform maximum likelihood estimation or Bayesian inference

(Lueckmann et al., 2018), we did not pursue likelihood-based approaches in this article. Owing to large

number of datapoints (over 100k), any small approximation error in the distributions predicted by Nessie

will get amplified by several orders of magnitude: as the likelihoods for each datapoint add up to form

the total likelihood of the data, the errors in the likelihood will, too. This leads to highly fluctuating
12 iScience 25, 105010, September 16, 2022

ll
OPEN ACCESS

iScience
Article
likelihood values for similar parameters that are an artifact of the neural approximation and not present in

the truemodel. This results in the predicted posterior being concentrated tightly around one parameter set

where these fluctuations result in a marginally higher likelihood for the experimental data than the others,

and the resulting uncertainty estimates reflect the approximation error incurred by Nessie instead of true

parameter uncertainty. Such concentration of the estimated posterior owing to randomness is a common

problem in usingMCMCwith ‘‘tall data’’ (Bardenet et al., 2017), where estimating likelihoods for large data-

sets becomes very difficult.

As fitting parameters using Hellinger distances does not directly provide uncertainty information, we esti-

mated uncertainty by repeatedly fitting parameters to the experimental data; Table S4 shows the results of

10 fits. As can be seen in Figure 8B, these results produce similar distributions under the CME, yet some

parameters such as sb and dp are spread over an order of magnitude. Such parameter unidentifiability is

common with the type of experimental data measured in biological experiments and should be taken

into account when interpreting results. In particular, the Hill coefficient, which was allowed to range

from 1 to 10, could not be narrowed down within this range.

Once the network is trained, globally optimizing the Hellinger distance within the targeted parameter re-

gion takes a few minutes. Our approach should, therefore, be particularly suited for scenarios where dis-

tribution data is available for many copies of one network, e.g. when using a single gene expression model

to analyze many different genes in an organism.
DISCUSSION

In this article, we presented Nessie, a framework that allows us to train neural networks on simulation data

to accurately estimate the solution of the CME for various biological systems. Our approach is scalable to

complex nonlinear reaction networks with over a dozen parameters that exhibit diverse, multimodal dy-

namics across parameter space. We illustrated the performance of Nessie on four examples: a well-studied

autoregulatory feedback loop, a complex genetic toggle switch, a detailed model of mRNA turnover, and

the MAPK pathway in S. Cerevisiae. The latter models pose significant challenges both analytically and

computationally owing to the number of species and reactions involved, yet Nessie allows us to efficiently

emulate them and analyze their properties, with applications for parameter exploration and estimation.

Although the models we have tested in this work were all Markovian, the simulator-based nature of our

approach makes it suitable for non-Markovian models including delays, see e.g. Barrio et al. (2006) and Le-

ier and Marquez-Lago (2015).

Nessie can be particularly useful in rapidly exploring large swathes of parameter space, for example, to

perform a local or global sensitivity analysis. This has many uses, e.g. to guide the tuning of parameters

to find desired phenotype (Feng et al., 2004) for the design of optimal experiments (Zak et al., 2003), to pro-

vide insights into the robustness and fragility tradeoff in genetic regulatory mechanisms (Stelling et al.,

2004) and to find those parameters which most influence the size of transcriptional noise (Cao et al.,

2020). We note that performing any such analysis using the standard stochastic simulation methods like

the SSA can be prohibitively computationally expensive (Gunawan et al., 2005).

Following methodology similar to that proposed by Lueckmann et al. (2018), Nessie can be used to fit

models to data by matching experimentally observed distributions to those predicted by the neural

network, as demonstrated in the case of the MAPK pathway model where we recovered model parameters

that are most consistent with experimental observations. We remark, however, that this approach has to be

used with care in the context of likelihood-based inference owing to small approximation errors in the likeli-

hood being amplified in the presence of many datapoints. In order to be reliable any such approach,

including Bayesian inference, must take into account the bias introduced by the choice of approximation.

This could be conducted e.g. by placing a prior over network weights and treating them as unobserved

variables, sampling from the resulting Bayesian neural network using Hamiltonian Monte Carlo methods.

As discussed in the Introduction, our approach differs from other studies that use neural networks to pre-

dict the dynamics of stochastic biochemical systems (Gupta et al., 2021; Bortolussi and Palmieri, 2018; Re-

pin and Petrov, 2021; Davis et al., 2020; Cairoli et al., 2021). As all of these approaches try to learn different

things, comparing them directly is not straightforward and is further complicated by the sensitivity of neural

networks to architecture and hyperparameter choices (Goodfellow et al., 2017). An advantage of Nessie as
iScience 25, 105010, September 16, 2022 13

ll
OPEN ACCESS

iScience
Article
presented in this article is that it requires relatively little setup in terms of hyperparameter optimization.

Owing to its architectural simplicity, a very limited amount of tuning is required, without requiring auto-

mated neural architecture search techniques (Repin and Petrov, 2021), and we provide a detailed discus-

sion of the relevant hyperparameter and training considerations in the STAR Methods. We hope that

this will enable the interested reader to quickly deploy and apply Nessie to their favorite reaction network.

Limitations of the study

Although Nessie can relatively accurately interpolate in time between the training snapshots for such

models as the genetic toggle switch, its performance may be inadequate when applied to systems with

complex oscillatory behavior. This is a general limitation of our approach, which uses a simple feedforward

network and therefore may not be able to efficiently represent oscillating functions. To remedy this, be-

sides the recently proposed generative adversarial network-based approach in Cairoli et al. (2021) one

could consider more sophisticated neural network architectures such as recurrent neural networks (Good-

fellow et al., 2017) and universal differential equations (Rackauckas and Nie, 2017). This would allow us to

extract temporal features such as power spectra and first passage times, which, while difficult to measure

experimentally, have been shown to provide a wealth of information about the system and significantly aid

in model discrimination (Jia and Grima, 2021; Szavits-Nossan and Grima, 2022; Iyer-Biswas and Zilman,

2016).

While in this article we have focused on the task of learning one-dimensional marginal distributions pre-

dicted by the CME, Nessie can also be extended to capture joint distributions. One way to implement

this could be by replacing themixture of univariate negative binomials with amixture of independent nega-

tive multinomials or alternative multivariate distributions. Such generalization only requires updating the

output layer to correctly represent the parameters of the new mixture. However, we expect the computa-

tional cost of training such a network to greatly increase as the state space (and hence the number of

required gradient computations) grows exponentially. The construction of training datasets may also

become significantly more expensive, as generating sufficiently smooth multi-dimensional histograms

with the SSA may require many more trajectories than in the one-dimensional case. Another way to learn

multivariate distributions was recently proposed by Gorin et al. (2022) and consist of learning the distribu-

tion of one species conditioned on the number of another species, whose marginal distribution is known

beforehand (or can be learned). Exploring this and other possible ways to efficiently approximate joint dis-

tributions using Nessie remains an interesting avenue for future research.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Chemical master equation

B Background on neural networks

B Training neural networks

B Hyperparameter tuning

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.105010.

ACKNOWLEDGMENTS

This work was supported by the Alan Turing Institute Doctoral Studentship (under the EPSRC grant EP/

N510129/1) for A. S., the EPSRC Center for Doctoral Training in Data Science (EPSRC grant EP/L016427/

1), and the University of Edinburgh for K. Ö. and a Leverhulme Trust grant (Grant No. RPG-2020-327) for

R. G. The authors would like to thank Christoph Zechner for the courtesy of sharing his data for the

MAPK pathway model.
14 iScience 25, 105010, September 16, 2022

https://doi.org/10.1016/j.isci.2022.105010

ll
OPEN ACCESS

iScience
Article
AUTHOR CONTRIBUTIONS

Conceptualization, R.G.; Methodology, A.S., K.Ö., and R.G.; Software, A.S. and K.Ö.; Analysis, A.S. and

K.Ö.; Writing – Original Draft, A.S., and K.Ö.; Writing – Review & Editing, A.S., K.Ö., and R.G.; Supervision,

R.G.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: May 2, 2022

Revised: June 13, 2022

Accepted: August 18, 2022

Published: September 16, 2022
REFERENCES

Angermueller, C., Pärnamaa, T., Parts, L., and
Stegle, O. (2016). Deep learning for
computational biology. Mol. Syst. Biol. 12, 878.
https://doi.org/10.15252/msb.20156651.

Baldi, P., Sadowski, P., and Whiteson, D. (2014).
Searching for exotic particles in high-energy
physics with deep learning. Nat. Commun. 5,
4308. https://doi.org/10.1038/ncomms5308.

Bardenet, R., Doucet, A., and Holmes, C. (2017).
On Markov chain Monte Carlo methods for tall
data. J. Mach. Learn. Res. 18, 1–43.

Barrio, M., Burrage, K., Leier, A., and Tian, T.
(2006). Oscillatory regulation of Hes1: discrete
stochastic delay modelling and simulation. PLoS
Comput. Biol. 2. e117-14. https://doi.org/10.
1371/journal.pcbi.0020117.

Bergstra, J., and Bengio, Y. (2012). Random
search for hyper-parameter optimization.
J. Mach. Learn. Res. 13, 25. https://doi.org/10.
5555/2188385.2188395.

Bezanson, J., Edelman, A., Karpinski, S., and
Shah, V.B. (2017). Julia: a fresh approach to
numerical computing. SIAM Rev. Soc. Ind. Appl.
Math. 59, 65–98. https://doi.org/10.1137/
141000671.

Bishop, C.M. (1994). Mixture Density Networks.
https://publications.aston.ac.uk/id/eprint/373/1/
NCRG_94_004.pdf.

Bortolussi, L., and Palmieri, L. (2018). Deep
abstractions of chemical reaction networks. In
Computational Methods in Systems Biology,
11095, M. �Ce�ska and D. �Safránek, eds.
Computational Methods in Systems Biology
(Springer International Publishing), pp. 21–38.
https://doi.org/10.1007/978-3-319-99429-1_2.

Bottou, L., Curtis, F.E., and Nocedal, J. (2018).
Optimization methods for large-scale machine
learning. SIAM Rev. Soc. Ind. Appl. Math. 60,
223–311. https://doi.org/10.1137/16M1080173.

Braichenko, S., Holehouse, J., and Grima, R.
(2021). Distinguishing between models of
mammalian gene expression: telegraph-like
models versus mechanistic models. J. R. Soc.
Interface 18, 20210510. https://doi.org/10.1098/
rsif.2021.0510.

Cai, L., Friedman, N., and Xie, X.S. (2006).
Stochastic protein expression in individual cells at
the single molecule level. Nature 440, 358–362.
https://doi.org/10.1038/nature04599.

Cairoli, F., Carbone, G., and Bortolussi, L. (2021).
Abstraction of markov population dynamics via
generative adversarial nets. International
Conference on Computational Methods in
Systems Biology (Springer), pp. 19–35. https://
doi.org/10.1007/978-3-030-85633-5_2.

Cao, D., and Parker, R. (2001). Computational
modeling of eukaryotic mRNA turnover. RNA 7,
1192–1212. https://doi.org/10.1017/
S1355838201010330.

Cao, Z., and Grima, R. (2020). Analytical
distributions for detailed models of stochastic
gene expression in eukaryotic cells. Proc. Natl.
Acad. Sci. USA 117, 4682–4692. https://doi.org/
10.1073/pnas.1910888117.

Cao, Z., Filatova, T., Oyarzún, D.A., and Grima, R.
(2020). A stochastic model of gene expression
with polymerase recruitment and pause release.
Biophys. J. 119, 1002–1014. https://doi.org/10.
1016/j.bpj.2020.07.020.

Carleo, G., Cirac, I., Cranmer, K., Daudet, L.,
Schuld, M., Tishby, N., Vogt-Maranto, L., and
Zdeborová, L. (2019). Machine learning and the
physical sciences. Rev. Mod. Phys. 91, 045002.
https://doi.org/10.1103/RevModPhys.91. 045002.

Chen, L., Zhu, C., and Jiao, F. (2022). A
generalized moment-based method for
estimating parameters of stochastic gene
transcription. Math. Biosci. 345, 108780. https://
doi.org/10.1016/j.mbs.2022.108780.

Choi, P.J., Cai, L., Frieda, K., and Xie, X.S. (2008). A
stochastic single-molecule event triggers
phenotype switching of a bacterial cell. Science
322, 442–446. https://doi.org/10.1126/science.
1161427.

Davis, C.N., Hollingsworth, T.D., Caudron, Q.,
and Irvine, M.A. (2020). The use of mixture density
networks in the emulation of complex
epidemiological individual-based models. PLoS
Comput. Biol. 16. e1006869. https://doi.org/10.
1371/journal.pcbi.1006869.

Dinh, T., and Sidje, R.B. (2020). An adaptive
solution to the Chemical Master Equation using
quantized tensor trains with sliding windows.
Phys. Biol. 17, 065014. https://doi.org/10.1088/
1478-3975/aba1d2.
Elowitz, M.B., Levine, A.J., Siggia, E.D., and
Swain, P.S. (2002). Stochastic gene expression in a
single cell. Science 297, 1183–1186. https://doi.
org/10.1126/science.1070919.

Feng, X.-J., Hooshangi, S., Chen, D., Li, G., Weiss,
R., and Rabitz, H. (2004). Optimizing genetic
circuits by global sensitivity analysis. Biophys. J.
87, 2195–2202. https://doi.org/10.1529/biophysj.
104.044131.

Friedman, N., Cai, L., and Xie, X.S. (2006). Linking
stochastic dynamics to population distribution:
an analytical framework of gene expression. Phys.
Rev. Lett. 97, 168302. https://doi.org/10.1103/
PhysRevLett.97.168302.

Fu, X., Patel, H.P., Coppola, S., Xu, L., Cao, Z.,
Lenstra, T.L., and Grima, R. (2022). Quantifying
how posttranscriptional noise and gene copy
number variation bias transcriptional parameter
inference from mRNA distributions. Preprint at
bioRxiv. https://doi.org/10.1101/2021.11.09.
467882.

Gardner, T.S., Cantor, C.R., and Collins, J.J.
(2000). Construction of a genetic toggle switch in
Escherichia coli. Nature 403, 339–342. https://doi.
org/10.1038/35002131.

Gillespie, D.T. (1976). A general method for
numerically simulating the stochastic time
evolution of coupled chemical reactions.
J. Comput. Phys. 22, 403–434. https://doi.org/10.
1016/0021-9991(76)90041-3.

Gillespie, D.T. (2007). Stochastic simulation of
chemical kinetics. Annu. Rev. Phys. Chem. 58,
35–55. https://doi.org/10.1146/annurev.
physchem.58.032806.104637.

Glorot, X., and Bengio, Y. (2010). Understanding
the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence
and Statistics JMLR Workshop and Conference
Proceedings, pp. 249–256.

Glorot, X., Bordes, A., and Bengio, Y. (2011).
Deep sparse rectifier neural networks. In 14th
International Conference on Artificial Intelligence
and Statistics, pp. 315–323.

Goodfellow, I., Bengio, Y., Courville, A., and
Bach, F. (2017). Deep Learning (MIT Press).
iScience 25, 105010, September 16, 2022 15

https://doi.org/10.15252/msb.20156651
https://doi.org/10.1038/ncomms5308
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref3
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref3
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref3
https://doi.org/10.1371/journal.pcbi.0020117
https://doi.org/10.1371/journal.pcbi.0020117
https://doi.org/10.5555/2188385.2188395
https://doi.org/10.5555/2188385.2188395
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://publications.aston.ac.uk/id/eprint/373/1/NCRG_94_004.pdf
https://publications.aston.ac.uk/id/eprint/373/1/NCRG_94_004.pdf
https://doi.org/10.1007/978-3-319-99429-1_2
https://doi.org/10.1137/16M1080173
https://doi.org/10.1098/rsif.2021.0510
https://doi.org/10.1098/rsif.2021.0510
https://doi.org/10.1038/nature04599
https://doi.org/10.1007/978-3-030-85633-5_2
https://doi.org/10.1007/978-3-030-85633-5_2
https://doi.org/10.1017/S1355838201010330
https://doi.org/10.1017/S1355838201010330
https://doi.org/10.1073/pnas.1910888117
https://doi.org/10.1073/pnas.1910888117
https://doi.org/10.1016/j.bpj.2020.07.020
https://doi.org/10.1016/j.bpj.2020.07.020
https://doi.org/10.1103/RevModPhys.91. 045002
https://doi.org/10.1016/j.mbs.2022.108780
https://doi.org/10.1016/j.mbs.2022.108780
https://doi.org/10.1126/science.1161427
https://doi.org/10.1126/science.1161427
https://doi.org/10.1371/journal.pcbi.1006869
https://doi.org/10.1371/journal.pcbi.1006869
https://doi.org/10.1088/1478-3975/aba1d2
https://doi.org/10.1088/1478-3975/aba1d2
https://doi.org/10.1126/science.1070919
https://doi.org/10.1126/science.1070919
https://doi.org/10.1529/biophysj.104.044131
https://doi.org/10.1529/biophysj.104.044131
https://doi.org/10.1103/PhysRevLett.97.168302
https://doi.org/10.1103/PhysRevLett.97.168302
https://doi.org/10.1101/2021.11.09.467882
https://doi.org/10.1101/2021.11.09.467882
https://doi.org/10.1038/35002131
https://doi.org/10.1038/35002131
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1146/annurev.physchem.58.032806.104637
https://doi.org/10.1146/annurev.physchem.58.032806.104637
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref28
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref28
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref28
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref28
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref28
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref28
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref29
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref29
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref29
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref29
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref30
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref30

ll
OPEN ACCESS

iScience
Article
Gorin, G., Carilli, M., Chari, T., and Pachter, L.
(2022). Spectral neural approximations for
models of transcriptional dynamics. Preprint at
bioRxiv. https://doi.org/10.1101/2022.06.16.
496448.

Grima, R., Schmidt, D.R., and Newman, T.J.
(2012). Steady-state fluctuations of a genetic
feedback loop: an exact solution. J. Chem. Phys.
137, 035104. https://doi.org/10.1063/1.4736721.

Gunawan, R., Cao, Y., Petzold, L., and Doyle, F.J.,
III (2005). Sensitivity analysis of discrete stochastic
systems. Biophys. J. 88, 2530–2540. https://doi.
org/10.1529/biophysj.104.053405.

Gupta, A., Schwab, C., and Khammash, M. (2021).
DeepCME: a deep learning framework for
computing solution statistics of the Chemical
Master Equation. PLoS Comput. Biol. 17,
e1009623. https://doi.org/10.1371/journal.pcbi.
1009623.

Hafner, M., Landthaler, M., Burger, L., Khorshid,
M., Hausser, J., Berninger, P., Rothballer, A.,
Ascano, M., Jr., Jungkamp, A.C., Munschauer, M.,
et al. (2010). Transcriptome-wide identification of
RNA-binding protein and microRNA target sites
by PAR-CLIP. Cell 141, 129–141. https://doi.org/
10.1016/j.cell.2010.03.009.

Hjorth, L. (1999). Regularisation of mixture density
networks. In 9th International Conference on
Artificial Neural Networks, 1999 (IEEE),
pp. 521–526. https://doi.org/10.1049/
cp:19991162.

Hornik, K. (1991). Approximation capabilities of
multilayer feedforward networks. Neural
Network. 4, 251–257. https://doi.org/10.1016/
0893-6080(91)90009-T.

Ingalls, B. (2008). Sensitivity analysis: from model
parameters to system behaviour. Essays
Biochem. 45, 177–193. https://doi.org/10.1042/
bse0450177.

Innes, M. (2018). Flux: elegant machine learning
with Julia. J. Open Source Softw. 3, 602. https://
doi.org/10.21105/joss.00602.

Innes, M., Edelman, A., Fischer, K., Rackauckas,
C., Saba, E., Shah, V.B., and Tebbutt, W. (2019). A
differentiable programming system to bridge
machine learning and scientific computing.
Preprint at arXiv. https://doi.org/10.48550/
ARXIV. 1907.07587.

Iyer-Biswas, S., and Zilman, A. (2016). First-
passage processes in cellular biology. Adv.
Chem. Phys. 261–306. https://doi.org/10.1002/
9781119165156.ch5.

Jia, C., and Grima, R. (2020). Small protein
number effects in stochastic models of
autoregulated bursty gene expression. J. Chem.
Phys. 152, 084115. https://doi.org/10.1063/1.
5144578.

Jia, C., and Grima, R. (2021). Frequency domain
analysis of fluctuations ofmRNA and protein copy
numbers within a cell lineage: theory and
experimental validation. Phys. Rev. X 11, 021032.
https://doi.org/10.1103/PhysRevX.11.021032.

Jiang, Q., Fu, X., Yan, S., Li, R., Du, W., Cao, Z.,
Qian, F., and Grima, R. (2021). Neural network
aided approximation and parameter inference of
non-Markovian models of gene expression. Nat.
16 iScience 25, 105010, September 16, 2022
Commun. 12, 2618. https://doi.org/10.1038/
s41467-021-22919-1.

Kazeev, V., and Schwab, C. (2015). Tensor
approximation of stationary distributions of
chemical reaction networks. SIAM J. Matrix Anal.
Appl. 36, 1221–1247. https://doi.org/10.1137/
130927218.

Kazeev, V., Khammash, M., Nip, M., and Schwab,
C. (2014). Direct solution of the Chemical Master
Equation using quantized tensor trains. PLoS
Comput. Biol. 10, e1003359. https://doi.org/10.
1371/journal.pcbi.1003359.

Keskar, N., Nocedal, J., Tang, P., Mudigere, D.,
and Smelyanskiy, M. (2017). On large-batch
training for deep learning: generalization gap
and sharp minima. In 5th International
Conference on Learning Representations.

Kingma, D.P., and Ba, J. (2014). Adam: a method
for stochastic optimization. Preprint at arXiv.
https://doi.org/10.48550/ARXIV. 1412.6980.

Leier, A., and Marquez-Lago, T.T. (2015). Delay
chemical master equation: direct and closed-
form solutions. Proc. Math. Phys. Eng. Sci. 471,
20150049. https://doi.org/10.1098/rspa.2015.
0049.

Loman, T., Ma, Y., Ilin, V., Gowda, S., Korsbo, N.,
Yewale, N., Rackauckas, C.V., and Isaacson, S.A.
(2022). Catalyst: fast biochemical modeling with
Julia. Preprint at bioRxiv. https://doi.org/10.1101/
2022.07.30.502135.

Lueckmann, J.-M., Bassetto, G., Karaletsos, T.,
and Macke, J.H. (2018). Likelihood-free inference
with emulator networks. In 1st Symposium on
Advances in Approximate Bayesian Inference, 16.

Maheshri, N., and O’Shea, E.K. (2007). Living with
noisy genes: how cells function reliably with
inherent variability in gene expression. Annu. Rev.
Biophys. Biomol. Struct. 36, 413–434. https://doi.
org/10.1146/annurev.biophys. 36.040306.132705.

McAdams, H.H., and Arkin, A. (1999). It’s a noisy
business! Genetic regulation at the nanomolar
scale. Trends Genet. 15, 65–69. https://doi.org/
10.1016/S0168-9525(98)01659-X.

Mehta, P., Wang, C.H., Day, A.G.R., Richardson,
C., Bukov, M., Fisher, C.K., and Schwab, D.J.
(2019). A high-bias, low-variance introduction to
Machine Learning for physicists. Phys. Rep. 810,
1–124. https://doi.org/10.1016/j. physrep.2019.
03.001.

Min, S., Lee, B., and Yoon, S. (2017). Deep
learning in bioinformatics. Brief. Bioinform. 18,
851–869. https://doi.org/10.1093/bib/bbw068.

Munsky, B., and Khammash, M. (2006). The finite
state projection algorithm for the solution of the
Chemical Master Equation. J. Chem. Phys. 124,
044104. https://doi.org/10.1063/1.2145882.

Öcal, K., Gutmann, M.U., Sanguinetti, G., and
Grima, R. (2022). Inference and uncertainty
quantification of stochastic gene expression via
synthetic models. J. R. Soc. Interface 19,
20220153. https://doi.org/10.1098/rsif.2022.0153.

Paszke, A., Gross, S., Massa, F., Lerer, A.,
Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al. (2019). PyTorch:
an imperative style, high-performance deep
learning library. In Advances in Neural
Information Processing Systems, 32, H.M.
Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E.B. Fox, and R. Garnett, eds,
pp. 8024–8035.

Perez-Carrasco, R., Beentjes, C., and Grima, R.
(2020). Effects of cell cycle variability on lineage
and population measurements of messenger
RNA abundance. J. R. Soc. Interface 17,
20200360. https://doi.org/10.1098/rsif. 2020.
0360.

Phillips, N.E., Hugues, A., Yeung, J., Durandau,
E., Nicolas, D., and Naef, F. (2021). The circadian
oscillator analysed at the single-transcript level.
Mol. Syst. Biol. 17, e10135. https://doi.org/10.
15252/msb.202010135.

Prechelt, L. (2012). Early stopping – but when? In
Neural Networks: Tricks of the Trade, Second
edition, G. Montavon, G.B. Orr, and K.-R. Müller,
eds. (Springer), pp. 53–67. https://doi.org/10.
1007/978-3-642-35289-8_5.

Rackauckas, C., and Nie, Q. (2017).
DifferentialEquations.jl – a performant and
feature-rich ecosystem for solving differential
equations in Julia. J. Open Res. Softw. 5, 15.
https://doi.org/10.5334/jors.151.

Raser, J.M., and O’Shea, E.K. (2005). Noise in
gene expression: origins, consequences, and
control. Science 309, 2010–2013. https://doi.org/
10.1126/science.1105891.

Repin, D., and Petrov, T. (2021). Automated deep
abstractions for stochastic chemical reaction
networks. Inf. Comput. 281, 104788. https://doi.
org/10.1016/j.ic.2021.104788.

Schnoerr, D., Sanguinetti, G., and Grima, R.
(2017). Approximation and inference methods for
stochastic biochemical kinetics - a tutorial review.
J. Phys. A Math. Theor. 50, 093001. https://doi.
org/10.1088/1751-8121/aa54d9.

Shahrezaei, V., and Swain, P.S. (2008). Analytical
distributions for stochastic gene expression.
Proc. Natl. Acad. Sci. USA 105, 17256–17261.
https://doi.org/10.1073/pnas.0803850105.

Singer, Z.S., Yong, J., Tischler, J., Hackett, J.A.,
Altinok, A., Surani, M.A., Cai, L., and Elowitz, M.B.
(2014). Dynamic heterogeneity and DNA
methylation in embryonic stem cells. Mol. Cell 55,
319–331. https://doi.org/10.1016/j.molcel.2014.
06.029.

Sobol, I.M. (1967). On the distribution of points in
a cube and the approximate evaluation of
integrals. USSR Comput. Math. Math. Phys. 7,
86–112. https://doi.org/10.1016/0041-5553(67)
90144-9.

Stelling, J., Gilles, E.D., and Doyle, F.J. (2004).
Robustness properties of circadian clock
architectures. Proc. Natl. Acad. Sci. USA 101,
13210–13215. https://doi.org/10.1073/pnas.
0401463101.

Suter, D.M., Molina, N., Gatfield, D., Schneider,
K., Schibler, U., and Naef, F. (2011). Mammalian
genes are transcribed with widely different
bursting kinetics. Science 332, 472–474. https://
doi.org/10.1126/science. 1198817.

Szavits-Nossan, J., and Grima, R. (2022). Steady-
state distributions of nascent RNA for general

https://doi.org/10.1101/2022.06.16.496448
https://doi.org/10.1101/2022.06.16.496448
https://doi.org/10.1063/1.4736721
https://doi.org/10.1529/biophysj.104.053405
https://doi.org/10.1529/biophysj.104.053405
https://doi.org/10.1371/journal.pcbi.1009623
https://doi.org/10.1371/journal.pcbi.1009623
https://doi.org/10.1016/j.cell.2010.03.009
https://doi.org/10.1016/j.cell.2010.03.009
https://doi.org/10.1049/cp:19991162
https://doi.org/10.1049/cp:19991162
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1042/bse0450177
https://doi.org/10.1042/bse0450177
https://doi.org/10.21105/joss.00602
https://doi.org/10.21105/joss.00602
https://doi.org/10.48550/ARXIV. 1907.07587
https://doi.org/10.48550/ARXIV. 1907.07587
https://doi.org/10.1002/9781119165156.ch5
https://doi.org/10.1002/9781119165156.ch5
https://doi.org/10.1063/1.5144578
https://doi.org/10.1063/1.5144578
https://doi.org/10.1103/PhysRevX.11.021032
https://doi.org/10.1038/s41467-021-22919-1
https://doi.org/10.1038/s41467-021-22919-1
https://doi.org/10.1137/130927218
https://doi.org/10.1137/130927218
https://doi.org/10.1371/journal.pcbi.1003359
https://doi.org/10.1371/journal.pcbi.1003359
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref47
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref47
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref47
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref47
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref47
https://doi.org/10.48550/ARXIV. 1412.6980
https://doi.org/10.1098/rspa.2015.0049
https://doi.org/10.1098/rspa.2015.0049
https://doi.org/10.1101/2022.07.30.502135
https://doi.org/10.1101/2022.07.30.502135
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref51
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref51
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref51
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref51
https://doi.org/10.1146/annurev.biophys. 36.040306.132705
https://doi.org/10.1146/annurev.biophys. 36.040306.132705
https://doi.org/10.1016/S0168-9525(98)01659-X
https://doi.org/10.1016/S0168-9525(98)01659-X
https://doi.org/10.1016/j. physrep.2019.03.001
https://doi.org/10.1016/j. physrep.2019.03.001
https://doi.org/10.1093/bib/bbw068
https://doi.org/10.1063/1.2145882
https://doi.org/10.1098/rsif.2022.0153
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref58
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref58
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref58
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref58
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref58
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref58
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref58
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref58
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref58
https://doi.org/10.1098/rsif. 2020.0360
https://doi.org/10.1098/rsif. 2020.0360
https://doi.org/10.15252/msb.202010135
https://doi.org/10.15252/msb.202010135
https://doi.org/10.1007/978-3-642-35289-8_5
https://doi.org/10.1007/978-3-642-35289-8_5
https://doi.org/10.5334/jors.151
https://doi.org/10.1126/science.1105891
https://doi.org/10.1126/science.1105891
https://doi.org/10.1016/j.ic.2021.104788
https://doi.org/10.1016/j.ic.2021.104788
https://doi.org/10.1088/1751-8121/aa54d9
https://doi.org/10.1088/1751-8121/aa54d9
https://doi.org/10.1073/pnas.0803850105
https://doi.org/10.1016/j.molcel.2014.06.029
https://doi.org/10.1016/j.molcel.2014.06.029
https://doi.org/10.1016/0041-5553(67)90144-9
https://doi.org/10.1016/0041-5553(67)90144-9
https://doi.org/10.1073/pnas.0401463101
https://doi.org/10.1073/pnas.0401463101
https://doi.org/10.1126/science. 1198817
https://doi.org/10.1126/science. 1198817

ll
OPEN ACCESS

iScience
Article
initiation mechanisms. Preprint at bioRxiv.
https://doi.org/10.1101/2022.03.30.486441.

Taniguchi, Y., Choi, P.J., Li, G.-W., Chen, H.,
Babu, M., Hearn, J., Emili, A., and Xie, X.S. (2010).
Quantifying E.coli proteome and transcriptome
with single-molecule sensitivity in single cells.
Science 329, 533–538. https://doi.org/10.1126/
science.1188308.

Thomas, P., Popovi�c, N., and Grima, R. (2014).
Phenotypic switching in gene regulatory
networks. Proc. Natl. Acad. Sci. USA 111, 6994–
6999. https://doi.org/10.1073/pnas.1400049111.

Van Kampen, N. (2007). Stochastic Processes in
Physics and Chemistry, Third edition (Elsevier).
Wang, S., Fan, K., Luo, N., Cao, Y., Wu, F., Zhang,
C., Heller, K.A., and You, L. (2019). Massive
computational acceleration by using neural
networks to emulate mechanism-based
biological models. Nat. Commun. 10, 4354.
https://doi.org/10.1038/s41467-019-12342-y.

Wilkinson, D.J. (2018). Stochastic Modelling for
Systems Biology, Third edition (Chapman and
Hall/CRC).

Xu, H., Skinner, S.O., Sokac, A.M., and Golding, I.
(2016). Stochastic kinetics of nascent RNA. Phys.
Rev. Lett. 117, 128101. https://doi.org/10.1103/
PhysRevLett.117.128101.
Zak, D.E., Gonye, G.E., Schwaber, J.S., and
Doyle, F.J. (2003). Importance of input
perturbations and stochastic gene expression
in the reverse engineering of genetic
regulatory networks: insights from an
identifiability analysis of an in silico network.
Genome Res. 13, 2396–2405. https://doi.org/
10.1101/gr.1198103.

Zechner, C., Ruess, J., Krenn, P., Pelet, S., Peter,
M., Lygeros, J., and Koeppl, H. (2012). Moment-
based inference predicts bimodality in transient
gene expression. Proc. Natl. Acad. Sci. USA 109,
8340–8345. https://doi.org/10.1073/pnas.
1200161109.
iScience 25, 105010, September 16, 2022 17

https://doi.org/10.1101/2022.03.30.486441
https://doi.org/10.1126/science.1188308
https://doi.org/10.1126/science.1188308
https://doi.org/10.1073/pnas.1400049111
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref74
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref74
https://doi.org/10.1038/s41467-019-12342-y
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref76
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref76
http://refhub.elsevier.com/S2589-0042(22)01282-2/sref76
https://doi.org/10.1103/PhysRevLett.117.128101
https://doi.org/10.1103/PhysRevLett.117.128101
https://doi.org/10.1101/gr.1198103
https://doi.org/10.1101/gr.1198103
https://doi.org/10.1073/pnas.1200161109
https://doi.org/10.1073/pnas.1200161109

ll
OPEN ACCESS

iScience
Article
STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

MAPK pathway cytometry data Zechner et al. (2012)

Software and algorithms

Nessie framework In this paper (and https://github.com/

augustinas1/Nessie)

https://doi.org/10.5281/zenodo.6978865

Julia v1.7 https://julialang.org/ Bezanson et al. (2017)

Flux.jl v0.13.3 https://github.com/FluxML/Flux.jl Innes (2018)

Zygote.jl v0.6.4 https://github.com/FluxML/Zygote.jl Innes et al. (2019)

Catalyst.jl v10.8.0 https://github.com/SciML/Catalyst.jl Loman et al. (2022)

DifferentialEquations.jl v7.1.0 https://github.com/SciML/

DifferentialEquations.jl

Rackauckas and Nie (2017)

FiniteStateProjection.jl v0.2.0 https://github.com/kaandocal/

FiniteStateProjection.jl

BlackBoxOptim.jl v0.6.1 https://github.com/robertfeldt/
RESOURCE AVAILABILITY

Lead contact

Further information and requests should be directed to and will be fulfilled by the lead contact, Ramon

Grima (ramon.grima@ed.ac.uk).

BlackBoxOptim.jl
Materials availability

This study did not generate new unique reagents.

Data and code availability

d The neural network training data can be generated using the original code, or it can be shared by the

lead contact upon request. The MAPK Pathway inference example uses data from Zechner et al.

(2012) which can be obtained from the authors.

d All original code has been deposited at https://github.com/augustinas1/Nessie and is publicly available

as of the date of publication. The DOI is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

Chemical master equation

This section aims to provide a brief review of the CME and its use to model stochastic reaction networks in

biology. We refer to Schnoerr et al. (2017) and Van Kampen (2007) for a readable and comprehensive treat-

ment of the theory.

A biochemical reaction network consists of species Xi (i = 1;.;N) and R reactions of the form

a1j X1 + .+ aNj XN/b1j X1 +.+bNj XN; (Equation 3)

where aij and bij respectively denote the numbers of reactant and product molecules of species i in the

chemical reaction j. The stoichiometric matrix is defined as Sij = bij � aij (the net change in the number

of molecules of species Xi when reaction j occurs). The state of the system is determined by the state vector

n = ðn1;.;nNÞ, where ni is the number of molecules of species Xi present in the system.
18 iScience 25, 105010, September 16, 2022

mailto:ramon.grima@ed.ac.uk
https://github.com/augustinas1/Nessie
https://github.com/augustinas1/Nessie
https://github.com/augustinas1/Nessie
https://doi.org/10.5281/zenodo.6978865
https://julialang.org/
https://github.com/FluxML/Flux.jl
https://github.com/FluxML/Zygote.jl
https://github.com/SciML/Catalyst.jl
https://github.com/SciML/DifferentialEquations.jl
https://github.com/SciML/DifferentialEquations.jl
https://github.com/kaandocal/FiniteStateProjection.jl
https://github.com/kaandocal/FiniteStateProjection.jl
https://github.com/robertfeldt/BlackBoxOptim.jl
https://github.com/robertfeldt/BlackBoxOptim.jl

ll
OPEN ACCESS

iScience
Article
Starting with initial conditions Pðn; t = 0Þ = P0ðnÞ, the time evolution of the probability distribution over

the states Pðn; tÞ is described by the CME:

dPðn; tÞ
dt

=
XR

j = 1

�
rj
�
n � Sj; t

�
P
�
n � Sj ; t

� � rjðn; tÞPðn; tÞ
�
; (Equation 4)

where rjðn; tÞ is the propensity function of reaction j and Sj is the jth column of the stoichiometric matrix S.

The propensity rjðn; tÞ is the rate at which reaction j occurs when the system is in state n at time t; more

formally, rjðn; tÞdt is the probability that reaction j will take place in the infinitesimally short time interval

ðt; t +dtÞ (Gillespie, 2007).
Background on neural networks

A neural network learns a mapping f between inputs x and outputs y = f ðxÞ via a parametric approximation

f4 such that f4ðxÞzy. The basic building block of a neural network is a single neuron, which performs the

mapping x1gðx ,w +bÞ for a weight vector w, a bias b and a nonlinear activation function g. Several neu-

rons arranged in parallel form a layer, and their outputs can be treated as inputs to another layer of neurons.

By combining several layers in a row one gets a standard feedforward neural network, illustrated in Figure 1.

Here the first layer is called the input layer, the last layer is the output layer and the layers in between are

hidden layers. For a comprehensive introduction to neural networks and deep learning we refer to

Goodfellow et al. (2017).

Using activation functions with each neuron enables neural networks to learn complicated nonlinear map-

pings. Commonly used activation functions in the Machine Learning community are sigmoid functions,

Rectified Linear Units (ReLUs) (Glorot et al., 2011) and variants thereof (Goodfellow et al., 2017). For these

activation functions one can show that a feedforward neural network with a single hidden layer and a suf-

ficient number of neurons acts as a universal approximator, i.e. it is able to represent any sufficiently smooth

function (Hornik, 1991) to arbitrary accuracy. In theory, a better approximation could be achieved using a

deep neural network with multiple hidden layers, which can compose simpler functions into increasingly

more complex ones. Such ‘‘deep’’ neural networks, often combining a variety of architectures more com-

plex than a simple feedforward neural network, can outperform their shallow counterparts on difficult tasks

such as Natural Language Processing, Computer Vision and others (Goodfellow et al., 2017), which has led

to a surge of interest in Deep Learning in recent years (Angermueller et al., 2016; Min et al., 2017; Carleo

et al., 2019; Mehta et al., 2019; Baldi et al., 2014). As we will see, however, a single hidden layer is enough for

our purposes.

The network parameters 4 (weights and biases for each neuron) that minimize the discrepancy between the

mapping f4 represented by the neural network and the true mapping f, are not known and have to be

learned from data. This is commonly achieved by constructing a labeled set of training data D containing

N[1 different input-output pairs, and minimizing a loss function Lð4;DÞ that measures the deviation be-

tween the neural mapping f4 and the target:

Lð4;DÞ =
1

N

XN

i = 1

L�4; xðiÞ; yðiÞ�; (Equation 5)

where ðxðiÞ; yðiÞÞ denotes the ith example pair in the training dataset. The most appropriate loss function

depends on the type of data and the task the neural network is trying to perform: common examples

are L2 distances for regression, cross-entropy for classification and negative log-likelihoods for inference

problems (Goodfellow et al., 2017).

As the loss function is often highly nonlinear and nonconvex, minimizing it with respect to the network pa-

rameters 4 is a difficult task, most often performed using iterative gradient-based optimizers (Bottou et al.,

2018). This requires the loss function to be differentiable with respect to the weights. Computing the gra-

dients of the loss function is usually done using the backpropagation algorithm (Goodfellow et al., 2017),

which is implemented in most common deep learning frameworks such as Flux (Innes, 2018) or PyTorch

(Paszke et al., 2019). Once the gradients have been computed one can use an optimization algorithm

such as stochastic gradient descent or Adam (Kingma and Ba, 2014) to minimize the loss. Note that the

training set is generated once and reused for every gradient descent iteration.
iScience 25, 105010, September 16, 2022 19

ll
OPEN ACCESS

iScience
Article
In practice the behavior of a neural network and its training procedure are determined by a number of hy-

perparameters, such as the number and size of hidden layers, the activation functions applied on each

layer, the choice of the optimizer (as well as its associated parameters) and the convergence criterion.

There is no universal formula for determining the best hyperparameter choices for each task, and hence

one has to resort to heuristics and hyperparameter tuning to find the best setup, which can be one of

the most time-consuming aspects of training complicated neural networks. We discuss these practical con-

siderations in connection to our approach below in the STAR Methods.

Note that minimizing the loss function over the training data does not guarantee that the neural network

will be able to generalize, i.e. accurately learn the mapping for previously unobserved inputs. For this

reason, the network’s generalization ability is usually evaluated on a separate validation dataset made

up of examples that are not included in the training data (Goodfellow et al., 2017). Comparison of the

loss on the training and validation datasets during the training procedure allows us to perform effective

hyperparameter tuning. Finally the predictive performance of the trained network can be accurately

measured on a separate test dataset consisting of yet another set of input examples.

Training neural networks

We train our neural networks using the Adam optimizer (Kingma and Ba, 2014), one of the most popular

optimization algorithms for this purpose. The gradients of the loss function with respect to the network pa-

rameters 4 are calculated over minibatches ofm training points, which are then used to update 4 using the

optimizer (Goodfellow et al., 2017). One training epoch is completed by iterating over all minibatches in the

training dataset and hence performing many gradient steps (which can lead to faster convergence). Before

training we initialize the network weights using the Glorot Uniform method (Glorot and Bengio, 2010).

The batch size and the learning rate are two optimizer hyperparameters that may significantly affect the

results of the training procedure. We adjust these hyperparameters and define our stopping criterion using

heuristic arguments outlined below.

Batch Size: It has been noted that large batch sizemmay reduce the model’s ability to generalize, whereas

small m can lead to more reliable results (Keskar et al., 2017). In our experiments we observed that very

small batch sizes did little to improve results while significantly increasing training time. To balance these

observations, we usually choose m to be 2-10% the size of the training dataset, which consistently gave

good performance.

Learning Rate: The learning rate h of the optimizer controls the step size of each gradient update and

should be chosen appropriately: too low a choice can lead to slow convergence, whereas a large learning

rate can overshoot the target minimum. In our experiments we usually initialize h = 0:01 and decrease it as

training progress. Namely, we periodically monitor the loss function over the validation dataset and halve h

if the loss has improved by less than 0:5% over the last 25 epochs on average.

Stopping Criterion: The training procedure is terminated after h has been decreased 5 times, which usually

indicates that optimization has stalled. We found this stopping criterion to work well for our examples as

training beyond this point did not often lead to significant improvements in accuracy.

The learning rate decay described above is similar to early stopping (Prechelt, 2012), a regularization tech-

nique that helps to prevent overfitting of the training dataset. Overfitting occurs when the neural network

learns, or ‘‘memorizes’’, particular features of the training dataset that are not representative of the model

as a whole, and loses its ability to generalize to unseen data. This can often be detected by an increase in

the validation loss together with a monotonically decreasing training loss. While a number of popular reg-

ularization strategies can be used to prevent this, such as L2 regularization or dropout (Goodfellow et al.,

2017), we did not find overfitting to be an issue in our experiments. We conjecture that this is due to the

rigid nature of the negative binomial distribution which, unlike a Gaussian, cannot overfit single datapoints

away from 0.

Hyperparameter tuning

As noted above, training a neural network effectively requires finding a good architecture and hyperpara-

meters. Beyond manual tuning this is classically done using black-box optimization methods such as grid
20 iScience 25, 105010, September 16, 2022

ll
OPEN ACCESS

iScience
Article
search, random search or Bayesian Optimization (Bergstra and Bengio, 2012); the related work by Repin

and Petrov (2021) uses a more recent differentiable architecture search. For deep neural networks such ap-

proaches can be very computationally expensive depending on the number of hyperparameters. In

contrast, our approach based on a single hidden layer can feasibly be tuned manually, and using the au-

toregulatory feedback loop as a testbed we can obtain intuition about the effect of each hyperparameter

for our problem.

Hidden layers

The number and structure of the hidden layers in a neural network greatly affect its capacity, i.e. its ability to

represent sufficiently complex functions. In Figure S1A (supplemental information) we plot the Hellinger

distance between the true and predicted distributions for a single hidden layer with different numbers

of neurons. We observe that the network’s capacity quickly grows with the number of neurons, reaching

peak accuracy at about 128 neurons. Increasing the number further does not have a measurable effect

on our model’s performance beyond increasing training time.

Network depth

In Figure S1B we compare the predictive performance for neural networks with multiple hidden layers of

different sizes. The results suggest that shallow neural networks consisting of a single hidden layer are

as effective as deeper ones for our purposes, while being easier to set up and train. Our experiments

with the other systems (not shown) corroborated this observation.

Number of components

Another important hyperparameter is the number of negative binomial components in the output mixture.

In Figure S1C we see that at least 4 components are needed to obtain good approximations for the autor-

egulatory feedback loop. This is not unexpected as the protein distributions of the autoregulatory feed-

back loop can be distinctly bimodal in certain parameter regimes, as shown in Figure 3. Themaximum num-

ber of modes in models of gene networks (that we focus in this study) is usually given by the number of gene

states times the total number of gene copies (Thomas et al., 2014), and this acts as an effective lower bound

for choosing the number of mixture components. However, increasing the number of mixture components

beyond this lower bound may be required to improve the accuracy of the neural network further, as is the

case for the autoregulatory feedback loop.

Although adding extra components does not lead to overfitting, as observed by Öcal et al. (2022) it in-

creases the training time and can also make the network more prone to mistakenly predicting too many

modes in the solution for certain parameter regimes, which can be regarded as an unphysical artifact. A

viable option to find the optimal number of mixture components would be to initialize the neural network

with a relatively high number of components and implement L1 regularization (Goodfellow et al., 2017) in

order to sparsify the output mixture during training.

Dataset size

Having enough training samples is essential to train a neural network in a way that allows it to learn to

generalize. In Figure S1D we show how increasing the size of the training dataset improves the perfor-

mance of our network. Although relatively small datasets are sufficient for achieving good accuracy, in

this case we have only five neural network inputs. Therefore, due to the curse of dimensionality, significantly

larger datasets may be needed for effective training on chemical systems involving more reaction param-

eters. Adding more training points when the validation loss is significantly higher than the training loss is an

effective way to determine the appropriate size.

Number of simulations

The number of simulations at each training point also affects the accuracy of the fit. In general we suggest

considering more SSA samples if the neural network does not provide a good fit on the training data. As

fitting negative binomial mixtures to samples has a strong regularizing effect, the number of simulations

per training point is generally much less than what is required to get an accurate histogram from samples

(see Figure 4).
iScience 25, 105010, September 16, 2022 21

	Approximating solutions of the Chemical Master equation using neural networks
	Introduction
	Results
	Nessie
	Autoregulatory feedback loop
	Genetic toggle switch
	Model of mRNA turnover
	Mitogen-activated protein kinase pathway

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Chemical master equation
	Background on neural networks
	Training neural networks
	Hyperparameter tuning
	Hidden layers
	Network depth
	Number of components
	Dataset size
	Number of simulations

