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ABSTRACT Criticality metrics are not only essential for collision avoidance systems but also play a vital
role for verification and validation of automated vehicles. With respect to the first application, criticality
metrics should be real-time capable and applicable in various traffic situations. For the second application,
holistic safety evaluation by criticality metrics is desired. However, existing criticality metrics hardly meet
these two requirements. They are either only applicable in post-processing or only assess the safety of
maneuvers in longitudinal direction. Therefore, we propose a new acceleration-based criticality metric,
which is real-time capable and applicable in both longitudinal and lateral directions. The theory of the
proposed criticality metric is introduced and the definition is explained according to different scenarios.
A simulation platform is established to validate the criticality metric. The simulation results demonstrate that
the proposed criticality metric takes all possible maneuvers into account when meeting a critical situation.
Apart from the longitudinal behavior, the lateral behavior of automated vehicles can also be evaluated in
real-time. Consequently, it has a wider application scope than other criticality metrics. To demonstrate
its contribution to verification and validation of automated vehicles, we apply the criticality metric to a
naturalistic driving dataset. The results prove that our criticality metric has a higher precision and recall than
Time to Collision. Additionally, it combines the abilities of Time to Collision and Time Head Way to assess
the safety of automated vehicles in the longitudinal direction. The proposed criticality metric is real-time
capable and is suitable for different situations.

INDEX TERMS Autonomous vehicles, vehicle safety, road safety, collision avoidance, performance
evaluation.

I. INTRODUCTION
One of the major goals in automated driving is to increase
safety in road traffic. Driver assistance systems like lane
keeping assist or automatic emergency brake systems are
already widely used and help to reduce the number of
accidents [1]. While these assistance systems only actively
support the human driver in specific situations, an automated
driving system (ADS) of SAE level 4 [2] and higher must be
able to handle every possible situation within its operational
design domain by itself. Based on the existence and dynamic

The associate editor coordinating the review of this manuscript and

approving it for publication was P. Venkata Krishna .

behavior of other objects, the ADS must decide if they pose
an unreasonable risk for the subject vehicle. Thus, the ADS
must assess the criticality of each object in order to draw
conclusions for the own safe behavior planning. To do this,
criticality metrics are used that quantify object criticality.
Especially in case of suddenly and unexpectedly appearing
objects, those criticality metrics are needed by emergency
functions. Apart from the role of criticalitymetric in decision-
making systems, the criticality metrics are also useful in
verification and validation (V&V) of automated vehicles
(AVs). First, they can provide safety argumentations on the
performance of AVs, since the safety of AVs in situations
could be quantified. Second, they can be used to identify
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safety-relevant scenarios so that irrelevant data is filtered out.
As a result, the identified scenarios as a vital source for the
scenario-based testing [3], [4] of AVs can further be utilized
to generate more similar relevant scenarios.

II. STATE OF THE ART
In the following, the currently common used criticality met-
rics are introduced. According to the definitions, we classify
four categories: time-based, distance-based, intensity-based
and other criticality metrics.

A. TIME-BASED CRITICALITY METRICS
The time to collision (TTC) [5] is a representative in the
first category. It describes the remaining time until two
vehicles collide with each other. The true TTC is only known
retrospectively after a collision really happened, because the
future movement of the colliding vehicles is not exactly
known in advance. In order to assess the criticality of a
situation right in time, the vehicle movements must be
predicted using specific assumptions. For the ttc,v, constant
relative velocity between both vehicles is assumed.

ttc,v =
dx
vrel,x

(1)

In order to evaluate the criticality of a scenario, the
minimum TTC can be calculated, which is also only
applicable retrospectively.

ttc,v,min = min
({

dx
vrel,x

, vrel,x > 0
}
,∞

)
(2)

Here, vrel,x denotes the relative velocity and dx denotes
the gap between the subject vehicle and the leading object
in x-direction. The longitudinal distance dx is zero if both
vehicles’ bodies overlap in x-direction. The ttc,v,min describes
the smallest value in the course of the TTC, i.e., no collision
happens in the considered scenario if ttc,v,min > 0. Since
a minimum ttc,v can only exist if a relative acceleration
or deceleration is present, this actually contradicts the
assumption of constant vrel,x . When ttc,v,min is reached, the
most critical part of the scenario is already over. Further
explanation of this fact is given in the appendix.

Time Exposed TTC (TET) and Time Integrated TTC (TIT)
[6] as two variants of TTC evaluate the safety of vehicles over
a certain space and time. Thus, they could provide a more
complete and comprehensive safety level in the overserved
space and time. They are defined as:

TET =

T∫
t=0

δ
(
ttc,v, t∗tc,v

)
dt (3)

TIT =

T∫
t=0

(
t∗tc,v − ttc,v

)
dt,∀0 ≤ ttc,v ≤ t∗tc,v (4)

in which δ(ttc,v, t∗tc,v) is 1 if 0≤ t tc,v < t∗tc,v. Otherwise,
it is 0. t∗tc,v denotes the threshold of ttc,v. T is the observed
period.

Additionally, the relative acceleration of two vehicles is not
considered in TTC, which further impairs the earlier recogni-
tion of a critical scenario. Thus, the enhanced TTC [7] ismoti-
vated, which uses the relative acceleration of two vehicles
directly in the definition for the prediction, as expressed by

ttc,e =

√
v2rel,x + 2Dreldx − vrel,x

Drel
∀ v2rel,x + 2Dreldx ≥ 0

(5)

whereDrel is the relative deceleration, so the negative relative
acceleration.1 This model leads to implausible collision
predictions if the object vehicle reaches standstill before
the collision. Then, according to enhanced TTC, the object
vehicle would still have a negative acceleration and thus start
driving backwards.

Different from TTC, time head-way (THW) [8] describes
the time remained that the subject vehicle reaches the position
of the leading vehicle, as shown in (6). In this equation, vsub
is the velocity of the subject vehicle. Since small TTC values
can only appear when small THW occurs, THW can quantify
potential critical situations, while TTC measures the actual
occurrences of critical situations (with predicted constant
velocity for the subject vehicle):

THW =
dx
vsub

(6)

Furthermore, the validity of TTC reduce greatly in
lateral directions. Hence, post encroachment time (PET)
[9] is proposed, which is more appropriate for intersection
situations. The time gap between one vehicle entering and
another vehicle leaving a conflicted area, as defined in (7),
assuming tsub/obj,entry/exit is the time that the subject or object
vehicle enters or leaves the conflicted area.

PET = max
( (

tobj,entry − tsub,exit
)
,(

tsub,entry − tobj,exit
) )

(7)

If PET is negative according to this definition, a collision
happens between subject and object vehicle. Since only the
time to reach a defined location is required, PET is easy
to measure and intuitive to understand. However, it is only
suitable for post analysis of traffic situations. Therefore,
the predictive encroachment time (PrET) [10] is motivated,
which predicts the motion of involved objects with a constant
velocity point model. The states p1 (t + t1) and p2 (t + t2)
represent the predicted positions of two objects. t1 and t2 are
the remaining time for the two objects to reach the collision
position.

PrET = min (|t1 − t2| ,∞)

with p1 (t + t1) = p2 (t + t2) , t1, t2 ≥ 0 (8)

Worst-time-to-collision (WTTC) [11] is theoretically
applicable in all directions by considering the worst situation,

1Deceleration D is introduced to avoid misunderstanding of minimum and
maximum, which could occur in case of negative accelerations.

VOLUME 10, 2022 70663



C. Wang et al.: Acceleration-Based Collision Criticality Metric for Holistic Online Safety Assessment

in which the actions of two vehicles towards a collision are
selected. It is obtained by finding the tmin that meets the
inequality (9). The size of vehicles are simplified as cycles
with radius rsub and robj and the accelerations of subject
and object vehicle are given by asub and aobj, respectively.
The Euclidean distance of the two vehicles is represented
by d

(
psub, pobj

)
. Since the worst situation is selected, the

criticality is usually overestimated. However, it is suitable to
filter out irrelevant data.

1
2
asubt2 + rsub +

1
2
aobjt2 + robj ≥ d

(
psub, pobj

)
(9)

The time-based metrics described above do not take into
account the possible actions of a driver. Hence, time to
react (TTR) [12] including time to steer (TTS), time to
brake (TTB) and time to kickdown (TTK) are motivated.
They represent the remaining time for the driver to begin a
maneuver that avoids a collision with the object. Generally,
TTR is expressed as

max
t∗

{
t∗ ≥ 0 | ∃u (t) : psub (t) ∩ pobj (t) = ∅

}
∀t ∈ (0, tmax]

(10)

The positions of subject and object vehicle at time t are
described by psub (t) and pobj (t), respectively. The action
of a driver is represented by u (t) and consists of steering
and braking. The time until the subject vehicle passes by the
object is given by tmax. The variable t∗ to be maximized is
TTR.

From the definition in (10), we know that the difficulty to
prevent a collision is expressed. The less time left, the more
difficult it is to prevent a collision. However, no difficulty of
the maneuver executed by the driver is included.

B. DISTANCE-BASED CRITICALITY METRICS
The distance-based criticality metrics quantify the criticality
of scenarios based on the distance remaining before a
collision occurs. A simple example in this category is the
distance head-way (DHW) [8], which describes intuitively
the distance remaining to the leading vehicle. In other words,
the DHW equals dx to the currently leading vehicle. The
difference of space distance and stopping distance (DSS) [13]
and the proportion of stopping distance (PSD) [9] are two
most common used ones in this category.

DSS =

(
v2obj
2µg
+ dx

)
−

(
vsubτ+

v2sub
2µg

)
(11)

PSD =
dx

MSD
,with MSD =

v2sub
2amax,acc

(12)

where µ is the friction coefficient, τ is the reaction time, dx
represents the remaining distance to the potential point of
collision, MSD is minimum acceptable stopping distance and
amax,acc denotes the maximum acceptable deceleration.
DSS measures the remaining distance by subtracting the

stopping distance from the space distance, as can be seen
in Fig. 1. Therefore, if DSS is negative, a collision is not
avoidable. PSD defines the ratio between the remaining

FIGURE 1. Explanation of DSS: the upper part depicts the initial distance
between subject and object vehicle as well as the braking distance of the
object. The lower part shows the stopping distance of the subject and the
remaining DSS.

clearances of two objects to theminimum acceptable stopping
distance. Therefore, if the PSD value is less than one, a
situation is regarded as critical and unacceptable. Based
on its definition, PSD would be suitable to be applied at
intersections, where the subject vehicle should stop before the
traffic lights or stop signs.

C. INTENSITY-BASED CRITICALITY METRICS
The intensity-based criticality metrics include the required
longitudinal deceleration and the required lateral accelera-
tion. Different from the above two categories, this category
shows directly how difficult it is to avoid a collision by
considering their possible actions and in terms of force
proportional acceleration. The most common used one is
deceleration rate to avoid the crash (DRAC) [14], which
describes the required deceleration for the subject vehicle
to avoid collision with the leading vehicle. If an evasion
maneuver is also possible, the required lateral acceleration
[15] is proposed. However, DRAC does not include the
maximum braking performance of a vehicle, which can
underestimate the criticality in some situations, since the
maximum braking performance is different under different
conditions. Therefore, brake threat number (BTN) [15] is
proposed, which is the DRAC divided by the maximum
available longitudinal deceleration as shown in (13). Similar
to BTN, steer threat number (STN) [15] takes maximum
available lateral acceleration into account for the required
lateral acceleration. Thus, if BTN or STN larger is than one,
a collision is unavoidable. Based on the above literatures,
it is obvious that the current intensity-based metrics have not
considered braking and steering simultaneously.

BTN =
areq,x
ax,max

and STN =
areq,y
ay,max

(13)

D. VELOCITY-BASED CRITICALITY METRICS
In addition, there are also some metrics for quantifying the
crash severity. The delta-v (1v) [16] belongs to this category
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and gives the probability of a severe injury or even a fatality.
It is defined as

1vsub =
mobj

msub + mobj

√
v2sub + v

2
obj − 2vsubvobjcosα (14)

with the mass of the subject and object vehicle msub and mobj
and the approach angle α. A value of α = 180◦ represents
a head-on collision. Similarly, 1vobj can be obtained as
well. Thus, the severity is max

(
1vobj,1vsub

)
. 1v is further

extended to conflict severity (CS) [17] by considering the
braking maneuver of a driver. It supposes that the severity
decreases if the braking maneuver is involved.

CS = 1vsub −
mobj

msub + mobj
(TA · ax) (15)

TA represents the available braking time. ax is the estimated
deceleration of the subject vehicle during the braking
maneuver.

E. OTHER CRITICALITY METRICS
There are still some other criticality metrics, which do not
fall into the above mentioned three categories. For instance,
the responsibility sensitive safety (RSS) [18] defines a safe
lateral and longitudinal distances. By comparing the current
lateral distance dy and longitudinal distance dx with the
safe distances

(
dx,min, dy,min

)
, a critical situation can be

determined.

RSScritical =

{
1, ifdx > dx,min ∩ dy > dy,min

0, otherwise
(16)

Another example is the trajectory criticality index (TCI) [19],
which is derived from the optimization of trajectory planning.
The cost of the optimal trajectory is regarded as the TCI in the
current situation. As defined in (17), the minimum ax and ay
quantify the situation criticality.

TCI = min
ax ,ay

N−1∑
k=1

wxRx (k)+ wyR2y (k)

+
waxa2x (k)+ waya

2
y (k)

(µmaxg)2
(17)

where N is the prediction horizon, k is one step in N and
µmax is the maximum friction coefficient. Further parameters
are the gravitational constant g, the weightsw as well as Rx
and Ry, that represent the reserve for corrections in speed
and course angle, respectively. Rx and Ry are dependent on
ax and ay.

The reachability analysis (RA) proposed by [20] measures
the safety of an AV whether its occupancy has no intersection
with that of other objects all the time. Therefore, if a specific
time step exists at which the occupancy of the subject
vehicle intersects with that of the object, the safety cannot be
guaranteed. tmax is the last time step of the intended trajectory.

RAcritical =

{
1, psub (t) ∩ pobj (t) 6= ∅, ∃t(0, tmax]
0, otherwise

(18)

F. SUMMARY STATE-OF-THE-ART
Five different categories of criticality metrics are presented.
The intensity-based category reflects the difficulty of a
maneuver, while the time-based category shows the difficulty
to avoid a collision [21]. The velocity-based criticality metric
defines the potential crash severity, which is not considered
in the first two categories. Since most metrics focus on
rear-end collision, metrics to quantify risk arising from
the lateral direction are less studied, some optimization
technique-based metrics are recently studied, e.g., TCI.
However, the criticality problem has non-linear properties
that require a high computational effort. Thus, an effortless
and holistic criticality metric is desired.

In this paper, we focus on the microscopic risk of AVs,
which means the risk in a single scene [21]. Macroscopic
risk, so the average risk of a vehicle is out of scope, i.e.,
the occurrence rate of fatal accidents of a vehicle with
and without an ADS will not be discussed. However, the
macroscopic risk is vital for the release of AVs and is a key
issue in the acceptance of this technology by stakeholders.
In addition to the social aspect, the economic benefit is also
a concerning aspect when introducing a new technology. The
P.E.A.R.S. consortium [22] is, for example, a group aiming at
developing a harmonized approach to assess the effectiveness
of road safety technologies.

III. METHODOLOGY
After we presented the state of the art in the previous section,
we see that various approaches to quantify collision criticality
already exist. Still, there is lack of application for some of
these metrics. Especially the intensity-based metrics only
seem to cover a few specific traffic scenarios, since they focus
on solely the criticality assessment in longitudinal direction.
Thus, we follow up on these intensity-based criticality
metrics and describe themmore general in order tomake them
applicable to more scenarios. Our contributions in this paper
are the following:
• An intensity-based criticality metric for both longi-
tudinal and lateral directions is proposed. Its theory
is explained and modelling is given. As a result, its
application scope is extended.

• The performance of the proposed criticality metric is
revealed and compared with other common criticality
metrics to demonstrate its strength. The proposed
criticality metric is capable of assessing the safety of
AVs during the driving, i.e., it is real-time capable of
identifying critical scenarios. Additionally, it can be
involved in the decision-making of AVs to make safe
decisions.

In the next section, we identify the relevant parameters
for criticality assessment and analyze in theory what traffic
scenarios are collision-critical. Based on that, we derive an
acceleration-based criticality metric that covers these critical
scenarios and provides the safest maneuver option in each
situation. Afterwards, we test the metric in two steps. First,
we apply it to a simulated AV in the defined critical scenarios.
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Second, we apply it to real traffic by using the HighD [23]
dataset. After evaluating the test results, we finally conclude
the findings of our work and give an outlook on future
research.

IV. THEORY
The basic concept of our new acceleration-based criticality
metric is to determine the smallest required longitudinal
or lateral acceleration for collision avoidance. Therefore,
different maneuver options like e.g. braking or evading are
analyzed. The smallest required acceleration of all considered
maneuver options defines the criticality of the current traffic
situation. In this section, we first introduce each maneuver
option that is considered by the criticality metric step by step.
Corresponding definitions and equations for each of them are
given. Then, the final criticality metric, which is composed of
the previously introduced components, is explained in detail.
In different scenarios, we illustrate which component plays
a role in the final criticality metric. Finally, the theory to
calculate the proposed criticality metric is established.

A. DEFINITION OF Dreq AND areq,eva
When the subject vehiclemeets a leading slow or static object,
it is motivated to brake or change its lane if possible. The
deceleration or acceleration required to perform these two
possible maneuvers to avoid the collision with the leading
object can be quantified as

Dreq,imm = Dobj −
vrel,x

∣∣vrel,x ∣∣
2dx

(19)

vrel,x = vobj,x − vsub,x (20)

areq,eva,v,imm =
2
(
yeva − vrel,yttc,v,x

)
t2tc,v,x

(21)

where Dreq,imm represents the longitudinal deceleration
required to avoid the collision with the front vehicle in
the current lane, while areq,eva,v,imm represents the lateral
acceleration required to evade to avoid the collision under
the assumption of constant velocity. Both assume that the
deceleration or acceleration is immediately applied. The
parameter Dobj is the deceleration of the leading object
and vrel,y is the relative lateral velocity towards the evasion
direction. The time ttc,v,x depicts the TTC in longitudinal
direction with the prediction of constant velocity and yeva is
the lateral space required for evasion, which is expressed by

yeva =


wobj+wsub

2 + dy, for yevar
wobj+wsub

2 − dy, for yeval
(22)

with wobj and wsub being the width of the leading object and
the subject vehicle, respectively. The distance dy is the lateral
gap between the subject vehicle and leading object, which
can be obtained by calculating the perpendicular distances of
the leading object and the subject vehicle to a reference line,
as shown in Fig. 2. The index l and r stand for left and right,
respectively.

FIGURE 2. Explanation of yeva and the map coordination system.

FIGURE 3. Two options of collision avoidance with object on an adjacent
lane. Option 1: entering the adjacent lane and steering back to subject
lane before object reaches subject vehicle. Option 2: stay in subject lane.

The presented equations are valid for the assumption that
Dreq,imm or areq,eva,v,imm are applied immediately without
delay. However, considering computation time and the delays
of actuators like build-up time of brake pressure requires a
modification of these equations. We assume that during the
delay time τ , all vehicles keep their current accelerations and
thus, Drel is constant as well. After τ , the subject vehicle
instantly applies the required reaction by braking or steering.
Then, in (19) vrel,x is to be replaced by vrel,x + Drelτ and dx
is to be replaced by dx − vrel,xτ − 0.5Drelτ

2. Furthermore,
areq,eva is then defined using ttc,e instead of ttc,v and yeva
is replaced by yeva − vrel,yτ . This leads to the following
equations:

Dreq = Dobj +

(
vrel,x + Drelτ

) ∣∣vrel,x + Drelτ
∣∣

2
(
dx − vrel,xτ − 0.5Drelτ 2

) (23)

areq,eva =
2
(
yeva − vrel,y

(
ttc,e + τ

))
t2tc,e

(24)

If the evasion is possible only to one side, e.g., on a two-
lane road, the acceleration required to the other side will be
infinite. As a result, impossible evasion is excluded when we
use min(Dreq,

∣∣areq,eval ∣∣ , ∣∣areq,evar ∣∣) to quantify the criticality
of the situations.

B. DEFINITION OF areq,ste,v
The above introduced Dreq and areq,eva are only applicable in
the longitudinal direction, i.e., there is only a leading object
in front. However, this is not always the case. When taking
an evasion maneuver, the rear left or rear right object matters.
It decides whether the evasion maneuver is safe or not. When
the subject vehicle intends to change its lane to the left and
already moves laterally, but suddenly notices that there is a
critical approaching rear left object, there are two maneuver
options. The first one is to temporarily enter the left lane
and leave it again before the object longitudinally reaches the
subject vehicle. The second option is to steer to the right and
stay in the current lane, as depicted in Fig. 3.
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In order to determine whether the subject vehicle will
collide with the rear adjacent object, we need ttc,v,x and ttc,v,y
in longitudinal and lateral direction, respectively. If the time
difference1t tc,v between ttc,v,x and ttc,v,y is small enough, the
subject vehicle will collide with the rear adjacent object, since
they will reach the same place at the same time. Therefore,
whether the subject vehicle should steer back depends on if

1t tc,v = |ttc,v,x − ttc,v,y| (25)

is smaller than a threshold 1t tc,v,crit, which is deduced later
in this section. If 1t tc,v < 1t tc,v,crit ∧ max

(
ttc,v,x , ttc,v,y

)
>

0, the acceleration areq,ste,v required for steering back is
defined as the minimum of the required accelerations for
the two maneuver options in Fig. 3. The first argument in
the minimum function corresponds to maneuver option 1,
the second argument to option 2.

areq,ste,v = min

 2|yste−vrel,y(ttc,v,max+τ)|
t2tc,v,max

,

v2rel,y
2max(yste−vrel,yτ,0)

 (26)

ttc,v,max = max
(
ttc,v,x , ttc,v,y

)
(27)

Here, vrel,y denotes the relative lateral velocity between the
subject vehicle and the rear object in adjacent lane. Since
the collision will not occur before both ttc,v,x and ttc,v,y are
reached, we use the maximum of both in this equation. yste
represents the lateral distance until the subject vehicle enters
the neighbouring lane and is defined in (28).With the distance
dy,marking from the middle of the subject vehicle to the lane
marking, where the subject vehicle is heading to, we define

yste =

{
dy,marking −

wsub
2 , for yster

dy,marking +
wsub
2 , for ystel

(28)

If yste < 0, the second maneuver option is not applicable
anymore. Thus, in (26) the second argument is infinite.

In order to derive 1t tc,v,crit, we consider two cases. The
subject vehicle can either change the lane after the object on
the left lane has passed or before the object passes. In the
first case, ttc,v,x < ttc,v,y and 1t tc,v,crit =

lsub
vrel,x

, lsub depicts
the length of the subject vehicle. Because then, the front
of the subject vehicle just touches the back of the object
when entering the left lane. If 1t tc,v <

lsub
vrel,x

, there will be
a longitudinal overlap between the subject vehicle and the
object when the subject vehicle enters the left lane.

In the second case,1t tc,v,crit is determined as the time that
the object needs to brake to reach the velocity of vsub with
braking distance of dx . As a result, when the object reaches
the back of the subject vehicle, vrel,x = 0 and a crash is
avoided. In this case, ttc,v,y < ttc,v,x . Starting from the time
when the subject vehicle enters the left lane, the required
time until vrel,x = 0 is vrel,x

ax,max
+ τ . The maximum acceptable

deceleration that the object vehicle has to apply is given by
ax,max and τ is the reaction time until ax,max is applied.

1t tc,v,crit =


lsub
vrel,x

, if 0 < ttc,v,x < ttc,v,y
vrel,x
ax,max

+ τ, if 0 < ttc,v,y < ttc,v,x
(29)

C. DEFINITION OF THE CRITICALITY METRIC Ca
Dreq, areq,eva and areq,ste,v introduced above are designed to
avoid collisions in three specific simple traffic situations.
By combining these different situations, we derive the
final criticality metric Ca. In order to properly combine
longitudinal and lateral accelerations, we use vectors for D
and a in the following. The metric Ca is expressed by a
minimum function, which contains an argument for each
available combination of the iterators δ and α:

min

(∥∥δ (Dreq + λareq,steα,v
)

+ (1− δ) (areq,evaα + Dreqα )
∥∥
foreachδ,α

)
(30)

where δ = {0, 1} is a switch factor. It decides that the
subject vehicle can either stay in the current lane or evade to
an adjacent lane. For the maneuvers to maintain the current
lane, a further distinction is made between pure braking and
simultaneous braking and steering, which is realized by a
Boolean function λ. It is defined as:

λ =

{
1, if 1t tc,v < 1t tc,v,crit
0, otherwise

(31)

As mentioned in the definition of areq,ste,v, if 1t tc <

1t tc,crit, a collision with an object on an adjacent lane will
happen if the vehicles do not change their current movement
states. Thus, we determine the required lateral acceleration
areq,ste,v for steering back to avoid the collision. Furthermore,
we use a direction index α to determine which steering
direction should be analyzed. It is expressed by:

α = U \ O,with U = {left, right} , O ⊆ U (32)

where U depicts the universal set of lateral directions, while
O is a subset of U and means the lateral direction in which
a critical situation would arise due to a lateral movement
of the subject vehicle. Hence, O defines the adjacent lanes
that the subject vehicle is not allowed to enter and α is the
complementary set of O. λ affects O since it quantifies if
the subject vehicle during lane changing will collide with
the approaching object in an adjacent lane. However, the
situations in which ttc,v,x or ttc,v,y are infinite or negative is
not covered by λ. If, e.g., the object at an adjacent lane has the
same velocity as the subject vehicle but a small longitudinal
distance, the subject vehicle is also not allowed to enter the
adjacent lane. These situations are quantified by:

β =

{
1, if dx < dcrit
0, otherwise

(33)

According to [24], we define dcrit as:

dcrit =
v2I

2Dmax,I
+ vIτ −

v2II
2Dmax,II

(34)

where I is the following vehicle and II is the leading vehicle.
Therefore, both λ and β define O. If λ = 1 ∨ β = 1 for

an object in an adjacent lane of the subject vehicle, the lateral
direction of this object from the perspective of the subject
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FIGURE 4. Collision-critical scenarios and different reaction options for
the subject vehicle.

vehicle is an element of O. If λ = β = 0 for all objects in
adjacent lanes, O is empty.
In order to give a clear explanation of the defined Ca,

we use the following two scenarios to demonstrate how Ca
concretely looks like, as shown in Fig. 4.
Scenario 1: a slow front object and a front left object exist.

In this case, λ and β are always zero, because no objects are
approaching from behind on adjacent lanes. Therefore, O =
∅ and we iterate through δ = {0, 1} and α= {left, right}. The
metric from (30) can be rewritten as:

Ca = min

 ‖Dreq‖,

‖areq,eval + Dreql‖,

‖areq,evar‖

 (35)

Due to the slow front object, the subject vehicle is
motivated to brake or evade to the adjacent lane. Braking in
the middle lane and evading to the right lane are quantified
by
∥∥Dreq

∥∥ and ∥∥areq,evar + Dreqr

∥∥, respectively. Since there is
no object in the right lane, Dreqr is zero and can be ignored.
If the subject vehicle decides to evade to the left, it may need
to brake as well due to the front left object. Consequently,
Dreql and areq,eval are added in vector in this maneuver. The
minimum value of the acceleration or deceleration required in
those three maneuvers is defined as the final criticality value
in this scenario.
Scenario 2: except from the slow front object, an object

at the rear left approaches the subject vehicle. If the subject
vehicle has the potential to collide with this object, i.e.,
1t tc < 1t tc,crit is fulfilled, then λ = 1. This also implies
that the subject and object vehicle are approaching laterally.

FIGURE 5. Verification process in simulations.

If this is not yet the case but moving to the left lane would
still lead to a critical situation, then β = 1. In both cases,
O = {left} and therefore α = {right}. If both cases are not true
if the approaching object has no influence on the decisions of
the subject vehicle even in case of entering the left lane, i.e.
λ = β = 0, then O = ∅ and α = {left, right}. In any case,
Dreql = Dreqr = 0, because there are no front objects on
adjacent lanes. Therefore, Ca in scenario 2 is defined as:
If λ = 1:

Ca = min
(
‖Dreq + areq,ster,v‖, ‖areq,evar‖

)
(36.a)

If λ = 0, β = 1:

Ca = min
(∥∥Dreq

∥∥ , ∥∥areq,evar∥∥) (36.b)

If λ = β = 0:

Ca = min
(∥∥Dreq

∥∥ , ∥∥areq,eval∥∥ , ∥∥areq,evar∥∥) (36.c)

In the first case of (36), the subject vehicle alreadymoves to
the left and risks to collide with the approaching object. The
subject vehicle can either steer back to the middle lane and
brake behind the front vehicle or evade to the right lane. In the
second case, the subject vehicle moves straight and can either
brake in the middle lane or evade to the right lane. Evasion
to the left lane is not allowed because a critical object is
approaching from behind. In the third case, the subject vehicle
has the same options like in the second case. Additionally,
it can evade to the left lane because it would not collide with
the rear left object.

As we showed by two examples, the defined Ca quantifies
the criticality of all possible maneuvers in scenarios and
always gives the maneuver with minimum criticality. This
principle is quite appropriate for the safety evaluation of AVs,
since their trajectory planning modules are actually also cost
optimization problems. Generally, the defined Ca in (30) is
applicable in various scenarios. With respect to intersection
scenarios, Ca is still applicable if the objects can be predicted
well.

V. SIMULATION
Fig. 5 shows the verification process of the proposed
criticality metric in simulation. First, we design suitable
scenarios for tailored testing of the criticality metric.
Second, we determine the simulation platform in order to
execute different scenarios. For each simulated scenario, the
criticality metric is calculated. Based on the results, we derive
the performance as well as the limitations of the criticality
metric.

70668 VOLUME 10, 2022



C. Wang et al.: Acceleration-Based Collision Criticality Metric for Holistic Online Safety Assessment

FIGURE 6. Description of the designed scenario to demonstrate the
criticality metric.

A. TEST SCENARIOS
In order to verify the proposed criticality metric, we first
define test scenarios. Generally, there are several ways to
obtain test scenarios. For instance, the test scenarios can
come from traffic accidents, field operation data of AVs and
expert knowledge, etc. However, these scenarios are usually
functional scenarios with a rather high level of abstraction, for
simulative testing we need concrete scenarios that are defined
in more detail [25]. We set specific parameters for all vehicles
in the scenarios in order to create collision-critical scenarios
where the subject vehicle has to find a proper reaction. The
goal of the designed scenarios is to demonstrate the criticality
metric as well as important parameters. Consequently, the
scenario as shown in Fig. 6 is developed.

The subject vehicle is trying to change to the left due to
the front slow truck. During the lane changing process, the
subject vehicle notices that it is no longer safe to continue
changing due to the rear left fast object. Since this scenario
covers all possible maneuvers together including evasion to
the left, steering and evasion to the right and braking, it is
suitable for demonstrating the criticality metric.

B. TEST PLATFORM
With respect to the execution of the designed test scenarios,
suitable test platforms are necessary. Therefore, several
requirements are first defined:
• The test platform should have sensor models in order to
perceive the surroundings.

• The driver model should be parametrizable so that
different driving styles can be applied.

• The platform should have an interface to read the
dynamic state of the perceived objects as well as the state
of the subject vehicle.

• Different kinds of scenarios including urban and high-
way scenarios should be able to be simulated.

Based on the requirements listed above, the simulation
environment IPG CarMaker is a good option. IPG CarMaker
provides different sensor models, e.g., ideal sensor models,
high fidelity sensor models and raw signal interface models.
Since different sensor effects, such as false positive and
false negative object detections, can be simulated by simply
deleting or adding objects in the perceived object list, ideal

FIGURE 7. Necessary parameters for the criticality metric in the simulated
scenario. The diagrams on top display the relative longitudinal distance
and velocity to the front, front right and rear left vehicle over time. The
bottom left diagram shows the relative lateral distance and velocity to the
rear left vehicle, the bottom right diagram depicts the subject vehicle’s
lateral evasion distance in both directions to pass the front vehicle
collision-free.

models are chosen. Subsequently, the designed scenarios are
established. Based on the perceived objects and the status of
the subject vehicle, the criticality metric can be calculated.

C. RESULTS AND DISCUSSION
In order to show the evolution of the scenario, necessary
parameters for the criticality metrics are drawn in Fig. 7.

The longitudinal distance dx between subject vehicle and
front object (sub, f) decreases slowly. This is because the
subject vehicle decelerates until it has the same speed as the
front object, which can be observed in the vrel,x plot. Since
the subject vehicle changes the lane (with positive vrel,y) and
then steers back (with negative vrel,y) due to the approaching
rear left object, dy reduces firstly and afterwards increases
again. Consequently, yeval increases and then decreases when
the subject vehicle steers back to the previous lane. The
evasion distance yevar is opposite to yeval . When the rear left
object is alongside the subject vehicle, dx is zero and when it
drives in front of the subject vehicle, no rear left object exists.
Hence, no information of rear left object is available.

In this process, we have quantified the required acceler-
ation or deceleration for each possible maneuver, as shown
in Fig. 8. The final criticality metric Ca is always the
smallest value among all possible required accelerations or
decelerations. In order to show when Ca equals to which
maneuver, we have divided the entire scenario into five
phases. The time span, in which the line is broken, means
that the given maneuver is not applicable, e.g., a collision
will occur if the maneuver is executed, as the red line areq,eval
illustrated in the upper plot in Fig. 8.
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FIGURE 8. The upper figure shows the criticality of possible maneuvers
and the lower figure shows the criticality of the maneuvers to determine
the final criticality metric. The scenario is divided into five zones. The
preferred maneuver in each zone is ¬: left evasion; ­: steering back and
braking; ®: braking; ¯: braking; °: neither deceleration nor acceleration.

In phase ¬, evasion to the left is the optimal maneuver.
Since the front left object is faster than the subject vehicle,
no deceleration of the subject vehicle is required in this case.
The rear left object poses no threat to the subject vehicle yet.
The front right object has lower velocity than the front left,
which means larger deceleration is required for evasion to the
right.

In phase ­, the rear left object is getting too close to the
subject vehicle, so evasion to the left is not safe anymore.
The subject vehicle can either steer back and brake behind the
front object or evade directly to the right and brake behind the
front right object. Since the latter is expensive because of
the low velocity of the front right object, steering back and
braking behind the front object is the best choice.

In phase ®, the braking maneuver is preferred. Since the
rear left object is still too close to the subject vehicle, evasion
to the left is still not possible. The acceleration required to
evade to the right is larger than the required deceleration for
braking. Thus, the braking maneuver is the cheapest one in
terms of acceleration effort.

In phase ¯, braking is still preferred. Evasion to the
left is possible again since the rear object turns into the
front left object and is no longer critical to the subject
vehicle. However, the evasion maneuvers become expensive
because the subject vehicle is already too close to the front
object.

In phase °, the subject vehicle has the same velocity as
the front object. No acceleration or deceleration is required.
The fact that the TTC between the front right object and the
subject vehicle is small results in a large Dreqr . When the

FIGURE 9. The process to evaluate the performance of the proposed
criticality metric in a dataset.

right object is laterally next to the subject vehicle, evasion
to the right is critical and the line of areq,evar is broken at this
time. In the rest of the paper, we define TTC to be equivalent
to ttc,v.

VI. APPLICATION TO REAL SCENARIOS
Apart from demonstrating the online capability of the
proposed criticality metric in simulation, its ability to assess
the safety of AVs in reality is also deserved to explore.
Fig. 9 shows the process to derive the performance of
the proposed criticality metric in a dataset. The data in
a naturalistic driving (ND) dataset is filtered to abandon
irrelevant data. Subsequently, our defined criticality metric
as well as other common criticality metrics such as TTC
are applied in the filtered data. In the result analysis, the
performance of different criticality metrics are compared.
The strength and weakness of the proposed criticality metric
are derived.

A. DATASET INTRODUCTION
To test the newly developed criticality metric with real traffic
data, we use the highD dataset recorded by a drone on six dif-
ferent German highway sections of 420 m length each. It con-
tains vehicle trajectories as well as the corresponding vehicle
type, size, maneuvers or kinematics like e.g., speed or acceler-
ation. Additionally, information regarding surrounding traffic
participants like distance or time to collision are provided
for each vehicle. More than 110500 recorded vehicles drive
44500 km in total and have a typical positioning error of less
than 10 cm. [23]

Since many vehicles driven by human drivers are available
in the dataset, we first filter the dataset to abandon the
uninteresting scenarios by using the warning TTC, which is
defined as

ttc,warn = τ −
vrel,x
2Dmax

(37)

where τ includes the reaction time and the braking delay time.
Dmax is the maximum available deceleration.

After filtering there are 111 scenarios left. In the next step
we apply our criticality metric to those identified scenarios
and also observe DHW, THW and TTC in each of them.
Since only DHWmin, THWmin and TTCmin in a scenario
can quantify how critical the scenario is, we focus on their
minimum values. For our criticality metric Ca the maximum
value in each scenario is of interest.
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FIGURE 10. DHW min, THW min, TTCmin and 1/Ca,max in all 111 scenarios.

B. RESULTS AND DISCUSSION
The DHWmin, THWmin and TTCmin as well as 1/Ca,max
in all 111 scenarios are illustrated in Fig. 10. 1/Ca,max is
utilized so that all metrics have same monotonicity to the
criticality of situations. The acceleration value of 3.4 m/s2

recommended by [26]–[28] to differentiate vehicles involved
with high risks is also drawn in this figure. There are totally
7 scenarios in which Ca gets larger than the given threshold.
Critical scenarios resulted from incorrect information in the
dataset are removed. The TTCmin in most scenarios are
around 1 s, whereas the average THWmin is smaller than
that. It indicates that those scenarios are potentially critical in
longitudinal direction as pointed out by [29]. However, when
we observe 1/Ca,max, they are mostly large. The reason is that
more possible maneuvers to avoid potential critical situations
are considered in our criticality metric, while TTCmin and
THWmin focus solely on longitudinal direction. With respect
to the 7 critical scenarios identified by Ca, it is necessary to
figure out what the reasons are to cause large Ca and how
other criticality metrics, e.g., TTC perform in those scenarios.
The results can be found in Table 1 in the Appendix, where
the reasons for criticality in these scenarios are shown.

As mentioned before, TTCmin is small in some scenarios
where 1/Ca,max is large, i.e., the scenarios are rated as critical
according to TTCmin, but classified as uncritical based on
Ca,max. We utilize the following case 1 to explain why this
happens at times.
Case 1: TTCmin is small, but 1/Ca,max is large.
Fig. 11 shows the scenario that we have selected. At the

beginning, the subject vehicle can only brake due to the
occupancy of the left lane. Thus, Ca equals to the required
deceleration Dreq. Afterwards, the truck at the left lane drives
away and leaves its lane free for the subject vehicle to
evade. Therefore, evading to the left is now the better choice
compared to braking. Evasion to the right is impossible
because of the lane boundary. The required acceleration to
evade to the left defines the Ca in this timespan. From
frame 7745 to 7770, the required acceleration is zero. On the
one hand, the front truck in the middle lane is faster than
the subject vehicle. On the other hand, the lateral velocity

FIGURE 11. Evolution of the scenario and Ca in case 1.

FIGURE 12. TTC, DHW, THW and Ca in case 1.

is high enough and lateral evasion offset yeval decreases
continuously so that the evasion can be done without any
lateral acceleration. From frame 7770 the evasion is finished
and the subject vehicle is in the middle lane. Due to the high
lateral velocity, it is possible that the subject vehicle collides
with the rear object at the leftmost lane. As a result, areq,ster
is positive to make sure that the subject vehicle will stay in
the middle lane and not drive to the leftmost lane. Evasion
to the right is expensive due to small TTC to the truck at the
rightmost lane and becomes critical when the subject vehicle
is laterally next to it, as the yellow line shows.

To compare Ca with other criticality metrics, we also
illustrate the TTC, DHW, THW and Ca in this scenario in
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FIGURE 13. Evolution of the scenario and Ca in case 2.

Fig. 12. As can be seen, the TTCmin (0.09 s) is rather small.
When the evasion to the left is finished, TTC turns into
negative due to the faster truck in front in the middle lane.
The THWmin is also very small and has a value of 0.05 s.

Nevertheless, our Ca,max also has a small value of
0.82 m/s2. It indicates that the scenarios is actually uncritical
since the evasion maneuver can be executed without strong
action, i.e., our criticality metric is more reasonable and can
evaluate the criticality scenarios more accurately than TTC
and THW.

In contrast to case 1, it is also worth exploring whether Ca
is more capable of identifying critical scenarios than TTC and
THW, i.e., an actually critical scenario is missed by TTC and
THW, but identified by the Ca. Therefore, we utilize case 2 to
demonstrate this point.
Case 2: TTCmin is large, but 1/Ca,max is small.
This case is about a cut-out maneuver of the front object

and an accelerationmaneuver of the subject vehicle, as shown
in Fig. 13. Braking and evasion to the right are only two
possible maneuvers. Due to the large lateral evasion offset
yevar , the braking maneuver is preferred. At the frame 12610,
the cut-out maneuver of the front object is finished. Due to
the small TTC to the front object in the middle lane, evasion
is still not a better choice and becomes critical when the
subject vehicle is driving alongside it. Therefore, the yellow
line increases dramatically and is vanished afterwards.

Fig. 14 shows the changing of the studied criticalitymetrics
in this scenario. The TTCmin in this scenario is 0.98 s, whereas
the THWmin is 0.07 s. This is because the relative longitudinal
velocity between the subject vehicle and the front object is
small. The Ca,max has reached 3.71 m/s2, which means that
the scenario is critical when using the threshold of 3.4 m/s2

and the critical scenario could not be identified by TTCmin.
By means of THWmin the critical scenario can be discovered.
Case 2 proves that the criticality metric Ca combines the
capabilities of TTCmin and THWmin in longitudinal direction.

FIGURE 14. TTC, DHW, THW and Ca in case 2.

VII. CONCLUSION
In this paper, we proposed a novel acceleration-based
criticality metric. This criticality metric can not only be
applied in real-time for collision avoidance systems but
also assess the safety of AVs in both longitudinal and
lateral direction. We elaborated the theory of the criticality
metric and derived its expression. In order to validate its
performance, special scenarios were designed to validate it
first in simulations. Subsequently, its performance is further
demonstrated by comparing it with TTC and THW in a
naturalistic driving dataset.

Based on the results in the simulations and the dataset,
we derived several conclusions:

1) The proposed criticality metric is applicable to assess
the safety of AVs in lateral direction. As a result, error
from motion prediction can be discovered, since a not
well predicted rear object at an adjacent lane could
motivate lateral movement of the subject vehicle.

2) All possible maneuvers in a situation are quantified
by the criticality metric. Thus, compared to existing
criticality metrics, our approach is more general and
reasonable to assess the safety of AVs.

3) Compared to TTCmin, our proposed criticality metric
rates less uncritical situations as critical, since other
maneuvers but longitudinal action are not considered
by TTCmin.

4) The proposed criticality metric is more capable of dis-
covering critical situations than TTCmin and combines
the abilities of TTCmin and THWmin.

Since the criticality metric takes the reaction into account,
the difficulty to avoid a collision is expressed intuitively.
Thus, the criticality of a situation is more understandable,
which facilitates its application for collision avoidance
systems. Additionally, it is powerful to discover critical
scenarios due to its usability in various situations. Then, the
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identified scenarios can be used to test AVs and assist the
V&V of AVs.

With respect to futurework, the performance of the critical-
ity metric in intersection scenarios could be further studied.
Additionally, the threshold should be further researched,
since the threshold of 3.4 m/s2 was derived in 2004. The
driving behavior of AVs varies and road conditions change,
so new analysis is necessary.

APPENDIX
A. EXPLANATION OF ttc,v,min
The time when ttc,v,min is reached can be determined by
equating the time derivative of the TTC with zero. In this
moment, the relative deceleration between the leading object
and the subject vehicle Drel,x = Dobj,x − Dsub,x is twice as
high as the actually required deceleration Dreq,x for collision
avoidance, as can be seen in (39) and (40). Here, we assume
that the object’s deceleration Dobj,x is zero. Therefore, the
most critical part of the scenario is already over when ttc,v,min
is reached.

d
dt
ttc,v =

d
dt

(
dx
vrel,x

)
=
v2rel,x − dxDrel,x

v2rel,x
= 0 (38)

Drel,x
(
ttc,v,min

)
=
v2rel,x
dx

(39)

Dreq,x
(
ttc,v,min

)
=
v2rel,x
2dx
=
Drel,x

(
ttc,v,min

)
2

with Dobj,x = 0 (40)

B. SCENARIO OVERVIEW
We also attach the critical scenarios identified by our
criticality metric, which can serve as a useful source to test
AVs.

TABLE 1. Identified criticality scenarios by Ca in the highd dataset.
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