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PICO entity extraction for preclinical animal 
literature
Qianying Wang1, Jing Liao1, Mirella Lapata2 and Malcolm Macleod1*   

Abstract 

Background: Natural language processing could assist multiple tasks in systematic reviews to reduce workflow, 
including the extraction of PICO elements such as study populations, interventions, comparators and outcomes. The 
PICO framework provides a basis for the retrieval and selection for inclusion of evidence relevant to a specific sys-
tematic review question, and automatic approaches to PICO extraction have been developed particularly for reviews 
of clinical trial findings. Considering the difference between preclinical animal studies and clinical trials, developing 
separate approaches is necessary. Facilitating preclinical systematic reviews will inform the translation from preclinical 
to clinical research.

Methods: We randomly selected 400 abstracts from the PubMed Central Open Access database which described 
in vivo animal research and manually annotated these with PICO phrases for Species, Strain, methods of Induction 
of disease model, Intervention, Comparator and Outcome. We developed a two-stage workflow for preclinical PICO 
extraction. Firstly we fine-tuned BERT with different pre-trained modules for PICO sentence classification. Then, after 
removing the text irrelevant to PICO features, we explored LSTM-, CRF- and BERT-based models for PICO entity recog-
nition. We also explored a self-training approach because of the small training corpus.

Results: For PICO sentence classification, BERT models using all pre-trained modules achieved an F1 score of over 
80%, and models pre-trained on PubMed abstracts achieved the highest F1 of 85%. For PICO entity recognition, fine-
tuning BERT pre-trained on PubMed abstracts achieved an overall F1 of 71% and satisfactory F1 for Species (98%), 
Strain (70%), Intervention (70%) and Outcome (67%). The score of Induction and Comparator is less satisfactory, but F1 
of Comparator can be improved to 50% by applying self-training.

Conclusions: Our study indicates that of the approaches tested, BERT pre-trained on PubMed abstracts is the best 
for both PICO sentence classification and PICO entity recognition in the preclinical abstracts. Self-training yields better 
performance for identifying comparators and strains.

Keywords: PICO, Preclinical animal study, Named entity recognition, Information extraction, Self-training

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Systematic review attempts to collate all relevant evi-
dence to provide a reliable summary of findings relevant 
to a pre-specified research question [1]. When conduct-
ing information extraction from clinical literature, the 

key elements of interest are Population/Problem, Inter-
vention, Comparator and Outcome, which constitute the 
established framework of PICO [2]. This has been used 
as the basis for retrieval, inclusion and classification of 
published evidence, and empirical studies have shown 
the use of the PICO framework facilitates more complex 
search strategies and yields more precise search results in 
systematic reviews [3]. During citation screening, inves-
tigators screen the abstracts to determine the inclusion 
or exclusion of studies. Abstracts that are pre-structured 
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according to the PICO frame or combined demonstration 
with PICO phrases enable faster judgement of study rel-
evance for each PICO element [4]. Pre-structured PICO 
information also allows investigators to locate relevant 
descriptions from full-text articles which may speed up 
the data extraction process [5]. As the number of publi-
cations describing experimental studies has increased, 
the time taken in manually extracting information has 
increased such that many reviews are out of date by the 
time they are published. The evidence-based research 
community has responded by advocating the use of auto-
mated approaches to assist systematic reviews, and PICO 
extraction tools have been developed, particularly for 
clinical trials [6].

Preclinical animal studies differ from clinical trials in 
many aspects. The aim of animal studies is to explore 
new hypotheses for drug or treatment development, 
so they have more variations for the definition of PICO 
elements. For example, in animal studies, disease is not 
naturally present but often induced, different species 
can be used, and outcomes of interest can include sur-
vival, behavioural, histological and biochemical outcomes 
[7]. Considering the difference and the leading clinical 
research, the SYRCLE group developed a framework def-
inition of preclinical PICO, where ‘Population’ includes 
animal species and strain and any method of inducing a 
disease model, and several outcomes can be considered 
[8]. Importantly, the ‘Comparator’ for animal studies is 
usually simply an untreated control cohort, although the 
exact choice of control is sometimes a variable of interest.

Here, we report the development of automatic PICO 
extraction approaches for preclinical animal studies 
which may advocate the use of preclinical PICO and facil-
itate the translation from preclinical to clinical research.

Related work
To our knowledge, while automated PICO extraction in 
clinical reports is relatively well-explored, no method 
has been developed or evaluated for preclinical animal 
literature.

Most of the previous work for the clinical trial litera-
ture casts PICO element extraction as a sentence clas-
sification task. Byron et  al. use logistic regression with 
distant supervision to train classifiers for PICO sentences 
derived from clinical articles [5]. More recent approaches 
have used recent neural networks for PICO sentence 
classification which requires less manual feature engi-
neering. Such approaches include the bidirectional long-
short term memory network (BiLSTM) [9] with some 
variations [9–11]. More precise PICO phrases or snippet 
extraction is cast as a named entity recognition task, and 
BiLSTM with conditional random field (CRF) [11] are 
common approaches [12–14]. Some advanced methods 

including graph learning [13] and BERT (a transformer-
based machine learning model) [15] enhance the 
performance.

Methods
Dataset
We downloaded 2,207,654 articles from the PubMed 
Central Open Access Subset database1 published from 
2010 to 2019 and used a citation screening filter trained 
to identify in vivo research from title and abstract (devel-
oped by EPPI-Centre, UCL [16]). We chose an inclusion 
cut point which gave 99% precision and obtained 50,653 
abstracts describing in vivo animal experiments. We ran-
domly selected 400 abstracts for the annotation task and 
another 10,000 for the self-training experiments.

We used the online platform tagtog2 for PICO phrase 
annotation. In addition to Intervention, Comparator and 
Outcome, we divided the Population category into three 
components: the Species, the Strain, and the method of 
Induction of the disease model. After the initial annota-
tion process and discussion with a senior clinician, we 
proposed some general rules for the annotation task:

• Only PICO spans describing in vivo experiments are 
annotated, i.e. interventions or treatments should be 
conducted within an entire, living organism. Inter-
ventions applied to tissues derived from an animal 
or in cell culture (ex vivo or in  vitro experiments) 
should not be annotated.

• Texts describing the introduction, conclusion or 
objectives should not be annotated in most cases 
because these might relate to work other than that 
described in the publication. They should be anno-
tated only when the remaining text lacks a clear 
description of the method or where the text gives the 
meaning of abbreviations.

• The first occurrence of an abbreviation should be 
annotated together with the parent text. For example, 
‘vascular endothelial growth factor (VEGF)’ should 
be tagged as one entity for its first occurrence; in the 
remainder of the text, ‘VEGF’ or ‘vascular endothelial 
growth factor’ could be annotated separately if they 
are not mentioned together.

• Any extra punctuations between phrases (such as 
commas) should not be annotated. However, if the 
entity appears only one time in the text, punctuations 
can be included in a long span of text which consists 
of several phrases.

1 https:// www. ncbi. nlm. nih. gov/ pmc/ tools/ openf tlist
2 https:// www. tagtog. net

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist
https://www.tagtog.net
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• Entity spans cannot be overlapped. Annotations 
in tagtog are output in EntitiesTsv format which 
resembles the tab-separated values (tsv) output in 
the Stanford NER tool [17], and this does not sup-
port overlapping entities.

Figure  1 shows an example of annotated abstract 
using tagtog. After excluding the title, introduction 
sentence, first part of the objective sentence and the 
conclusion sentence which do not explicitly describe 
experimental elements, PICO entities are extracted 
from the remaining sentences: (1) Species: mice; (2) 
Strain: C57BL/6; (3) Induction: fed normal chow (NC), 
fed a high-fat diet (HFD); (4) Intervention: aerobic exer-
cise training, exercise and treadmill running; (5) Com-
parator: sedentary; and (6) Outcome: protein spots.

Fig. 1 Preclinical PICO annotation example. Screenshot from tagtog

Table 1 Statistics of 400 annotated PICO dataset

Average number in each abstract
 PICO sentences 5

 Sentences 11

 Entities 17.5

Distribution of PICO entity
 Intervention 24.1%

 Comparator 1.8%

 Outcome 40.6%

 Induction 10.6%

 Species 19.6%

 Strain 3.3%

 Total 100%
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In total, 6837 entities were annotated across 400 
abstracts, and the distribution of PICO entities is imbal-
anced (Table  1). Less than 50% of sentences in each 
abstract contain PICO phrases, and using the entire 
abstracts to train an entity recognition model is not effi-
cient. Therefore, we split the PICO phrase extraction task 
into two independent subtasks: (1) PICO sentence clas-
sification and (2) PICO entity recognition.

PICO sentence classification
Text from 400 abstracts are split into 4247 sentences 
by scispaCy [18], and sentences containing at least one 
PICO entity are labelled as ‘true’ for PICO sentence. Indi-
vidual sentences were randomly allocated to training, 
validation and test sets (80%/10%/10%). For the sentence-
level classification task, we use bidirectional encoder rep-
resentation from transformers (BERT), a contextualised 
representation model where a deep bidirectional encoder 
is trained on a large text corpus. The encoder structure is 
derived from the powerful transformer based on multi-
head self-attention, which dispenses with issues arising 
from recurrence and convolutions (an operation which 
applies sliding window functions on representation 
matrices to filter out information) [19]. The pre-trained 
BERT can be fine-tuned with a simple additional output 
layer for downstream tasks and achieves state-of-the-art 
performance on many natural language processing tasks 
[15]. We explore the effects of using different text corpora 
and methods for pre-training including (1) BERT-base, 
the original BERT trained on the combination of Book-
Corpus, and English Wikipedia [15]; (2) BioBERT, which 
trains BERT on the combination of BookCorpus, Eng-
lish Wikipedia, PubMed abstracts and PubMed Central 
full-text articles [20]; (3) PubMedBERT-abs, which trains 
BERT on PubMed abstracts only, and (4) PubMedBERT-
full on a combination of PubMed abstracts and PubMed 
Central full-text articles [21].

The approach to training seeks to minimise cross-
entropy loss (a loss function to evaluate the contrast 
between the predicted labels and true labels) using the 
AdamW algorithm [22]. We use a slanted triangular 
learning rate scheduler [23] with a maximum learning 
rate 5e−5 for 10 epochs of training. We apply gradient 
clipping [24] with a threshold norm of 0.1 to rescale gra-
dients and gradient accumulation every 16 steps (mini-
batches) to reduce memory consumption.

PICO entity recognition
Identifying specific PICO phrases is cast as a named 
entity recognition (NER) task. We convert all entity 
annotations to the standard BIO format [25], i.e. each 
word/token is labelled as ‘B-XX’ if it is the beginning 
word of the ‘XX’ entity, ‘I-XX’ if it belongs to other words 

inside the entity but not the beginning word or ‘O’ if it is 
outside of any PICO entity. Hence, there are 13 unique 
tags for 6 PICO entities (two tags for each entity, plus tag 
‘O’), and a NER model is trained to assign the 13 unique 
tags to each token in the PICO text.

One classic NER model is the bidirectional long-short 
term memory (BiLSTM) with a CRF layer on top (BiL-
STM-CRF) [26]. LSTM belongs to the family of recurrent 
neural networks which can process word embeddings 
sequentially. In the hidden layer, by combining the 
weighted hidden representations from the adjacent word 
through a Tanh operation, a basic recurrent neural struc-
ture can retain information from neighbouring text. 
However, when the document is long, retraining infor-
mation from very early or late words is difficult because 
of the exploding or vanishing gradient problem, which 
stops the network learning efficiently [27]. LSTM is 
designed to solve this long-term dependencies problem, 
which uses a cell state and three gates (forget gate, input 
gate and output gate) for each word embedding to con-
trol the information we need to flow straight, to forget or 
to store and update to the next step [9]. BiLSTM contains 
information from words in both directions, by processing 
hidden vectors from previous words to the current word 
and hidden vectors from future words back to the current 
words.

CRF is a type of discriminative probabilistic model 
which is often added on top of LSTMs to model depend-
encies and learn the transition constraints among pre-
dicted tags from LSTM output. For example, if the tag 
of a word in the sequence is ‘I-Outcome’, the tag of the 
previous word can only be ‘B-Outcome’ or ‘I-Outcome’, 
and impossible to be ‘I-Intervention’ or ‘O’ in a real sam-
ple. Models without the CRF layer may lose these con-
straints and cause unnecessary transition errors. We 
explore BiLSTM models with or without CRF layers. For 
text representations in these models, tokens are mapped 
into 200-dimension vectors by word2vec [28] induced on 
a combination of PubMed, PMC texts and English Wiki-
pedia [29].

Similar to the PICO sentence classification, we also 
fine-tuned BERT with different pre-trained weights for 
the entity recognition task, using the BertForTokenClas-
sification module from the Hugging Face Transformers 
library [30]. We also explored the effect of adding CRF 
and LSTM layers on top of BERT.

For more efficient training and to achieve the best 
results for the entity recognition task, we removed the 
sentences without any PICO annotation from each 
abstract and trained NER models on each remaining 
text, which consisted of PICO sentences only; for predic-
tion in the future application, sentences in an individual 
abstract are classified by the best PICO sentence classifier 
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from the first task, and the non-PICO sentences are then 
removed automatically. The workflow is illustrated in 
Fig. 2.

For LSTM/CRF models, we tuned hidden dimensions 
from 32 to 512 and compare Adam and AdamW opti-
misers with the constant or slanted triangular learning 
rate scheduler. We froze word embeddings because we 
found it achieves better performance on the validation 
set. Models were trained for 20 epochs, and the learning 
rate depended on the specific model (1e−3 for BiLSTM 
and 5e−3 for BiLSTM-CRF). For BERT models, we fine-
tuned BERT for 20 epochs with a learning rate of 1e−3, 
BERT-CRF for 30 epochs and BERT-LSTM-CRF for 
60 epochs, both with a learning rate of 1e−4; other set-
tings are similar to that of PICO sentence classification 
task. These settings were determined by checking over-
fitting or convergence issues from their learning curves. 
For evaluation, we used entity-level metrics [31] for each 
PICO text (truncated abstract):

These individual metrics were then averaged across all 
validation/test samples to obtain the overall metrics.

Self‑training
One limitation of the previous method is the small 
amount of training data, so we also explored a 

Precisioni =
number of predicted correct entities

number of predicted entities

Recalli =
number of predicted correct entities

number of true entities

F1i =
2∗Precisioni∗Recalli
Precisioni+Recalli

semi-supervised learning strategy, self-training, which 
used the unlabelled dataset to generate pseudo labels 
for training [32]. We use 400 annotated abstracts as 
‘gold’ data and 10,000 unlabelled abstracts from 50,653 
in  vivo animal records as ‘silver’ data. Non-PICO sen-
tences were removed from the unlabelled text by the 
best PICO sentence classification model, and these 
truncated texts were used for self-training. As Fig.  3 
shows, we first used the fine-tuned PICO entity rec-
ogniser from the gold set (80% of 400 labelled records 
for training, 10% for validation) to predict the entities 
of each token in the silver set. For each abstract in the 
silver set, we calculated the average prediction prob-
abilities of all tokens within that abstract. Silver records 
with average probabilities larger than a threshold (0.95 
or 0.99) were then combined with the original gold 
training/validation set, and the enlarged new dataset 
was used to fine-tune a newly initialised PICO entity 
recogniser. Then, we repeat the prediction, pseudo data 
generation, data selection and supervised fine-tuning 
procedures, until no more unlabelled records with aver-
age prediction probabilities larger than the threshold 
are identified. Note in every data enlarging step, newly 
included silver records are split into a training set (80%) 
and a validation set (20%), then combined with existing 
gold training records (initially 320 records) and gold 
validation records (initially 40 records), respectively. 
This guarantees that the initial gold validation set is 
only ever used for validation. The original gold test set 
is used for the final evaluation. All experiments were 

Fig. 2 The workflow of the PICO extraction
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conducted using an Ubuntu machine with a 16-core 
CPU.

Results
The results of the PICO sentence classification mod-
els on the test set (425 sentences) are shown in Table 2 
(see validation performance in Table  5 in Appendix). 
All BERT models achieve an F1 score greater than 80% 
regardless of the pre-training corpus used, and PubMed-
BERT trained on PubMed abstracts achieves the highest 
F1 score of 85.4%. Biomedical-domain BERT improves F1 
score by 4% compared with general-domain BERT, and 
BERT with pure biomedical-domain pre-training (two 
PuBMedBERT) can identify more PICO sentences than 
BERT with general pre-training (BERT-base) or mixed-
domain pre-training (BioBERT), as recall increased by 
7%. Therefore, we selected BERT trained on PubMed 
abstracts as the best PICO sentence classifier for self-
training experiments and prediction.

For PICO entity recognition, for each model, we used 
settings which achieved the best performance on the 

validation set and then evaluated these on the test set 
(40 truncated abstracts). As Table  3 shows, the BERT 
models (BERT, BERT-CRF, BERT-BiLSTM-CRF) out-
performed the LSTM models (BiLSTM, BiLSTM-CRF), 
with F1 scores improved by between 3 and 27%. The use 
of a CRF layer improves the F1 score in BiLSTM by 14% 
but does not enhance performance in BERT models. 
Compared with the benefit of the large-scale pre-trained 
domain knowledge, the advantage of the CRF layer might 
therefore be trivial. Within BERT models, biomedical 
BERT models improve F1 by at least 4% compared to the 

Fig. 3 The workflow of the self-training in our experiments

Table 2 Performance of PICO sentence classification by BERT 
with different pre-trained weights on the test set

F1 Recall Precision

BERT-base 80.6 81.4 82.1

BioBERT 84.3 81.0 90.0

PubMedBERT-abs 85.4 88.4 85.0

PubMedBERT-full 84.2 87.1 83.8

Table 3 Overall performance of the PICO entity recognition 
models on the test set

Model Weight F1 Recall Precision

BiLSTM – 43.5 38.1 50.6

BiLSTM-CRF – 57.9 54.7 61.6

BERT Base 61.3 66.3 57.1

BioBERT 65.4 69.8 61.5

PubMed-abs 70.1 73.2 67.3

PubMed-full 69.9 73.4 66.7

BERT-CRF Base 62.1 67.2 57.8

BioBERT 66.5 70.1 63.3

PubMed-abs 68.0 71.5 64.9

PubMed-full 67.5 70.9 64.5

BERT
 - BiLSTM
 - CRF

Base 64.6 69.5 60.3

BioBERT 68.3 71.2 65.6

PubMed-abs 67.2 70.8 64.0

PubMed-full 68.5 72.6 64.8
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general BERT, and the difference between the three bio-
medical pre-trained weights is not obvious. We selected 
PuBMedBERT pre-trained on PubMed abstracts and full 
texts as the best PICO entity recogniser based on the 
validation results (see Table 6 in Appendix), and the test 
performance by each PICO entity is reported in Table 4 
(‘original scores’). The F1 score for identifying Species 
is 98%. This entity has a limited number of potential 
responses, so their identification is not complicated. For 
Intervention and Outcome, the performance is satisfac-
tory, with F1 around 70%. F1 scores of Strain and Induc-
tion are 63% and 49%, respectively, so there remains 
room for improvement. The F1 score for identifying the 
Comparator is only 16%, which may be due to the rela-
tive lack of Comparator instances in the training corpus 
and unclear boundaries in the definition of comparator 
and interventions in some complicated manuscripts. For 
instance, a manuscript may describe two experiments, 

and what is an intervention in the first may become a 
comparator in the second.

In self-training experiments, we used the best PICO 
sentence classifier (BERT pre-trained on PubMed 
abstracts) to remove non-PICO sentences for unla-
belled data and the best PICO entity recogniser (BERT 
pre-trained on PubMed abstracts and full texts) to 
identify PICO phrases and calculate prediction scores 
across all tokens in each individual text. We explore 
two thresholds (0.95, 0.99) for record selection, and 
the results are reported in Fig.  4. When the thresh-
old is 0.99, no more silver records are included in the 
training set beyond the first iteration, and self-training 
did not improve performance. When the threshold is 
0.95, the performance fluctuates and the best F1 score 
is improved by 5% and 1% on the gold validation set 
and test set, respectively, achieved at the sixth itera-
tion step. We terminated the training programme after 

Table 4 Entity-level performance of PubMedBERT on the gold test set. Original scores refer to the performance of the model before 
self-training; self-training scores refer to the performance of the model at the best iteration (6th iteration) of self-training. ‘R’ and ‘P’ refer 
to recall and precision, respectively

Original scores Self‑training scores

F1 R P F1 R P

Comparator 16.0 10.0 40.0 48.5 40.0 61.5

Induction 49.1 50.6 47.7 48.0 49.4 46.6

Intervention 70.2 76.1 65.2 69.8 74.6 65.6

Outcome 65.4 70.6 60.9 66.9 70.6 63.6

Species 98.1 100.0 96.4 98.1 100.0 96.4

Strain 63.4 72.2 56.5 70.0 77.8 63.6

Overall 69.9 73.4 66.7 71.0 74.0 68.2

Fig. 4 Performance of PubMedBERT for PICO entity recognition using self-training
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15 iterations because the training size tends to saturate 
and the improvement of performance is very limited. 
For specific PICO entities, the main improvement using 
self-training was for F1 scores for Comparator and 
Strain, which increased by 32% and 7%, respectively 
(‘self-training scores’ in Table 4).

We have developed an interactive application via 
Streamlit3 for potential use (see Fig.  5). When the user 
inputs the PMID from the PubMed Open Access Subset, 
the app will call the PubMed Parser [33] to return its title 

Fig. 5 The visualisation of the Streamlit app

3 https:// strea mlit. io/

https://streamlit.io/
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and abstract. The background sentence model classifies 
and removes non-PICO sentences, and then the entity 
recogniser identifies the PICO phrases from those PICO 
sentences. This can give a quick overview of the PICO 
elements of an experimental study.

Discussion
In this work, we show the possibilities of automated 
PICO sentence classification and PICO entity recogni-
tion in abstracts describing preclinical animal studies. 
For sentence classification, BERT models with different 
pre-trained weights have generally good performance 
(F1 over 80%), and biomedical BERT (BioBERT or Pub-
MedBERT) have slightly better performance than general 
BERT. For PICO entity recognition, all BERT models out-
perform BiLSTM with or without a CRF layer, with the 
improvement of F1 ranging from 3 to 27%. It is unneces-
sary to use a more complicated structure based on BERT, 
as the results of BERT, BERT-BiLSTM and BERT-BiL-
STM-CRF do not differ greatly, but the latter two bring a 
cost in longer training time and resources. Within LSTM-
based models, adding a CRF layer is beneficial, where 
recall is increased by 16% and precision is increased by 
9%. The training time of LSTM-based models is much 
shorter than fine-tuning BERT, and this could be a quick 
alternative solution when computing resources are lim-
ited, at the cost of reduction of performance by 3% and 
12% compared to the general BERT and PubMedBERT, 
respectively. The self-training approach helps to identify 
more comparators and strains but does not help much 
with the overall performance. By entity levels, F1 scores 
are generally good for identifying Species (over 80%); sat-
isfactory for Intervention, Outcome and Strain (around 
or over 70%); and acceptable for Induction and Compara-
tor (around 50%).

We randomly selected 10 abstracts from the test set to 
investigate the modules of PICO sentence classification 
and PICO entity recognition. The PICO sentence classi-
fier works well in most cases as the performance dem-
onstrates. The main error comes from the judgements 
of the definition of PICO sentences in the annotation 
process. In some cases, the first introduction sentence 
explains a PICO phrase and its abbreviation, and the fol-
lowing texts mention only the abbreviation word. We 
annotated that sentence as a PICO sentence because our 
original purpose is to enable the model to extract the full 
name which indicates the meaning of the abbreviation 
word. However, the model did not recognise it as a PICO 
sentence because most general introduction sentences 
in an abstract do not describe the actual experimen-
tal procedures. In other cases, the model extracts some 
sentences describing the purpose of the study, explain-
ing the research findings or discussing the background 

mechanism as PICO sentences. Those sentences are often 
placed before the method sentences or after the result 
sentences, and some of them mention PICO phrases but 
do not explicitly describe the experimental procedures 
or the specific outcomes and interventions. Considering 
the functionality and relative position of those sentences 
in the entire abstract, we did not annotate them as PICO 
sentences, but it is ambiguous in the model training. The 
ambiguity of PICO sentence definition in the annotation 
process and the accuracy of the PICO sentence classifier 
may further affect the performance of the PICO entity 
recogniser.

In the error analysis for PICO entity recognition, one 
issue is the boundary of PICO phrases. For example, an 
outcome phrase is ‘level of plasma corticosterone’, but 
our model extracts ‘plasma corticosterone’. In another 
example, the outcome annotations are ‘VEGF mRNA’ 
and ‘VEGF protein’, but our model combines two text 
spans into one phrase ‘VEGF mRNA and VEGF protein’, 
which reduces the scores calculated in the validation 
process but does not affect users to obtain information 
from the output. The second issue is we did not annotate 
summarised or indirect phrases but our model extracts 
those types of outcomes. For example, in the sentence 
‘Met-knockdown reduced tumour burden correlating 
with decreased cell survival and tumour angiogenesis, 
with minimal effect on cell growth’, our annotation of 
Outcome includes ‘cell survival’, ‘tumour angiogenesis’ 
and ‘cell growth’ but excludes ‘tumour burden’ which is 
extracted by the model.

One limitation of our work is that the training corpus 
is at the level of the abstract, but some PICO elements 
in preclinical animal studies are often not described in 
the abstract. This limits the usefulness of our applica-
tions, and we cannot transfer it to full-text identification 
without further evaluation. Of note, this same limitation 
applies to manual approaches to identifying PICO ele-
ments based on the abstract alone. In a related literature, 
we have shown, for instance, that manual screening for 
inclusion based on TiAb has substantially lower sensitiv-
ity than the manual screening of full texts (https:// osf. io/ 
nhjeg). Another limitation is that the amount of train-
ing, validation and test data is not adequate. Although 
our best models do not show very inconsistent results 
between validation and test set (except for ‘Comparator’), 
the conclusions may still be biased using a small dataset. 
Previous studies show that self-training can propagate 
both knowledge and error from high confidence predic-
tions on unlabelled samples [34] and that training from 
larger annotated corpora may reduce the error propa-
gation and boost performance. Large datasets also pro-
vide possibilities for exploring more complicated models 
which are proved effective in other tasks.

https://osf.io/nhjeg
https://osf.io/nhjeg
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In future work, we will evaluate our PICO sentence 
classification and entity recognition models in some full-
text publications, to observe any heuristic implications. 
We will also evaluate the existing clinical PICO extrac-
tion tools on preclinical text to identify interventions 
and outcomes because these two categories may be more 
similar in preclinical and clinical studies than other PICO 
elements. Some automation tools developed for clinical 
PICO extraction could be evaluated in preclinical publi-
cations. For example, Trialstreamer [35] could be used to 
identify interventions and outcomes in preclinical experi-
ments. As the training corpora for clinical PICO are rela-
tively larger and in more standard forms, we think that 
training using a combined preclinical/clinical corpus may 
yield better performance.

Conclusions
We demonstrate a workflow for PICO extraction 
in preclinical animal text using LSTM- and BERT-
based models. Without feature engineering, BERT 
pre-trained on PubMed abstracts is optimal for both 
PICO sentence classification, and BERT pre-trained on 
PubMed abstracts and full texts is optimal for PICO 
entity recognition tasks in preclinical abstracts. PICO 
entities including Intervention, Outcome, Species and 
Strain have acceptable precision and recall (around or 
over 70%), while Comparator and Induction have less 
satisfactory scores (around 50%). We encourage the 
collection of a more standard PICO annotation corpus 
and the use of natural language processing models for 
PICO extraction in preclinical animal studies, which 
may achieve better results for publications retrieval, 
reduce the workflow of preclinical systematic reviews 
and narrow the gap between preclinical and clinical 
research. The datasets, code and the optimal trained 
models supporting the current study are publicly avail-
able in the Preclinical PICO extraction repository, 
https:// osf. io/ 2dqcg.

Appendix
Tables 5, 6 and 7
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Population, Intervention, Comparator and Outcome; tsv: Tab-separated values.

Acknowledgements
None.

Table 5 Performance of PICO sentence classification by BERT 
with different pre-trained weights on the validation set

F1 Recall Precision

BERT-base 86.6 87.7 87.2

BioBERT 87.7 89.6 88.1

PubMedBERT-abs 89.3 91.3 89.1

PubMedBERT-full 85.8 89.3 84.6

Table 6 Overall performance of PICO entity recognition models 
on the validation set

Model Weight F1 Recall Precision

BiLSTM – 41.7 44.2 39.5

BiLSTM-CRF – 58.8 56.9 61.0

BERT Base 56.0 62.7 50.6

BioBERT 64.2 69.8 59.4

PubMed-abs 65.0 70.5 60.2

PubMed-full 68.1 73.0 63.8

BERT-CRF Base 57.7 62.9 53.3

BioBERT 65.1 70.0 60.9

PubMed-abs 65.5 70.9 60.9

PubMed-full 68.0 72.8 63.7

BERT
 - BiLSTM
 - CRF

Base 60.8 66.4 56.1

BioBERT 66.0 70.0 62.5

PubMed-abs 68.1 73.3 63.5

PubMed-full 68.0 72.8 63.8

Table 7 Entity-level performance of PubMedBERT on the 
gold validation set. Original scores refer to the performance of 
the model before self-training; self-training scores refer to the 
performance of the model at the best iteration (6th iteration) of 
self-training. ‘R’ and ‘P’ refer to recall and precision, respectively

Original scores Self‑training scores

F1 R P F1 R P

Com‑
parator

33.3 66.7 22.2 80.0 66.7 100.0

Induc‑
tion

46.2 50.9 42.3 45.7 40.7 52.2

Inter‑
vention

67.3 69.6 65.2 69.6 75.0 64.9

Out‑
come

61.5 68.0 56.2 69.9 73.5 66.7

Species 96.4 99.1 93.9 96.4 99.1 93.9

Strain 80.0 80.0 80.0 90.9 100.0 83.3

Overall 68.1 73.0 63.8 73.6 76.4 71.0

https://osf.io/2dqcg
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