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Abstract 24 

Rhipicephalus (Boophilus) microplus (Canestrini, 1887) is one of the most important 25 

ectoparasites of cattle, causing severe economic losses in tropical and subtropical regions 26 

of the world. The selection of resistance to the most commonly used commercia l 27 

acaricides has stimulated the search for new products for tick control. The identifica t ion 28 

and development of drugs that inhibit key tick enzymes, such as glutathione S-transferase 29 

(GST), is a rational approach that has already been applied to other parasites than ticks. 30 

In this context, alkaloids such as anonaine display several biological activities, includ ing 31 

an acaricidal effect. This study aimed to assess the specific inhibition of the R. 32 

microplus GST by anonaine, and analyze the effect on ticks when anonaine is combined 33 

with cypermethrin. For this purpose, a molecular docking analysis was performed using 34 

an R. microplus GST three-dimensional structure model with anonaine and compared 35 

with a human GST-anonaine complex. The absorption, distribution, metabolism, 36 

excretion, and toxicity properties of anonaine were also predicted. Then, for in vitro 37 

analyses, anonaine was isolated from Annona crassiflora (Martius, 1841) leaves. The 38 

inhibition of purified recombinant R. microplus GST (rRmGST) by anonaine and the 39 

effect of this alkaloid on cypermethrin efficacy towards R. microplus were assessed. 40 

Anonaine has a higher affinity to the tick enzyme than to the human enzyme in silico and 41 

has moderate toxicity, being able to inhibit, in vitro, rRmGST up to 37.5% in a dose-42 

dependent manner. Although anonaine alone has no activity against R. microplus, it 43 

increased the cypermethrin effect on larvae, reducing the LC50 from 44 to 22 µg/mL. In 44 

conclusion, anonaine is a natural compound that can increase the effect of cypermethr in 45 

against R. microplus. 46 

Keywords: Tick, plant alkaloid, GST inhibition, pyrethroid 47 

1. Introduction 48 



The cattle tick Rhipicephalus (Boophilus) microplus (Canestrini, 1887) poses a 49 

severe economic threat to livestock producers through physical effects on infested 50 

animals and diseases caused by the transmission of parasitic protists (Kumar et al., 2013). 51 

It is estimated that R. microplus causes annual losses in the Brazilian cattle herd of up to 52 

US$ 3.2 billion (Grisi et al., 2014). 53 

Tick control is usually carried out through the repeated use of chemical acaricides, 54 

such as synthetic pyrethroids (Kumar et al., 2013), which has led to increased selection 55 

of acaricide resistance among tick populations, in addition to promoting contamina tion 56 

of the environment and food products (Kaewmongkol et al., 2015). 57 

Plants defend themselves against pests by producing several phytochemicals that 58 

have been considered potential alternatives for tick control (Guneidy et al., 2014). For 59 

instance, anonaine, an alkaloid present in the plant Annona crassiflora (Martius, 1841) 60 

(Annonaceae), a tree native to the Brazilian Cerrado popularly known as “araticum”, is a 61 

bioactive compound displaying several biological properties, including antiparasit ic 62 

activity (Li et al., 2013). 63 

Various inhibitors of enzymes have been studied to develop control methods against 64 

parasites (Olivares-Illana et al., 2006; Braz et al., 2019; Cuevas-Hernándes et al., 2020), 65 

based on the identification of molecules that induce selective inhibition of parasite over 66 

host enzymes (Ahmad et al., 2008; Moraes et al., 2011; Ozelame et al., 2022). Based on 67 

these previous results, the enzyme glutathione S-transferase (GST) can be considered a 68 

target for developing antiparasitic drugs. Each of the GST subunits has its active site that 69 

is composed of a glutathione (GSH) binding site (G site) and an electrophilic substrate 70 

binding site (H site) (Prade et al., 1997). GSTs play an essential role in detoxifying 71 

xenobiotics (Mannervik, 1985; Mannervik et al., 1988; Hamza and Dailey, 2012). 72 

Compounds capable of inhibiting the tick's GST activity to interrupt its detoxifica t ion 73 



system, could provide an alternative form of control (Guneidy et al., 2014; Ozelame et 74 

al., 2022). As alkaloids are among the natural products capable of inhibiting GST 75 

(Mangoyi et al., 2010; Azeez et al., 2012; Divya et al., 2014; Behera and Bhatnagar, 76 

2019), anonaine is a potential candidate for the control of R. microplus through the 77 

inhibition of this enzyme. 78 

Recently, in silico techniques have facilitated the discovery of new drug candidates 79 

(Alvarez, 2004; Choubey and Jeyaraman, 2016; Ganesan, 2016; Roche and Bertrand, 80 

2016; Saramago et al., 2018). For instance, through molecular docking, drug candidates 81 

can be recognized, and the potential for their optimization can be explored as molecular 82 

interactions between ligands and target molecules can be analyzed and modelled 83 

(Wadood et al., 2013). 84 

Given the scientific and economic importance of the development of new acaricide 85 

products against ticks and considering that GST is a target enzyme is a target enzyme 86 

essential in the physiology of the ticks, this study used in silico and in vitro assessments 87 

to analyze the potential use of anonaine as a specific tick GST inhibitor. By decreasing 88 

the activity of this enzyme one can interfere with the detoxification of cypermethr in, 89 

thereby increasing the effectiveness of this synthetic pyrethroid. 90 

 91 

2. Methodology 92 

2.1 Construction and validation of the glutathione S-transferase (GST) model  93 

The GST sequence of R. microplus (GenBank number AAL99403.1) was used as a 94 

query sequence on the Phyre 2 server (Kelley et al., 2015), with normal modelling mode. 95 

The created model was then validated using the PROCHECK 3.0 server (Laskowski et 96 

al., 1993). 97 

 98 



2.2 Anonaine structure and ADMET features. 99 

The anonaine structure was obtained from the PubChem database (CID: 160597) in 100 

mol2 format and optimized in the Avogrado program (Hanwell et al., 2012). ADMET 101 

(Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties of anonaine 102 

were analyzed using PreADMET software (Kwang, 2005). The ADMET analyses were 103 

carried out according to the specific classifications and parameters (Van De Waterbeemd 104 

and Gifford, 2003; Tong et al., 2021). 105 

 106 

2.3 Molecular docking of GST from R. microplus and human with anonaine 107 

To analyze the potential inhibitory activity of anonaine to the R. microplus enzyme, 108 

molecular docking was carried out in the H-site of both a human and a tick GST, using 109 

Molegro Virtual Docker 6.0 (MVD) software. The structure of the human GST 110 

complexed with the inhibitor N11 (6-[(7-nitro-2,1,3-benzoxadiazol-4-yl)sulfanyl]hexan-111 

1-ol) was obtained from the Protein Data Bank (www.rcsb.org) at 1.8 Å resolution (PDB 112 

ID: 3IE3 – chain A). 113 

The human GST structure was employed for re-docking simulations by fitting the 114 

N11 to the enzyme using 32 docking protocols. For this purpose, statistical analysis of 115 

coupling results and scoring functions (SAnDReS) were used (Xavier et al., 2016). The 116 

algorithms were valid if the re-docking results had a root square mean deviation (RSMD) 117 

less than 2 Å from the original structure (Yusuf et al., 2008). The re-docking protocol 118 

result with the lowest RSMD was selected for molecular docking simulations. 119 

The structures of anonaine and human GST were imported into the MVD workspace 120 

in ‘mol2’ format. The GST’s structures were prepared (always assigning bonds, bond 121 

orders and hybridization, charges and tripos atom types; always creating explic it 122 

hydrogens and always detecting flexible torsions in ligands) using the utilities provided 123 



in MVD. Molecular docking was carried out inside a virtual docking sphere of 15 Å radius 124 

and the following centre coordinates: X: 6.06; Y: 3.61; Z: 28.00Å. Ten independent runs 125 

were conducted, and the results were expressed in MolDock score. The more negative the 126 

number, the better the binding (Hall Jr and Ji, 2020). The same parameters were used to 127 

perform the molecular docking of anonaine onto the R. microplus GST. It is noteworthy 128 

that after superimposing the structures of the human and tick GSTs used in this study, an 129 

RMSD of 1.1 Å was obtained while their sequences have an amino-acid identity of 28.8%.  130 

The best pose of both GSTs with anonaine was visualized and analyzed using the 131 

PyMOL Molecular Graphics System v1.3 program (http://www.pymol.org/) and the 132 

residues of the GSTs interacting with anonaine were analyzed using Discovery Studio 133 

Visualizer software.  134 

The R. microplus and human (Linnaeus, 1758) GST sequences were aligned using 135 

Clustal Omega software (Sievers et al., 2011), and the residues interacting with anonaine 136 

(taken from the docking results with both GSTs) were highlighted in the alignment.  137 

 138 

2.4 Extraction and purification of anonaine  139 

The extraction and purification procedure followed a methodology adapted from 140 

Chen et al. (2001). Leaves of Annona crassiflora were collected at Parque Nacional 141 

Chapada das Mesas (07°07’47.1” S, 4°25’36.8” W), Carolina, Maranhão, Brazil, April 142 

2018. A specimen (Exsiccate number MG 222438) was deposited in the Museu Paraense 143 

Emílio Goeldi (MPEG) or Goeldi Museum, located in Belém, Pará, Brazil.  144 

The leaves were dried in a circulating air oven at 50 ºC, ground (300 g), and subjected 145 

to cold extraction using initially petroleum ether and then methanol (3 x 1 L, each), 146 

resulting in 15.54 g of Ethereal Extract and 35.45 g of Methanolic Extract, respectively. 147 

The analysis by thin-layer chromatography (TLC), using Dragendorff reagent, indicated 148 

http://www.pymol.org/


the presence of alkaloids in the methanolic extract. Therefore, about 10 g of the 149 

methanolic extract was subjected to conventional acid-base treatment, yielding the 150 

alkaloid enriched fraction (m: 0.57 g). 151 

A part of the fraction (0.4 g) was subjected to chromatographic fractionation in a 152 

silica gel column chromatography previously treated with a 5% NaHCO3 solution and 153 

eluted with gradients of petroleum ether: CH2Cl2, then gradients of CH2Cl2: EtOAc, and 154 

finally gradients of EtOAc: CH3OH, resulting in 50 fractions of 25 mL each. The obtained 155 

fractions were analyzed by TLC in different solvent systems and gathered into 7 groups. 156 

Group 3 (40.5 mg) was subjected to TLC using CH2Cl2: MeOH (8.0:2.0, v/v) as eluent, 157 

and a single spot was found on the plate. The identification of anonaine was done by 158 

comparison with standards and analysis of the mass spectrum. 159 

 160 

2.5 Expression and purification of glutathione S-transferase of Rhipicephalus 161 

microplus (rRmGST) 162 

A DNA fragment containing the entire coding sequence of a R. microplus GST was 163 

cloned in previous studies (Vaz et al., 2004; Ndawula et al., 2019). Then, the recombinant 164 

GST (rRmGST) was expressed and purified as previously described (Ndawula et al., 165 

2019). Briefly, Escherichia coli (Migula 1895) BL21(DE3) was transformed with 166 

plasmid and the rRmGST expression (in SOB medium) was induced by 1 mM IPTG 167 

(isopropyl-beta-D-thiogalactopyranoside, Thermo Fisher Scientific, Waltham, MA, 168 

USA) for 6 or 18 h at 37 °C. The culture was centrifuged at 16,000 x g for 10 min at 4 ºC 169 

and the pellet was washed with PBS 7.2 and lysed using an ultrasonic homogenizer with 170 

5 cycles of 30 pulses for 30 s (Pulse Sonics Vibra-cell VCX 500- 700, Sonics & Materials, 171 

Inc., Newtown, CT, USA).  172 



The supernatant was loaded onto an affinity chromatography column of GSTrap 4B 173 

(GE Healthcare, Chicago, IL, USA), previously equilibrated with binding buffer (PBS 174 

pH 7.4). After being washed with the same buffer, the rRmGST was eluted with 50 mM 175 

Tris-HCl pH 8.0 containing 10 mM reduced glutathione (GSH). The expression and 176 

purification of rRmGST were monitored by SDS–PAGE and western blotting using anti-177 

rRmGST rabbit serum (Ndawula et al., 2019). 178 

 179 

2.6 GST enzymatic activity and inhibition by anonaine 180 

The enzymatic activity of purified recombinant GST was determined using the 181 

substrate 1-chloro-2,4-dinitrobenzene (CDNB) (Sigma-Aldrich, Saint Louis, MO, USA) 182 

and 3,4-dichloronitrobenzene (DCNB) (Sigma-Aldrich) at 25 ºC with a VersaMax™ 183 

Microplate Reader. Readings were performed at 340 nm for 30 min at 15 s intervals, as 184 

previously described (Vaz et al., 2004; Habig et al., 1974). Substrates CDNB 3 mM and 185 

DCNB 1 mM were diluted in methanol and added to the reaction mixture containing 100 186 

mM potassium phosphate buffer, pH 6.5, 1 mM EDTA, and 3 mM GSH. Tests were 187 

performed in 96-well microplates with 10 μL (0.7 µg) of recombinant protein in a total 188 

volume of 100 μL. The background activity, which was subtracted from the data, was 189 

determined using buffer, GSH, and CDNB, without enzyme.  190 

For the inhibition tests, anonaine was diluted in 1% DMSO at 10 mg/mL (stock 191 

solution). The inhibition of GST by anonaine was carried out at concentrations in the 192 

range of 0.075 to 0.5 mg/mL. Inhibition tests were with 10 μL of recombinant protein in 193 

100 μL of total volume. The assay in which anonaine was replaced by PBS represented 194 

100% enzymatic activity. As a negative control, GST, CDNB, GSH, and DMSO (0.1%) 195 

were used. The assays were performed in two independent assays, each in duplicate. 196 

 197 



2.7 Ticks 198 

Ticks of the Santa Rita strain were collected from naturally infested Girolando 199 

cattle on a farm located in the municipality of Santa Rita (03º08'37"S, 44º19'33"W), MA, 200 

Brazil, and maintained through artificial infestation on calves at the facilities of the 201 

Federal University of Maranhão (UFMA). This study was approved by the Ethics 202 

Committee on Animal Experimentation of UFMA, Brazil, under protocol number 203 

23115.004153/2022-58. 204 

 205 

2.8 Larval immersion test 206 

The larval immersion test was performed according to Klafke et al. (2006), in 207 

triplicate. From the anonaine stock solution (10 mg/mL), solutions at 0.5 and 0.1 mg/mL 208 

final concentrations, in 1% ethanol and 0.02% Triton X-100 were tested. Cypermethr in 209 

was prepared at 20 mg/mL (stock solution) in 1% ethanol and 0.02% Triton X-100 and 210 

tested at 3.0, 1.2, 0.48, 0.19, 0.07, 0.03, 0.0123, 0.004, 0.002 and 0.0008 mg/mL. 211 

Cypermethrin was combined with anonaine (same concentrations as described above) in 212 

the tests on tick larvae. The control group was treated with a 1% ethanol and 0.02% Triton 213 

X-100 solution.  214 

Approximately 500 larvae were immersed for 10 min in a mixture of anonaine and 215 

cypermethrin and transferred to a filter paper base. Then, approximately 100 larvae were 216 

transferred to a clean filter paper package (8.5 × 7.5 cm) closed with plastic clips. The  217 

packets were incubated for 24 h at 27 ± 1 °C with relative humidity ≥ 80%. Ticks were 218 

observed for 5 min. Dead (no movement) and alive larvae were manually counted. The 219 

tests were carried out in triplicate. 220 

 221 

2.9 Adult immersion test (AIT)  222 



For the adult immersion test (AIT) (Drummond et al., 1973), anonaine (at 0.5 and 0.1 223 

mg/mL final concentrations) and cypermethrin (3.7 mg/mL final concentration) were 224 

prepared as previously described and mixed in a solution. The tests were carried out in 225 

triplicate. 226 

Engorged females of R. microplus with homogeneous body mass (n = 180) were 227 

divided into six groups (n = 10) as follows: 1) Control: 1% ethanol and 0.02% Triton X-228 

100 solution (v/v); 2) 3.7 mg/mL cypermethrin; 3) 3.7 mg/mL cypermethrin and 0.1 229 

mg/mL anonaine; 4) 3.7 mg/mL cypermethrin and 0.5 mg/mL anonaine; 5) 0.1 mg/mL 230 

anonaine; 6) 0.5 mg/mL anonaine. The cypermethrin concentration used in AIT was 231 

determined by Ghosh et al. (2017). Ticks of each group were immersed in their respective 232 

solution for five minutes, washed, and dried on absorbent paper. 233 

The engorged females from each group were incubated at 27 ± 1 ºC and RH ≥ 80%, 234 

for 15 days. After weighing the collected eggs and incubating them for 25 days at the same 235 

temperature and humidity, the percentages of reduction in both oviposition and hatching 236 

were assessed (Bennett, 1974; Lopes et al., 2013; Drummond et al., 1973).  237 

 238 

2.10 Statistical analysis 239 

For the enzymatic inhibition, larval, and adult immersion tests, all means obtained 240 

were statistically analyzed by Analysis of Variance (ANOVA), followed by Tukey's test 241 

(p<0.05). The results were initially transformed to log (X), and the percentage of mortality 242 

was normalized; subsequently, non-linear regression was performed to obtain the LC50 243 

(50% lethal concentration) values using GraphPad Prism 8.0.2 software (GraphPad Inc., 244 

San Diego, CA, USA). The significance of each concentration in the tests was determined 245 

when the calculated confidence intervals do not overlap (Roditakis et al., 2005). 246 

 247 



3. Results 248 

3.1 Modelling of the three-dimensional (3D) structure of the GST of R. microplus  249 

The best template identified to prepare a reliable 3D structure model of R. microplus 250 

GST (Supplementary Figure 1) using the Phyre2 web server was a Gallus gallus GST 251 

(Chain A, PDB:1C72), with 37.21% identity and 98% of coverage. The model dimens ions 252 

were X: 51,117, Y: 42,329, Z: 55,806 Å, with 100% modelling confidence. The 253 

stereochemistry of the refined protein model revealed that of the 220 amino acid residues 254 

of the GST of R. microplus, 91% were situated in the most favorable region of the 255 

Ramachandran plot (Supplementary Figure 2).  256 

 257 

3.2 Re-Docking and Molecular Docking 258 

Re-docking protocol number 23 (Xavier et al., 2016), which uses plants score as 259 

score function, and the iterated simplex (Ant Colony Optimization) as search algorithm, 260 

resulted in an RMSD of 1.9 Å (docking RMSD value for human GST, PDB: 3IE3, with 261 

N11 inhibitor) and was selected for molecular docking simulations in this study.  262 

As a result of the molecular docking simulations, anonaine showed higher affinity to 263 

the R. microplus GST, with lower binding energy (-91.355) for this enzyme, compared to 264 

the binding energy for the human GST (-85.249). The predicted interactions with the 265 

amino acids from each of the GSTs (from the best pose for each GST) with anonaine are 266 

highlighted in the alignment of the two GST sequences (Figure 1). Anonaine was found 267 

to interact with the amino acids: Thr 10, Thr 11, Ala 12, Tyr 35, Glu 36, Phe 37, Gly 38, 268 

Pro 39, Ala 40, Tyr 43, Pro 209, Met 211, Ala 212, Pro 213 of R. microplus GST (Figure 269 

1 and Supplementary Table 1).  270 

 271 

 272 



 273 

Figure 1. Protein sequence alignment of the human GST (Hs.GST), (PDB ID: 3IE3-Chain A) and 274 

Rhipicephalus microplus GST (Rm.GST). Residues of human GST and tick GST interacting with 275 

anonaine are highlighted in yellow and blue, respectively. 276 

 277 

3.3 ADMET analysis 278 

The predicted ADMET properties of anonaine are shown in Supplementary Table 279 

2. Anonaine is predicted to have good human intestinal absorption (96.493%), medium 280 

permeability in the Caco-2 cell model (47.681 nm/seg), low permeability in the Blood-281 

Brain Barrier (BBB) model (0.9849), high permeability in the MDCK cellular system (> 282 

25 nm/s), and a high plasma protein binding rate (65.565%). Regarding metabolism, 283 

anonaine is predicted to have inhibition ability on CYP2D6 and CYP3A4; to show 284 

mutagenic Ames toxicity and a low value of toxicity in the algae test (0.055948 mg/L), 285 

suggesting it will have moderate side effects to the mammals. 286 

 287 

3.4 Isolation of alkaloid Anonaine and rRmGST 288 



Anonaine was isolated from the leaf methanolic extract of A. crassiflora as shown in 289 

the HPLC analysis (Figure 2). The positive-mode mass spectrum showed a molecular ion 290 

of m/z 266 [M+H]+, with fragments of m/z 249, m/z 219, and m/z 191, indicating the 291 

initial loss of the amine group and the CH2O and CO groups.  292 

A single protein band was observed in SDS-PAGE and western blot analyses of 293 

rRmGST purified by GSH affinity-column chromatography, confirming the enzyme’s 294 

identity and purity (above 97%) (Figure 3). 295 

 296 

Figure 2. Chromatogram of total ions of anonaine, isolated from Annona crassiflora. Inset: 297 

anonaine structure 298 

 299 
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Figure 3. A) SDS-PAGE (12% gel, with electrophoresis performed under reducing conditions) 300 

and B) Western blot of recombinant R. microplus GST. 1) Extract of E. coli cells expressing 301 

rRmGST; 2) Unbound fraction eluted in GSH chromatography; 3) Purified GST (rRmGST); 4) 302 

Western blot with anti-GST serum. 303 

 304 

3.5 In vitro inhibition of rRmGST by anonaine 305 

The inhibitory activity of anonaine on the rRmGST was determined at fixed 306 

concentrations of CDNB (3 mM) and GSH (3 mM). It was observed that R. microplus 307 

GST was inhibited by anonaine in a concentration-dependent manner (Figure 4). 308 

  309 

 310 

Figura 4. Inhibition curve for the anonaine on rRmGST. Y-axis: percentage of GST inhibit ion; 311 

X-axis: anonaine concentration in mg/mL. 312 

 313 

3.6 Effect of anonaine and cypermethrin on larvae and adults of Rhipicephalus 314 

microplus 315 

Addition of anonaine increased the effect of cypermethrin on larvae; at a 316 

concentration of 0.5 mg/mL resulting in a reduction in the cypermethrin’s LC50 from 44 317 

to 22 µg/mL, although anonaine itself did not show activity toward R. microplus larvae 318 



at the tested concentrations (Table 1). Anonaine had an effect of 6.24±8.74% and 319 

14.26±25.82% in engorged females at 0.1 and 0.5 mg/mL, respectively and did not alter 320 

the cypermethrin effect on adults of R. microplus.  321 

 322 

Table 1. Effect of anonaine, cypermethrin, and their combination on larvae and engorged 323 

females of Rhipicephalus microplus. 324 

Treatment 

Larval immersion test Adult immersion test 

LC50 

(mg/mL) 
CI 95% R2 % Rovip %Rhatch C% 

Anonaine  

(0.1 mg/mL)* 
- - - 3.73±9.90a - 6.24±8.74a 

Anonaine  

(0.5 mg/mL)* 
- - - 17.69±24.10a 37.4±7.1a 14.26±25.82a 

Cypermethrin 
(CYP) 

0.044a 0.038 - 0.050 0.96 62.25±6.76b 96.85±0.60b 98.85±0.30b 

CYP + anonaine  

(0.1 mg/mL) 
0.057b 0.054 – 0.061 0.99 52.42±15.39b 98.65±6.97b 99.44±0.28b 

CYP + anonaine  

(0.5 mg/mL) 
0.022c 0.016 - 0.029 0.93 61.25±2.68b 94.27±6.97b 97.79±2.60b 

* Anonaine had no effect on larvae; LC50: Lethal concentration (mg/mL) for 50% of individuals; 325 
CI: 95% confidence interval; R2: Regression Correlation Coefficient. % Rovip: Percentage of 326 
reduction in oviposition; % Rhatch: Percentage of hatching reduction; C%: Control percentage. 327 
Mean ± standard deviation. The same superscript letter in the same column indicates that the mean 328 
does not differ significantly at p <0.05. 329 
 330 

4. Discussion 331 

The search for alternatives to control R. microplus is one of the biggest challenges 332 

for cattle production as illustrated by several reports about emergence of multi-resis tant 333 

tick populations (Tavares et al., 2022). This study presents in silico and in vitro evidence 334 

of inhibition of R. microplus GST by the purified plant alkaloid anonaine, which 335 

improved the cypermethrin in vitro larvicidal effect.  336 

First, the potential of anonaine to inhibit R. microplus GST was evaluated in silico 337 

after the construction and validation of an R. microplus GST structure model 338 



(Supplementary Figure 2). The Ramachandran plot of the tick GST modelled structure 339 

showed 91% of the residues in the most favorable regions (Supplementary Figure 2). This 340 

result was adequate since a percentage of CORE residues higher than 90% indicates that 341 

a model has a good resolution (Laskowski et al., 2013). 342 

To identify the best docking protocol, a re-docking experiment was carried out with 343 

the human GST and the N11 inhibitor, and an RMSD of 1.9 Å was obtained. The 344 

algorithms are valid if the re-docking results have an RSMD less than 2 Å from the 345 

original structure (Hecht and Fogel, 2009). After the tick and human GST structures 346 

superimposition, the RMSD obtained was 1.1 Å. The percentage of amino-acid identity 347 

between the two protein sequences is a mere 28.8%, but the low RMSD value indicates 348 

high structural similarity between the two structures. Additionally, protocols for 349 

molecular docking consider that 3D structures of two protein sequences having an identity 350 

higher than 25% are sufficiently similar for comparative docking studies (Shen et al., 351 

2013). Based on these results, the same docking protocol was used for both GST 352 

structures in this study. According to the molecular docking results, anonaine would have 353 

a higher affinity for R. microplus GST than for human GST (Figure 1 and Supplementary 354 

Figure 1).  355 

The residues of the human GST interacting with anonaine were not the same as the 356 

R. microplus GST interacting residues (Supplementary Figure 1 and Supplementary 357 

Table 1), suggesting a different mode of ligation between anonaine with the parasite and 358 

with the mammalian enzymes. This could thus be helpful for the development of selective 359 

drugs (Ahmad et al., 2008, Moraes et al., 2011). 360 

The predicted ADMET properties of anonaine with different parameters analyzed by 361 

the PreADMET tool shown in Supplementary Table 2, suggest that anonaine has 362 

moderate toxicity and no carcinogenic potential. All values obtained in the results with 363 



anonaine were compared to standard values reported in the literature (Ames et al., 1972; 364 

Yee, 1997; Van De Waterbeemd and Gifford, 2003; Alliance, 2016; Wadapurkar et al., 365 

2018; Ferreira et al., 2020; Pereira, 2021; Tong et al., 2021). Also, it is suggested that 366 

natural alkaloid anonaine is less toxic to mammals than cypermethrin. However, 367 

additional studies to elucidate anonaine’s mechanism of action, pharmacology, toxicity, 368 

and pharmacokinetics are necessary to explore possibilities for its optimization and 369 

clinical application of derived products. 370 

Alkaloids exhibit multiple biological activities, and there are already several drugs 371 

commercially available derived from natural plant alkaloids (Debnath et al., 2018).  In 372 

this study, anonaine was isolated from leaves of Annona crassiflora in an amount and 373 

quality adequate to perform the immersion tests (Figure 2).  374 

The inhibition of rRmGST activity increased with the increase in the anonaine 375 

concentration (Figure 4), revealing the capacity of an alkaloid to inhibit tick GST. A 376 

similar result has been reported for alkaloids isolated from the plant Rauvolfia tetraphylla 377 

(Linnaeus, 1753) that inhibited the GST activity of Setaria cervi up to 64% at 1 mg/mL 378 

(Behera and Bhatnagar, 2019).  379 

The most important finding was that the combination of anonaine (0.5 mg/mL) 380 

with cypermethrin increased the toxicity of the pyrethroid 2-fold against R. microplus 381 

larvae (Table 1). Plant alkaloids have been demonstrated to possess acaricidal activity 382 

against R. microplus and R. annulatus (Divya et al., 2014; Silva et al., 2021). For instance, 383 

alkaloids and glycosides detected in a Datura metel extract had synergistically inhibitory 384 

effects against R. microplus engorged females (Ghosh et al., 2015). Moreover, an 385 

alkaloid-rich fraction from Prosopis juliflora (Sargent 1902) was responsible for activity 386 

against adult females of R. microplus (Lima et al., 2020). In addition, this alkaloid-r ich 387 

fraction was more active on larvae than on adults. However, many approaches, includ ing 388 



chemical and formulation modifications can be utilized to improve drug properties and 389 

increase the biological effect against adult ticks. The different susceptibility between R. 390 

microplus larvae and adults for the alkaloids may be explained since larvae have a thinner 391 

cuticle than adults (Conceicao et al., 2017; Cruz et al., 2016). In this study, anonaine alone 392 

was ineffective against R. microplus larvae. Our result suggests that this alkaloid, by 393 

inhibiting the R. microplus GST, interferes negatively with the cypermethr in 394 

detoxification system of the tick, improving the larvicidal effect of the pyrethroid.  395 

Although the larvae phase is widely used to evaluate the acaricidal activity of 396 

compounds derived from plants in vitro, the efficacy of the compounds can vary 397 

according to the developmental phase of the tick (Rosado-Aguilar et al., 2017). For 398 

instance, the wax layer is thicker in adults than in larvae, increasing the sequestration of 399 

compounds within the wax and reducing their efficacy (Adenubi et al., 2018). This study 400 

demonstrated the increase of anti-larval activity of cypermethrin by anonaine. Despite the 401 

protective effects against larva, the cypermethrin-anonaine combination needs 402 

improvement to increase activity against all life stages of the tick.  403 

 404 

5. Conclusion 405 

This study shows, in silico and in vitro, the capacity of anonaine to inhibit the 406 

rRmGST activity. The immersion tests revealed that anonaine can increase the toxic 407 

activity of cypermethrin against R. microplus larvae.  408 
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Supplementary data 625 

 626 

 627 

Supplementary Figure 1 A) Cartoon representation of the structures of glutathione S-transferase 628 

(GST) of Rhipicephalus microplus (in blue) and human (PDB: 3IE3 - in grey) with anonaine (best 629 

pose after molecular docking) coloured in yellow and red, respectively.  630 

  631 



 632 

 633 

Supplementary Figure 2. Ramachandran plot of the predicted glutathione S-transferase (GST) 634 

structure of Rhipicephalus microplus (the red, dark yellow, and light-yellow regions represent the 635 

most favored, allowed, and generously allowed regions). 636 

 637 

 638 



Supplementary Table 1. Comparison of the amino acids of the R. microplus GST and 639 

the human GST interacting with anonaine, as determined by molecular docking.  640 

Ligand 

Amino acids 

GST - R. microplus GST - Human 

Anonaine 

Thr 10, Thr 11, Ala 12, Tyr 35, 

Glu 36, Phe 37, Gly 38, Pro 39, 

Ala 40, Tyr 43, Pro 209, Met 211, 

Ala 212, Pro 213 

Tyr 7, Phe 8, Pro 9, Val 10, Val 33, 

Thr 34, Val 35, Trp 38, Tyr 108, 

Pro 202, Gly 205 

Thr = Threonine; Ala = Alanine; Tyr = Tyrosine; Glu = Glutamic acid; Phe = Phenylalanine; Gly 641 

= Glycine; Pro = Proline; Met = Methionine; Val = Valine; Trp = Tryptophan are anonaine-642 

interacting residues taken from the human and R. microplus GST structures. 643 

 644 

 645 
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 647 

 648 
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 650 
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 655 
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Supplementary Table 2. Predicted ADMET properties of the anonaine. 660 

ID Anonaine 

Absorption  

Caco2 47.681 

HIA 96.493 

MDCK 177.096 

Pgp_inh Non 

PPB 65.565 

PWS (mg/L) 57.025 

Skin_Permeability -4.113 

Distribution  

BBB 0.9849 

Metabolism  

CYP2C19_inh Non 

CYP2C9_inh Non 

CYP2D6_inh Inhibitor 

CYP2D6_sub Substrate 

CYP3A4_inh Non 

CYP3A4_sub Weak substr. 

Toxicity  

algae_at 0.055948 

Ames_test Mutagen 

Carcino_Mo Negative 

Carcino_Rat Negative 

daphnia_at 0.147588 



hERG_inh Medium_risk 

medaka_at 0.0328064 

minnow_at 0.0519424 

BBB - Blood-Brain Barrier (C.brain/C.blood); Caco-2 - Caco2-cell model; HIA - Human 661 

Intestinal Absorption model (HIA, %); MDCK - Madin-Darby Canine Kidney (nm/sec); 662 

PGP_inh - P-glycoprotein inhibitor; PPB – Plasma Protein Binding (%); PWS – Pure water 663 

solubility (mg/L); Skin Permeability- Skin permeability in cm/hour. Algae at - algae test (mg/L); 664 

Ames Test - Ames Salmonella; CYP - Cytochrome P450; Carcino M - carcinogenesis test in the 665 

mouse; Carcino R - carcinogenesis test in rats; Daphnia at - test on crustacean daphnia; hERG 666 

Inhib. - hERG-controlled potassium channel inhibition; Medaka_at - test on medaka fish; 667 

Minnow_at - test on small freshwater fish. 668 
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