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Abstract: Haemorrhage into the brain parenchyma can be devastating. This manifests as spontane-

ous intracerebral haemorrhage (ICH) after head trauma, and in the context of vascular dementia. 

Randomised controlled trials have not reliably shown that haemostatic treatments aimed at limiting 

ICH haematoma expansion and surgical approaches to reducing haematoma volume are effective. 

Consequently, treatments to modulate the pathophysiological responses to ICH, which may cause 

secondary brain injury, are appealing. Following ICH, microglia and monocyte derived cells are 

recruited to the peri-haematomal environment where they phagocytose haematoma breakdown 

products and secrete inflammatory cytokines, which may trigger both protective and harmful re-

sponses. The transcription factor Nrf2, is activated by oxidative stress, is highly expressed by central 

nervous system microglia and macroglia. When active, Nrf2 induces a transcriptional programme 

characterised by increased expression of antioxidant, haem and heavy metal detoxification and pro-

teostasis genes, as well as suppression of proinflammatory factors. Therefore, Nrf2 activation may 

facilitate adaptive-protective immune cell responses to ICH by boosting resistance to oxidative 

stress and heavy metal toxicity, whilst limiting harmful inflammatory signalling, which can con-

tribute to further blood brain barrier dysfunction and cerebral oedema. In this review, we consider 

the responses of immune cells to ICH and how these might be modulated by Nrf2 activation. Fi-

nally, we propose potential therapeutic strategies to harness Nrf2 to improve the outcomes of pa-

tients with ICH. 

Keywords: astrocytes; bardoxolone methyl; dimethyl fumarate; inflammation; intracerebral  

haemorrhage; Nrf2; macrophages; microglia; monocytes; omaveloxolone; oxidative stress;  

perihaematomal oedema; sulforaphane; transcription factor  

 

1. Introduction 

Bleeding into the brain can be catastrophic. In adults, this commonly occurs because 

of spontaneous rupture of a parenchymal arteriole, resulting in spontaneous intracerebral 

haemorrhage (ICH) [1]. This is the most common cause of haemorrhagic stroke, which 

can also be due to spontaneous bleeding into the subarachnoid space, termed subarach-

noid haemorrhage (SAH), usually due to rupture of an intracranial aneurysm [2]. ICH 

may also arise as a consequence of rupture of an arterial aneurysm or other vascular mal-

formation, trauma or surgical injury [3–6]. Together, this accounts for a huge burden of 

death and disability; stroke is estimated to be the second leading cause of death world-

wide and the third largest cause of death and disability combined, of which ICH contrib-

utes a disproportionately high burden of death and disability [5,7]. Although age-stand-

ardised global ICH incidence has declined since 1990, this is driven by high-income coun-

tries, which masks static or rising incidence rates in low-middle income populations, 

which are disproportionally burdened by ICH as a proportion of all stroke [5,8].  
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2. Intracerebral Haemorrhage 

To establish the pathophysiological consequences of ICH, it is useful to consider a 

relatively common and homogenous disease entity. Therefore, in this review we will focus 

on spontaneous ICH. This arises from bleeding from a ruptured diseased arteriole (e.g. 

affected by hypertensive arteriosclerosis or cerebral amyloid angiopathy [1]). The major 

risk factor for ICH is systemic arterial hypertension [5,8]. Increasing age and male sex are 

associated with higher blood pressure and therefore are also associated with ICH [8–11]. 

Measures to reduce haematoma volume by reducing bleeding using haemostatic agents 

or rapid blood pressure lowering and by surgical evacuation of haematoma have not been 

shown to be effective in improving primary outcome measures in high-quality random-

ized controlled trials (RCTs) [12–17]. There are currently no effective medical or surgical 

interventions for ICH.  

Overall outcome after ICH is poor. Case fatality at one month is approximately 40%, 

54% at one year, 71% at five years and 82% at 9 years [18–21]. At three months approxi-

mately 26% of all incident patients are functionally independent, falling to 15% at one year 

[21–23]. The association of haematoma volume with long term survival and outcome 

largely is mediated through its association with early mortality and disability, with sub-

sequent decline possibly being attributable to processes of secondary brain injury as well 

as the risk of major adverse cardiovascular events [21,24,25]. Whilst peak perihaematomal 

oedema, which occurs around two weeks from ICH onset, has been associated with poor 

long-term functional outcome, following adjustment for haematoma volume, early oe-

dema volume at three days or earlier is not [21,26]. This aligns with a longitudinal study 

of transcriptional responses of haematoma derived immune cells which identified a win-

dow of intense transcriptional activity up to four days after ICH onset, which was associ-

ated with functional outcome [27]. There may therefore be an early 3-4 day window after 

ICH onset during which the responses of immune cells could be modulated to minimize, 

or protect against, secondary injury. 

3. Secondary Injury 

There are limited conclusive data to inform our knowledge of the processes of sec-

ondary injury after ICH in humans [28,29]. Consequently, our collective understanding is 

largely derived from animal studies or single studies of human brain tissue.   

3.1. Haemorrhage Propagation 

Early haematoma expansion occurs due to ongoing bleeding from the initial rupture 

site, as well as from rupture of other blood vessels disrupted by the primary haemorrhage. 

This is maximal within the first three hours from ICH onset [30]. Haematoma expansion 

causes tissue division as well as compression and kinking of other blood vessels plus re-

lease of endogenous collagenases which degrade the basal lamina, compromising the 

blood brain barrier [31].  

3.2. Cytotoxicity and Oxidative Injury 

In rodents, cytotoxic injury in the brain occurs due to the accumulation and lysis of 

haem-laden erythrocytes, monocytes, neutrophils and platelets [27,32–34]. In particular, 

ferrous iron (Fe2+), a component of haem which is released from lysed erythrocytes, is po-

tently cytotoxic [35]. Haem-associated cytotoxicity occurs through ferroptosis, iron-de-

pendent programmed cell death, whereby haem-Fe interacts with hydrogen peroxide to 

drive the production of free radicals in a Fenton-like reaction, which causes lipid peroxi-

dation and glutathione depletion [35–37]. In preclinical models, and patients with sub-

arachnoid haemorrhage, free extracellular oxyferrous haemoglobin exacerbates second-

ary ischaemia by oxidising nitric oxide (NO) to nitrate (NO3-) [38–40]. NO is a potent vas-

odilator, and its loss is associated with a propensity for spreading cortical depolarisation 

and ischaemia [41]. Hypoxia in turn increases oxidative stress by altering mitochondrial 
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metabolism to favour reactive oxygen species (ROS) generation [42]. This mechanism has 

been localized to mitochondrial complex III, with hypoxia possibly driving an increase in 

the lifetime of ubisemiquinone, thus favouring electron donation to oxygen, resulting in 

intracellular superoxide generation [43]. Further, release of intracellular glutamate by 

erythrocytes and other cells may increase the extracellular glutamate concentration sig-

nificantly, driving excitotoxic neuronal injury [44,45]. 

4. Immune Responses 

Immune responses to ICH are heterogenous with the potential to exert harmful as 

well as helpful actions on brain tissue viability and function. This provides an opportunity 

to develop therapeutics which maximise protective responses, whilst minimising harmful 

ones, by targeting upstream molecular regulators of responses to ICH that direct neuro-

protective and neurorestorative pathways.  

4.1. Myelomononuclear Cells 

Haematoma formation, as well as the associated cell injury and death initiate a 

marked immune response. Microglia are a self-renewing population of central nervous 

system resident parenchymal macrophages which are derived from the yolk sac and com-

prise the major immune cell type of the uninjured brain parenchyma [46–48]. In rodent 

models of ICH, these are joined by cells recruited from the circulating peripheral blood 

monocyte population and, likely with meningeal, choroid plexus and perivascular mac-

rophages [49,50], these myelomononuclear cells execute the initial innate immune re-

sponse to ICH [49]. 

In rodent models of ICH, microglia are stimulated by the activation of molecular pat-

tern recognition receptors, including toll-like receptor 4 (Tlr4), which recognises haema-

toma constituents including haem and fibrinogen [51–53]. Further, death and injury of 

brain cells and erythrocyte lysis results in the release of so-called damage-associated mo-

lecular patterns (DAMPs), and intracellular cytokines [54–56]. These factors stimulate mi-

croglia which, in patients with ICH, rapidly transition from a surveillant ramified appear-

ance to a reactive morphology with shortened processes and enlarged cell bodies [57]. In 

rodents, reactive microglia both proliferate and migrate to the injured region where they 

phagocytose cell debris and secrete chemokine ligand 2, a potent chemoattractant, and 

hydrogen peroxide, a ROS that induces microglial proliferation [58–60].  

Studies of both rodents and humans have shown that monocyte derived cells (MdCs) 

are also recruited to the haematoma region. These may be directly derived from the hae-

matoma, having been sequestered there during the initial haemorrhage, or actively re-

cruited from the peripheral blood circulation or central nervous system “border” regions 

[27,49,50,61]. In rodent models of peritonitis and wounding, recruited monocytes re-

cruited begin to differentiate into tissue macrophages or dendritic cells within 18h [62,63]. 

Studies of the evolving transcriptional profile of peripherally derived brain and haema-

toma monocytes suggest that a similar process occurs in rodents and patients with ICH, 

respectively, although no definitive lineage tracing study has yet been performed 

[27,33,49,61]. 

Initially, perihaematomal microglia and MdCs in rodents express high levels of tran-

scripts for proinflammatory cytokines Tnf, Il1a and Il1b [33,49,59]. In patients, high levels 

of IL1B are also detectible from 6h after injury, potentially representative of this initial 

myelomononuclear response [28]. However, although in mice depletion of “classically re-

active” Ccr2+ monocytes is initially associated with reduced neurological deficits and neu-

ronal injury, at later time points Ccr2+ MdCs contribute to haematoma resolution and 

functional recovery by Axl-dependent efferocytosis of eryptotic erythrocytes [33,49,60]. 

In patients and mice, microglia and MdCs contribute to haematoma resolution by 

phagocytosis of haematoma components and dead cells [33,57,64]. In doing so, the lyso-

somal components of these cells become expanded, resulting in a lipid-laden “foamy” ap-

pearance [57]. Uptake of extracellular haptoglobin-haemoglobin complexes by 
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myelomononuclear Cd163 and lysosomal breakdown of haematoma drives a rise in intra-

cellular iron concentration [39]. In animal models, this transition to a phagocytic state is 

associated with a reduction in the expression of proinflammatory cytokines and increased 

expression of protective factors, including haem oxygenase 1, a critical factor for haem 

detoxification [33,52,65].  

4.2. Neutrophils 

Neutrophils are polymorphonuclear granulocytes that infiltrate the brain within the 

first two days after ICH in both humans and rodent ICH models, but are less numerous 

than myelomononuclear cells at all time points [57,66,67]. Nonetheless, these cells mediate 

distinct immune responses to ICH and have both secretory and phagocytic properties [68]. 

Neutrophils can generate high concentrations of ROS in a process termed “oxidative 

burst”. This serves to degrade extracellular debris and also augments the production of 

other factors secreted by neutrophils, including proinflammatory cytokines and neutro-

phil extracellular traps (NETs) during a process termed NETosis [69,70]. NETs are organ-

ised webs of decondensed chromatin that are released by activated neutrophils largely in 

a process of organised cell death (termed NETosis) and exhibit proinflammatory, haemo-

static and bactericidal properties [71–74]. 

Neutrophil degranulation and release of secretory vesicles results in the extracellular 

accumulation of proinflammatory cytokines, metalloproteinases, and iron and haemoglo-

bin binding molecules [70,75]. Because neutrophils secrete chemoattractants, which aug-

ment early monocyte recruitment, and ROS, which are histotoxic, neutrophil depletion is 

associated with improved early functional outcome in mice with ICH [76]. As described 

previously regarding “classical monocytes”, it is possible that although early neutrophil 

depletion is protective at early stages, this might have harmful later consequences [33].  

4.3. Lymphocytes 

Broadly, lymphocytes can be categorised as B-cells, T-cells or natural killer (NK) cells. 

These cell types orchestrate adaptive immune responses [77]. NK cells are lymphocyte 

effectors of innate immunity, that respond to tumours and viral infections by triggering 

death of affected cells and release of cytokines [78].  

Little is known about the effects of ICH on lymphocytes. In one study, CD3+ T-cells 

were present in the haematomas of patients with ICH, but were few in the parenchyma 

up to 12 days after ICH [57]. In contrast, another smaller qualitative study of patient brain 

tissue found increased CD3+ cells in perihaematomal tissue, which were in proximity to 

blood vessels and dendritic cells [79]. In studies of rodent ICH models, both Cd4+ helper 

and Cd8+ cytotoxic parenchymal effector T-cells have been reported to be increased early 

after ICH [80,81]. A deeper literature exists for ischaemic stroke, where effector T-cell mi-

gration to ischaemic brain tissue is driven by recognition of a brain autoantigen released 

across the disrupted blood-brain barrier [82,83]. In this context, T helper-1 cells might con-

tribute to blood brain barrier dysfunction and oedema by secretion of proinflammatory 

cytokines [84]. Conversely peripheral infusions of regulatory T-cells, which induce toler-

ance of autoantigens, in mice with ICH resulted in improved neurological deficit and re-

duced brain cytokine and matrix metalloproteinase expression [85]. These findings indi-

cate that modulation of T-cell subclasses after ICH could be a therapeutic avenue. How-

ever, as it is not currently established if, and how, T-cells respond to ICH in humans, the 

translational application of findings from rodent studies is limited.  

Whilst our collective understanding of any roles of T-cells in the brains of patients or 

animals with ICH is limited, knowledge of B-cell and NK cell responses is even more so. 

One analysis of mice with ICH found small numbers of B220+ B-cells in their brain tissue, 

but this did not have an association with time from ICH onset [86]. It is unclear if B-cells 

or NK cells are recruited to perihaematomal brain tissue in humans.  
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4.4. Astrocyte Responses 

Astrocytes are one of the most abundant glial cell types of the central nervous system 

[87]. Astrocytes derive from radial glia, exhibiting a fully mature state of differentiation 

by 6-12 months postnatally in humans [88]. They perform a wide range of actions that are 

instrumental to the function of the central nervous system in health and disease [89,90]. 

They provide homeostatic support for neurons by glutamate reuptake, lactate, cholesterol 

and glutathione precursor production as well as glycogen storage and regulation of peri-

vascular water transport, ionic and pH homeostasis, clearance of amyloid β and neuro-

vascular coupling [91–99]. Moreover astrocytes have important functions in acute brain 

injury which integrate with those of immune cells.  

In patients with ICH, GFAP+ reactive astrocytes accumulate in perihaematomal re-

gions and are colocalised with NF-𝜅B-positivity [100–104]. In mice, reactive astrocytes 

similarly surround the haematoma which is associated with their expression of matrix 

metalloproteinases [105]. There is a lack of detailed analyses of specific functional or se-

cretory responses of astrocytes to ICH. However, studies of astrocytes in other models of 

trauma, hypoxia, oxidative stress and inflammation demonstrate that astrocytes respond 

to a wide variety of stressors. Astrocytes sense injury and inflammation through their ex-

pression of pattern recognition receptors, cytokine receptors as well as intracellular sen-

sors of hypoxia and oxidative stress [106–109]. On activation, astrocytes adopt myriad re-

active phenotypes [110–112]. They can secrete long-chain free fatty acids which are toxic 

to neurons and oligodendrocytes in vitro and impair resilience to axonal injury in vivo 

[113]. They are capable of expressing proinflammatory cytokines, vasoactive peptides, 

complement as well as interferon and thus contribute to the cerebral oedema and the in-

flammatory milieu [114–117]. In mice with traumatic brain injury, disruption of perivascu-

lar fluid and solute clearance from the brain may also contribute to oedema formation and 

accumulation of amyloid [95]. In addition to being directly influenced by tissue damage, 

the balance between neuroprotective and harmful astrocyte phenotypes may be modu-

lated by the expression of cytokines by monocytes [113,118]. Additionally, other critical 

homeostatic functions of astrocytes, including glutamate reuptake, neurite phagocytosis, 

ion buffering and neuron-astrocyte metabolic coupling are lost or impaired following a 

range of insults [110,119]. 

Astrocyte responses also be adaptive. Following acute brain injury, astrocytes mi-

grate to the site of injury and are major contributors to glial scar formation. Although this 

has historically been viewed as a barrier to neuroregeneration, particularly in spinal cord 

injury, there is accumulating evidence to suggest that, in mice, such astrogliosis may sup-

port axonal regrowth by the expression of supportive extracellular matrix and cell adhe-

sion proteins [120,121]. Astrocytes, which in steady state undertake a degree of synaptic 

pruning by phagocytosis, may acquire a brief period of enhanced phagocytic capacity to 

engulf cell debris after experimental ischaemic stroke [122].  

These studies of rodent models of conditions other than ICH astrocytes respond to 

relevant harmful stimuli in ways that both harmful and protective. It is not currently clear 

whether these processes occur in rodents or patients with ICH. This is a priority for further 

study. 

4.5. Summary 

ICH causes a mechanical primary injury as the evolving haematoma dissects tissue 

and exerts pressure on distant structures (Figure 1). This is rapidly followed by cytotoxi-

city due to haem release from erythrocytes and ischaemia. The innate immune response 

is initiated by microglia which respond to cell injury and death as well as the highly oxi-

dative environment by secreting chemotactic agents, phagocytosing debris and inducing 

cytoprotective factors. Neutrophils, monocytes/MdCs and astrocytes are then recruited to 

the perihaematomal region within days of ICH onset and contribute to the secretion of 

inflammatory factors, phagocytosis of debris and metabolic support of neurons [27,33,49]. 
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Over time, proinflammatory actions of myelomononuclear cells and astrocytes wane, neu-

trophil numbers decline and a glial scar forms.   

 

Figure 1. Pathophysiology of ICH. (1) Haemorrhage from a parenchymal arteriole drives pressure 

gradients that dissect neural tissue (blue) and may cause distant injury as well as blood vessel injury. 

(2) Myelomononuclear cells (yellow) rapidly respond by release of proinflammatory cytokines and 

other chemokines. These serve to recruit MdCs, astrocytes (green) and neutrophils (amber) which 

secrete further inflammatory mediators and reactive oxygen species (ROS). (3) As inflammation 

progresses, debris is progressively phagocytosed and foamy myelomononuclear cells appear. Neu-

trophil NETosis may serve to limit haemorrhage and/or microvascular blood flow. As astrocytes 

respond to the ICH and contribute to glial scar formation, their homeostatic functions including 

neurovascular and neurometabolic coupling are impaired. Created with BioRender.com. 

5. NF-E2-Related Factor 2 (Nrf2) 

Nrf2 is a basic leucine zipper transcription factor belonging to the Cap ‘N’ Collar 

family that is encoded by the Nfe2l2 gene [123]. Nrf2 directly and indirectly influences the 

expression of thousands of genes encoding antioxidant, cytoprotective and proinflamma-

tory proteins and, as such, is a potential therapeutic target for ICH [39,124,125]. 

5.1. Structure, Regulation, and Expression 

NFE2L2 is expressed by almost all human tissues and cell types [88,126]. In the unin-

jured adult human brain, it is most highly expressed by myelomononuclear cells but, no-

tably, is epigenetically repressed in neurons and what little is made is rapidly degraded 

[88,127–131]. 

Nrf2 protein is comprised of seven functional domains, termed Nrf2-ECH homology 

(Neh) 1-7 (figure 2) [132]. The first N-terminal domain is Neh2, which contains regions 

that regulate the stability and activity of Nrf2 [132]. Seven lysine residues are contained 

within Neh2 and these serve as sites for ubiquitination by the Cullin 3 (Cul3)-dependent 

E3 ubiquitin ligase complex RING box protein 1 (Rbx1) [133]. This leads to proteasomal 

degradation of Nrf2 and thus maintains cytoplasmic Nrf2 levels at steady state in consti-

tutive conditions and prevents its nuclear localisation [133,134]. Ubiquitination of Nrf2 at 

Neh2 by the Cul3-Rbx1 complex is regulated by the homodimeric adaptor protein Kelch-

like ECH-associated protein 1 (Keap1) [132,133,135]. Keap1 anchors Nrf2 to cytoplasmic 

actin through Keap1’s Kelch domain, also known as the double glycine repeat (DGR) 
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domain [136]. Two binding sites in the Neh6 domain of Nrf2 allow for binding of β-trans-

ducin repeat containing protein (β-TrCP), an adaptor for an alternative ubiquitin ligase 

complex, Skp1-Cul1-Rbx1 [137]. This potentiates phosphorylation of Nrf2 by glycogen 

synthase kinase-3β [137,138]. Additionally, the retinoic X receptor ⍺ (RXR⍺) can interact 

with the Neh7 domain, competing with chromatin binding to inhibit transactivation by 

Nrf2 [139]. These provide redox-independent modes of Nrf2-regulation. However, the 

physiological significance and role of these are unknown. 

 

Figure 2. Nrf2 and Keap1 structure. Nrf2 (A) is comprised of seven functional Neh domains. Neh2 

is required for Keap1 dependent homeostatic regulation. Neh3, Neh4, and Neh5 are required for 

transactivation and facilitatory cofactor binding and Neh1 contains the DNA binding basic leucine 

zipper domain. Neh6 and Neh7 contain sites that allow redox independent Nrf2 inhibition. Keap1 

(B) contains two major domains that are relevant to Nrf2-regulation. The broad complex, tramtrack 

and bric a brac (BTB) domain is required for formation of the Keap1 homodimer-Cul3 complex and 

the double glycine repeat (DGR) anchors Nrf2 and actin to maintain Nrf2s cytoplasmic localisation 

during steady state. Oxidation of cysteine residues located in the BTB and intervening region (IVR) 

result in conformational change that releases Nrf2. Adapted from Jaramillo and Zhang (2013) [132]. 

Created with BioRender.com. 

Under conditions of oxidative stress, which may be induced by ROS, haem or elec-

trophilic stimuli, including heavy metal ions such as iron released from haem, Nrf2 accu-

mulates intracellularly. This is because of loss of the substrate adaptor activity of Keap1 

resulting from oxidation of cysteine residues of the broad complex, tramtrack and bric a 

brac (BTB) and the intervening regions (IVR) of Keap1, as well as of cysteine residues on 

Nrf2 itself [140–142]. Available Keap1 consequently becomes saturated with Nrf2 protein 

(figure 3) [134,135]. With available Keap1 saturated, Rbx1 fails to ubiquitinate Nrf2, intra-

cellular Nrf2 levels rise and Nrf2 is imported to the nucleus [133,143]. In the nucleus Nrf2 

competes with BTB and CNC homology (Bach1 and Bach2) protein to form heterodimers 

with the small musculoaponeurotic fibrosarcoma (sMaf) proteins MafF, MafG and MafK 

[144,145]. Heterodimerisation of Nrf2 with sMaf proteins allows efficient binding of Nrf2 

with DNA at regions containing an antioxidant response element (ARE) motif [145,146]. 

In addition to competitive repression of Nrf2 activity, heterodimerised Bach proteins, of 

which Bach1 is dominant in human myelomononuclear cells, directly binds and represses 

transcription of a subset of genes sharing the ARE motif [88,147,148]. Bach protein thus 

serves as a dominant negative regulator of Nrf2 activity [149]. However, an increase in 

intracellular haem concentration, as occurs after ICH, serves to directly oppose the 

transrepression activity of Bach. Haem binds directly to Bach proteins, interfering with 

the formation of Bach-sMaf heterodimers [150,151]. Moreover, haem interacts with a nu-

clear export signal present on Bach1 and Bach2, resulting in their export from the nucleus 

by the nuclear exporter Crm1 [152]. Additionally, oxidative stress increases the transacti-

vation potential of the Nrf2 Neh5 domain, which is another potential Keap1-independent 

mode of Nrf2 activation after ICH [153]. The net effect of these processes is that Nrf2 is 

activated in tissue close to the haematoma surface in patients with ICH [153]. Notably 

Nrf2 localisation after ICH is submaximal [153]. This may reflect preclinical findings that 
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the transcriptional response to Nrf2 activation wains with age and that proinflammatory 

responses to ischaemic stroke become more marked [154,155].  

 

Figure 3. Regulation of Nrf2 activation in constitutive conditions and after ICH. Under constitu-

tive conditions, Nrf2 is anchored to cytoplasmic actin by Kelch-like ECH-associated protein 1 

(Keap1) homodimers. These also function as adaptor proteins for Cullin 3 (Cul3)-dependent E3 

ubiquitin ligase complex RING box protein 1 (Rbx1) which ubiquitinates Nrf2, leading to its pro-

teasomal degradation. BTB and CNC homology (Bach) proteins bind nuclear small Maf (sMaf) pro-

tein and repress expression of certain antioxidant genes. During conditions of oxidative stress or 

haem accumulation, as may occur after ICH, Keap1 loses its’ substrate adaptor activity and becomes 

saturated with Nrf2. Nrf2 levels rise and Nrf2 localises to the nucleus where it heterodimerises with 

sMaf proteins to transactivate genes containing an antioxidant response element (ARE) motif. Sim-

ultaneously, haem binding of Bach proteins prevents heterodimer formation with sMaf proteins and 

induces nuclear export of Bach by chromosomal maintenance 1 (Crm1). Created with BioRen-

der.com. 

5.2. Transcriptional Regulation by Nrf2 

Nrf2 influences the transcription of thousands of genes in fashions that are stimulus-

, cell type-, and tissue-dependent, involving mechanisms requiring direct chromatin bind-

ing and through indirect influences on cellular state and other transcription factors 

[27,88,156,157]. 

Nrf2-sMaf heterodimers directly induce the transcription of genes with ARE motif-

containing promoter regions [146]. This drives a relatively stereotyped, evolutionally con-

served, core programme of gene expression [158,159]. Genes directly induced by Nrf2 in-

clude enzymes that catalyse catabolic and anabolic reactions, as well as those which sup-

port redox buffering and metabolism, as well as the reversal of oxidative damage (Table 

1) [160–162]. Notably, Nrf2 directly induces the expression of several factors required for 

the sequestration, uptake and detoxification of haemoglobin and iron which may be pro-

tective after ICH. These include, but are not limited to, haem oxygenase 1, biliverdin re-

ductase B, ferritin and haem transporter HRG1 [39,124,163,164]. 
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Table 1. Directly Nrf2-regulated genes. Non-exhaustive list of canonical directly Nrf2-regulated 

genes, supported by chromatin immunoprecipitation [122,123,156–159]. 

Role of Nrf2 
 Function Gene product 

Gene sym-

bols 

Transactivation 

Haem & 

iron metab-

olism 

Haem detoxifica-

tion  

Haem oxygenase 1 Hmox1 

Biliverdin reductase B Blvrb 

Iron sequestra-

tion 

Ferritin Fth1, Ftl1 

Haem transporter HRG1 Slc48a1 

Glutathione 

Glutathione syn-

thesis 

xCT cystine antiporter Slc7a11 

Glutamate cysteine ligase Gclc, Gclm 

Glutathione utili-

zation 
Glutathione-S-transferase 

Gsta3, Gsta4, 

Gstm1, Gstm2, 

Gstm3, Gstm6, 

Gstm7, Mgst2 

Thioredoxin 

Redox buffering 

and denitrosyla-

tion 

Thioredoxin Txn1 

Thioredoxin domain con-

taining 5 
Txndc5 

Thioredoxin re-

generation 
Thioredoxin reductase 

Txnrd1 

Peroxire-

doxin 

Peroxide reduc-

tion 
Peroxiredoxins 

Prdx1, prdx6 

Peroxiredoxin re-

duction 
Sulfiredoxin 

Srxn1 

NAD(P)H 

generation 

and utiliza-

tion 

Production of co-

factor for reduc-

tion reactions 

Pentose phosphate path-

way enzymes 

G6pd, Pgd 

 Quinone reduc-

tion 

NAD(P)H dehydrogen-

ase (quinone 1) 

Nqo1 

Transrepression 

Inflamma-

tory signal-

ling 

Immune cell acti-

vation and re-

cruitment 

Interleukin-1β Il1b 

Interleukin-6 Il6 

 

In addition to direct transactivation, Nrf2 exhibits some direct transrepression activ-

ity by binding promotor regions of certain proinflammatory factors and preventing re-

cruitment of RNA polymerase II [125]. Further, Nrf2 indirectly affects the expression of a 

wider repertoire of genes. After induction of electrophilic stress by administration of a 

xenobiotic, Nrf2 dependent transrepression is not detectible until 24h, whilst transactiva-

tion is detectible at 6h [165]. This temporal separation of responses to electrophilic stress 

suggests that, in this context, transrepression is indirectly mediated by protective effect of 

ARE gene induction. By competing for sMaf proteins, Nrf2 may also inhibit activation of 

the NF-𝜅B subunit p65 [166–168].  

This demonstrates that Nrf2 both facilitates a cytoprotective antioxidant response 

and suppresses, through context-dependent direct and indirect means, the expression of 

certain inflammatory mediators. Therefore, activation of Nrf2 may optimise adaptive cel-

lular responses to ICH, by augmenting protective elements whilst suppressing responses 

that might contribute to secondary injury.  

6. Therapeutic Modulation of Nrf2 

Augmentation of Nrf2-mediated responses to haemorrhagic brain injury is a poten-

tial therapeutic strategy, particularly because older populations with ICH may not exhibit 

a maximal Nrf2-mediated transcriptional response. Various Nrf2-activating drugs exist 
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and their therapeutic efficacy and safety has been examined in studies of both rodents 

with ICH and patients with other disease states. Nrf2-activating drugs trialled in patients 

and animal models of ICH all function through a common mechanism involving electro-

philic modification of cysteine residues on Keap1 [169]. 

6.1. Preclinical Studies 

Nrf2 has been considered by several studies of rodent and in vitro models of ICH 

(Table 2). These have consistently demonstrated that global Nrf2 deficiency (Nrf2-/-) 

causes worse outcomes and that all 11 putative Nrf2 activators studied to date after ICH 

improve outcome [170]. However despite the compounds improving outcome, the mech-

anistic basis for their protection is unclear. Reviews of Nrf2 activator use in vivo to date 

are narrative, do not use a systematic approach to study identification and do not consider 

publication bias [170]. Caution is required to avoid overinterpretation of such analyses.  

Table 2. Key in vivo studies of Nrf2 pathway modulation after ICH. 

Intervention Study Major finding 

Global Nrf2 

deletion 

Wang, et al. 

2007 [171] 

Larger haematoma volume at 24h post-ICH and in-

creased neutrophil infiltration 

Zhao, et al. 

2015 [172] 
Larger haematoma volume at day 7 post-ICH 

Zhao, et al. 

2007 [173]  
Greater neurological deficit at day 7 post-ICH 

Sulforaphane 

Zhao, et al. 

2015 [172]  

Nrf2-dependent reduction in haematoma volume with 

treatment at day 7 post-ICH 

Yin, et al. 2015 

[174]  

Reduced neurological deficit from day 1 post-ICH with 

treatment. Reduced TNF⍺ and NF-𝜅B expression. 

Dimethyl 

fumarate 

Zhao, et al. 

2015 [175] 

Nrf2-dependent reduction in brain water content and 

Nrf2-dependent improvement in neurological deficit 

with treatment at day 3 post-ICH. Reduced cytokine and 

increased haem scavenging protein expression 

Iniaghe, et al. 

2015 [176] 

Reduced neurological deficit and brain water content 

from 24h post-ICH. Reduced myelomononuclear cell re-

cruitment and ICAM1 expression 

Zhao, et al. 

2007 [173]  

Reduction in day 10 neurological deficit (rats) and Nrf2-

dependent day 7 reduction in neurological deficit (mice). 

Reduced protein oxidation and neutrophil recruitment 

with treatment. 

tert-butyl hy-

droquinone 

Sukumari-

Ramesh and 

Alleyne. 2016 

[177]  

Reduced oxidative carbonyl production, myelomononu-

clear cell recruitment, interleukin 1β expression and neu-

rological deficit at 24h post-ICH with treatment. 

RS9 (bardoxo-

lone methyl 

derivative)  

Sugiyama et al. 

2018 [178] 

Reduced brain water content and haematoma volume 

from 72h and improved neurological function from 48h 

post-ICH with treatment 

 

ICH volumes in Nrf2-/- rodents have been demonstrated to be greater than in wild 

type (WT) counterparts from as early as 24h [171,172]. One study using an Nrf2 activating 

drug has reported a reduction in haematoma volume in the drug treated group [172]. The 

link between lower ICH volumes and Nrf2 activation was therefore attributed to in-

creased erythrophagocytosis. However studies of Nrf2-/- rodents are challenging to 
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interpret as they exhibit compromised erythrocyte integrity which may confound analysis 

of haematoma volumes [124,173]. Nonetheless, there is in vitro evidence that Nrf2 activa-

tion may increase the erythrophagocytic capacity of microglia and blunt hydrogen perox-

ide production [172].  

Other potential protective mechanisms of Nrf2 after ICH have also been considered. 

Nrf2-/- mice exhibit greater neutrophil recruitment to the perihaematomal region at 24h 

and similar recruitment of myelomononuclear cells [171]. This was associated with greater 

amounts of peroxynitrite, a highly oxidative compound formed by the interaction nitric 

oxide with haemoglobin [39,171,174]. Post-injury administration of the Nrf2-activating 

drugs dimethyl fumarate or tert-butyl hydroquinone reduced perihaematomal IBA1 

staining, interleukin-1β transcription, blood-brain barrier opening, intracellular adhesion 

molecule-1 protein expression and brain water content whilst increasing the expression of 

haem scavenging molecules CD36, CD163 and haptoglobin [175–177]. Treatment with 

other less established, or less specific, Nrf2 activators in rodent models of ICH and sub-

arachnoid haemorrhage has yielded concordant results [39,170]. Further, activation of 

Nrf2 by oxidative stressors of in vitro and in vivo confers resilience to future severe hypoxia 

[178,179]. 

These rodent studies provide early evidence that the activation of Nrf2 in phagocytic 

cells after ICH may be protective by enhancing their phagocytic capacity, ability to with-

stand oxidative stress, and by suppressing proinflammatory signalling. They therefore 

support the use of Nrf2 activators in trials of patients with ICH. Whilst analyses have 

focused on the influence of Nrf2 activation or deficiency on brain immune cells, it is im-

portant to note that non-specific Nrf2 activation and deficiency may exert myriad indirect 

effects due to the widespread expression of Nrf2 in the brain and elsewhere [88,126]. Nrf2 

activators have been trialled in patients with other conditions, giving important insights 

into their safety, efficacy and pharmacokinetics in humans.  

6.2. Clinical Studies 

Various Nrf2 activators have also been the subject of randomised controlled trials 

(RCTs) in patients with both neurological and non-neurological disease, although none 

has yet been conducted in patients with ICH (Table 3).  

Dimethyl Fumarate (DMF) is a synthetic Nrf2-activating drug which is recom-

mended for use by the UK National Institute for Health and Care Excellence (NICE) to 

reduce relapses and improve quality of life in relapsing-remitting multiple sclerosis [180–

183]. It increases Nrf2 activation by modifying cysteine residues on Keap1, and thus in-

creasing the nuclear translocation of Nrf2 [184]. It has been shown to improve neurologi-

cal function in rodents with ICH whilst increasing expression of Nrf2 target genes and 

suppressing interleukin-1β and inducible nitric oxide synthetase [177,185]. Although the 

protective effect of DMF in animal models of multiple sclerosis is established to be Nrf2-

dependent, there is minimal direct evidence of this in patients [186,187]. Further, certain 

canonical Nrf2 target genes have been shown to be induced by DMF in Nrf2 deficient 

mice, indicating that Nrf2-independent mechanisms of action may also exist [188]. None-

theless, DMF treatment is associated with reduced numbers of interferon-𝛾 producing T-

helper cells and increased T-regulator cells, a phenotype which may be protective in ro-

dent ICH models [85,187,189].  

Sulforaphane is an isothiocyanate which can be derived from cruciferous vegetables. 

This activates Nrf2 through cysteine modification of Keap1 and also modulates gene ex-

pression more broadly through the action of its two major metabolites, sulforaphane-cys-

teine and sulforaphane-N-acetylcysteine which are histone deacetylase inhibitors 

[140,190–192]. Following extensive study in animal models of ICH and subarachnoid 

haemorrhage, where it was shown to reduce inflammation and optimise certain measures 

of inflammatory responses, sulforaphane became the subject of a phase 2 RCT in aneurys-

mal subarachnoid haemorrhage [39,170,193]. This has not yet reported results [193].  
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Table 3. Key randomised controlled trials of Nrf2 activators in patients.  

Intervention Trial Population Comparator Outcome 

Dimethyl 

Fumarate 

CONFIRM 

phase III trial  

[182] 

Adults aged 18-55 

with relapsing-re-

mitting multiple 

sclerosis 

Placebo  

Reduced annualised re-

lapse rate with dimethyl 

fumarate with treatment 

DEFINE 

phase III trial 

[183] 

Adults aged 18-55 

with relapsing-re-

mitting multiple 

sclerosis 

Placebo 

Reduced two-year re-

lapse rate with dimethyl 

fumarate with treatment 

Sulforaphane 
SAS Phase II 

trial [193] 

Adult aneurysmal 

subarachnoid 

haemorrhage 

Placebo No data reported. 

Bardoxolone 

methyl 

BEACON 

phase III trial 

[194] 

Adult type 2 dia-

betes mellitus and 

stage 4 chronic 

kidney disease 

Placebo 

No effect of treatment on 

progression to end stage 

renal failure. Increased 

risk of cardiovascular 

events with treatment. 

BEAM phase 

II trial [195] 

Adult type 2 dia-

betes mellitus and 

stage 3b-4 chronic 

kidney disease us-

ing an angiotensin 

receptor blocker 

Placebo 

Improved one-year esti-

mated glomerular filtra-

tion rate with treatment 

Omaveloxolone 
MOXIe phase 

II trial [196]  

Adults aged 16-40 

with Friedreich 

Ataxia and no car-

diac disease 

Placebo 

Improved 48-week modi-

fied Friedreich’s Ataxia 

Rating Scale score with 

treatment 

Nrf2 activators have been used by RCTs in non-neurological diseases. Certain 

triterpenoids exhibit potent and specific Nrf2-activating activity, through cysteine modi-

fication on Keap1, as well as central nervous system oral bioavailability [129,197]. One 

such compound, the methyl ester of 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid 

(CDDO-Me), or bardoxolone methyl, has been the subject of RCTs in chronic kidney dis-

ease [194]. However, a major phase three trial was terminated early because of an in-

creased risk of cardiac events associated with the CDDO-Me arm [194]. This was deter-

mined retrospectively be a probable consequence an of off target effect of the drug causing 

endothelin antagonism causing a worsening of fluid overload, which the trial population 

was vulnerable to [198]. As such, subsequent trials of alternative triterpenoid compounds, 

which may have less of an effect on endothelin signalling, has focused on less vulnerable 

populations, including patients with neurological disease.  

One of these trials used a second-generation triterpenoid derivative of CDDO-Me, 

omaveloxolone. This family of drugs exhibit greater suppression of interferon stimulated 

nitric oxide production and greater Nrf2 target gene induction than their CDDO-Me coun-

terparts as well as differing pharmacokinetics [199]. Omaveloxolone has been subject to a 

phase 2 RCT in Friedreich’s Ataxia, a condition driven by dysfunctional iron metabolism, 

leading to mitochondrial dysfunction and oxidative injury [199,200]. This study identified 

an improvement in the primary efficacy outcome of a standardised assessment of neuro-

logical function, as well as an acceptable safety profile [196]. Treatment with CDDO-Me 

derivatives might therefore be effective after ICH, by augmenting Nrf2-dependent induc-

tion of cytoprotective functions and suppressing inflammatory gene induction. Given the 

potential for cardiac events with use of CDDO derivatives, further evaluation of the 
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relative risks of other triterpenoids in older populations, which are prone to ICH, cardiac 

and chronic kidney disease, or exclusion of patients with a history of relevant cardiac or 

kidney conditions is necessary [5,11,201]. 

It is possible that non-specific pharmacological Nrf2 activation may have an exces-

sive side effect profile to permit use in patients with ICH. Nrf2 activators targeted to spe-

cific cell types might show increased potency at the active site with fewer off-target effects. 

One approach to achieving this could be to stimulate the proliferation of monocytes or 

microglia cell types which express high levels of Nrf2 [88,202]. One could condition circu-

lating peripheral leukocytes using an Nrf2 activator with low brain penetrance. These 

conditioned cells may then enter perihaematomal brain tissue in a protective Nrf2 acti-

vated state. Alternatively, one might target drugs to mononuclear phagocytes by encap-

sulating them in liposomes or incorporating them with lipid-based nanoparticles, struc-

tures that are actively ingested by these cells [203,204]. Targeting of liposomes in this man-

ner can be further enhanced if the liposome is coated with ligands for receptors expressed 

by the cell type of interest [203]. One might conceive of an inactive prodrug that is acti-

vated by specific enzymes found within the myelomononuclear phagolysosome [205]. A 

different strategy could be to use a prodrug compound with minimal electrophilic prop-

erties, but which become electrophilic in response to oxidation [206]. This may allow tar-

geting of Nrf2 activation to cells in the oxidative perihaematomal environment. Such cen-

tral nervous system penetrant cell-type specific Nrf2 activators are in early stages of de-

velopment and will require preclinical establishment of safety and efficacy. As perihae-

matomal oedema is only associated with poor outcome at more than three days after ICH, 

there may be an early window to modulate transcriptional processes associated with oe-

dema and poor outcomes using an Nrf2 activating drug [21,26,27]. Therefore, although 

side effects have limited the long-term use of non-specific Nrf2 activators for chronic dis-

eases, the required duration of Nrf2 activating therapy may be less after ICH [198]. As 

such, work towards the conduct of trials of non-specific Nrf2 activators in ICH, whilst 

targeted drugs are in development, has significant merit. 

7. Conclusions 

ICH is associated with extremely high mortality and morbidity and currently has no 

effective treatments. After ICH, there is an early phase of transcriptional change and im-

mune cell recruitment. This is associated with perihaematomal oedema, which is associ-

ated with worse outcome. Immune cells in the perihaematomal environment have both 

potentially protective and harmful responses to ICH. Protective responses, include the 

uptake and detoxification of haematoma breakdown products, and are boosted by activa-

tion of the transcription factor Nrf2. Simultaneously, Nrf2 suppresses the expression of 

proinflammatory factors which may contribute to perihaematomal oedema and poorer 

outcomes. Studies in rodent ICH models demonstrate improved outcomes with admin-

istration of Nrf2 activating drugs. Nrf2 activating drugs in humans have generally favour-

able safety and efficacy profiles for neurological diseases. To date, no study of pharmaco-

logical Nrf2 activation in patients with ICH has been published. Clinical trials of Nrf2 

activating drugs, such as DMF and omaveloxolone, for which evidence of safety and effi-

cacy exist for other neurological diseases in humans, seem warranted. Early phase trials 

for ICH should monitor safety given the older age of patients with ICH, which may be 

associated with increased susceptibility to potential side effects. 
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