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a b s t r a c t

Transition probabilities between delinquency states play a key role in determining the
risk profile of a lending portfolio. Stress testing and IFRS9 are topics widely discussed by
academics and practitioners. In this paper, we combine dynamic multi-state models and
macroeconomic scenarios to estimate a stress testing model that forecasts delinquency
states and transition probabilities at the borrower level for a mortgage portfolio. For the
first time, a delinquency multi-state model is estimated for residential mortgages. We
explicitly analyse and control for repeated events, an aspect previously not considered
in credit risk multi-state models. Furthermore, we enhance the existing methodology by
estimating scenario-specific forecasts beyond the lag of time-dependent covariates. We
find that the number of previous transitions have a significant impact on the level of
the transition probabilities, that severe economic conditions affect younger vintages the
most, and that the relative impact of the stress scenario differs by attributes observed
at origination.

© 2022 The Authors. Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The implementation of IFRS91 brought a substantial
hange in the way banks calculate their provisions. For
he first time, financial institutions needed to consider
ot only past and current information but also forward-
ooking components when building their impairment re-
orts. Expectations became a key element. Moreover,
tress testing under IFRS9 resulted in a new challenge
or banks, as forecasts of the staging criteria2 should

∗ Correspondence to:
E-mail addresses: j.crook@ed.ac.uk (J. Crook),

galina.andreeva@ed.ac.uk (G. Andreeva).
1 International Financial Reporting Standard 9.
2 Impairments are recognised under three stages: Stage 1, for

financial assets not experiencing a significant increase in credit risk
(SICR) since initial recognition; stage 2, for financial assets experiencing
SICR since initial recognition; and stage 3, for credit-impaired financial
Please cite this article as: C. Bocchio, J. Crook and G. Andreeva, The impact of
framework of multi-state models for mortgages. International Journal of Foreca

ttps://doi.org/10.1016/j.ijforecast.2022.08.005
169-2070/© 2022 The Authors. Published by Elsevier B.V. on behalf of Inter
he CC BY license (http://creativecommons.org/licenses/by/4.0/).
contemplate alternative scenarios. To calculate stage al-
location distributions and expected credit losses, a lender
needs to know the time an account is expected to keep
the contractual repayments up to date before missing
any payment that could ultimately lead to default. This
expectation may be influenced not only by the borrower’s
behaviour but also by the economic environment. The
existing practice of estimating losses for just one state (90
days past due or three months in arrears) is no longer
sufficient. There is a need for more nuanced insights into
the movements of the account between different levels
of days past due. For these reasons, transitions between
delinquency states matter. These transitions can occur
more than once throughout the life of a loan, and the
methodology followed to estimate them needs to take this
into consideration.

assets. Twelve-month expected credit losses (ECLs) are recognised
under stage 1 and lifetime ECLs under stages 2 and 3.
macroeconomic scenarios on recurrent delinquency: A stress testing
sting (2022), https://doi.org/10.1016/j.ijforecast.2022.08.005.
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In the last two decades, a large body of the literature
as concentrated on the application of survival (or single-
vent) analysis to estimate credit risk metrics such as
ransitions into default (Banasik, Crook, & Thomas, 1999;
ellotti & Crook, 2009, 2013a, 2013b; Calabrese & Crook,
020; Djeundje & Crook, 2019; Malik & Thomas, 2012)
r recovery (Zhang & Thomas, 2012)3. Even though their
ontribution was to build the first set of applications
f survival analysis in credit risk modelling, more com-
lex specifications are needed to represent the actual
ynamics of these events. A borrower is subject to transit
lternative paths before defaulting, and anticipating these
‘pre-default’’ movements is crucial for risk management.
his complexity can be captured by multi-state (or in-
ensity) models which are able to characterise a subject
xperiencing (or not) different types of events across time.
ur research not only aims to estimate and forecast tran-
ition probabilities but also ‘‘jumps" between delinquency
tates. For this reason, first-order Markov transition ma-
rices are disregarded, as they compute average transition
robabilities for all the accounts in the portfolio without
istinguishing them based on subject-specific character-
stics. This implies that it is not possible to infer which
ccounts will experience a specific transition and which
ill stay in the current state given that all the individuals

ace the same probability.
This paper makes the following three contributions

o knowledge. First, we apply a multi-state delinquency
odel to a residential mortgage portfolio with the pur-
ose of estimating and predicting six alternative tran-
ition probabilities between delinquency states. There
s some research that has analysed transitions towards
efault and cure states for mortgages, such as Kelly and
’Malley (2016); however, this paper uses very few states.
he events we analysed in this study have only been mod-
lled for credit cards (Djeundje & Crook, 2018; Leow &
rook, 2014). Second, we connect the concept of multiple
ransition intensities to the estimation of account-level
ransition probabilities while contemplating repeated
vents and discontinuous risk intervals. This is the first
aper in which recurrent delinquency is estimated for a
ortgage portfolio using intensity processes. Third, the

ncorporation of macroeconomic scenarios into the esti-
ation enabled us to enhance the existing methodology.
his permitted us to forecast scenario-conditional transi-
ion probabilities and delinquency states beyond the lag
f time-varying covariates, making this type of model
uitable for both stress testing and IFRS9. Banks have
ound it challenging to predict provisions as they are
equired to do under the new Standard, and this paper
nhances the available methodology still further com-
ared with the existing literature. Overall, we bring a
omplete solution that overcomes the statement by Cope
t al. (2022) that it is ‘‘complex to estimate and execute
orecasts’’ with the state transition model approach.

Research regarding default probability in mortgage
ortfolios has a long history. One of the first studies
as developed by Kau, Keenan, and Kim (1994), who

3 More examples of seminal papers in this area can be found
in Dirick, Claeskens, and Baesens (2017).
2

indicated that the rationale behind the decision to enter
into default is driven by house prices falling well below
the value of the mortgage’s termination option. Since the
publication of Basel II in 2004, credit scoring has gained
significant attention in default risk modelling, especially
for mortgage portfolios which significantly benefited from
the implementation of IRB models via capital savings.
In recent years, there has been an increasing amount of
literature on the estimation of default probabilities for
mortgages based on survival analysis. These studies have
introduced different characteristics to better represent
movements into default. For example, Beran and Djaïdja
(2007) built a mixture exponential model with immunity
to analyse extreme censoring in default risk, finding that
numerous mortgages may actually not be subject to de-
fault. McDonald, Matuszyk, and Thomas (2010) created
a pricing model for UK mortgages, incorporating default
probabilities based on Cox’s model, that used application
and macroeconomic data. They also performed Monte
Carlo simulations to produce a distribution of cash flow
forecasts for different economic scenarios. Park (2016)
developed a competing risk survival model to analyse the
probability of default or prepayment for uninsured, FHA-
insured, and privately insured US mortgages, finding that
adverse selection was present. Even though application
and behavioural information was included in the esti-
mation, macroeconomic data was not considered. Kiefer
and Larson (2015) also examined the association between
defaults and insured mortgages but concentrated their
analysis on mortgages financed by mortgage insurance
or a second mortgage. Calabrese and Crook (2020) in-
corporated spillover effects in a survival model that also
allowed for variations in the coefficient estimates, both
over time and over space.

The application of survival analysis for mortgages is
not limited to transitions into default or default probabil-
ities. Competing risk survival models have been applied
to post-default mortgage data to analyse loss given de-
fault. Wood and Powell (2017) applied Fine and Gray’s
competing risk regression to estimate the probability of
possession and the probability of cure using the LTV and
the applicant’s age at origination.

Multi-state models are not yet widely explored in
credit risk modelling. The first set of empirical analysis
was developed on credit rating migrations (Duffie, 2011;
Duffie, Saita, & Wang, 2007; Lando & Skødeberg, 2002;
Schuermann et al., 2003). Only in the past decade have
studies directly analysed multiple delinquency events and
their respective transition probabilities using intensity
models for retail lending portfolios. Schechtman (2013)
compared empirical transition matrices between delin-
quency states for consumer credit, applying cohort and
survival approaches. Leow and Crook (2014) developed
the first multi-state delinquency model for credit cards
using account-specific application and behavioural data
while considering six plausible types of events. Djeundje
and Crook (2018) enhanced the methodology by incor-
porating macroeconomic indicators, flexible baseline haz-
ards, and random effects to control for repeated events.
Kelly and O’Malley (2016) used a portfolio of Irish resi-
dential mortgages to build a two-state model considering
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movements into and out of default. The results were then
translated into transition probabilities assuming time ho-
mogeneity.

On the other hand, recurrent events within the sur-
ival analysis framework have been extensively analysed
n medical studies (e.g. Amorim and Cai (2015), Guo,
ill, and Allore (2008), Sagara, Giorgi, Doumbo, Piarroux,
nd Gaudart (2014), Ullah, Gabbett, and Finch (2014),
ei and Glidden (1997)); however, researchers have not

reated this aspect in much detail in the context of credit
isk. By applying random effects into the intensity pro-
esses, only Djeundje and Crook (2018) analysed a credit
ard portfolio considering the inherent dependency be-
ween recurrent delinquency events, finding that these
andom effects were ‘‘strongly’’ significant. However, the
uthors did not expand on the relative impact recur-
ent events have on the transition probabilities. Previous
tudies have also failed to incorporate the effect of macr-
economic scenarios in multi-state intensity processes.
ingle-event models (Bellotti & Crook, 2009, 2013a, 2013b;
alabrese & Crook, 2020; Djeundje & Crook, 2019) and
ulti-state models (Djeundje & Crook, 2018; Kelly &
’Malley, 2016) applied to credit risk have successfully
ncorporated macroeconomic data in their estimations,
ut no study has dealt with the incorporation of sce-
arios to build forward-looking intensity processes in a
ulti-state framework. Bellotti and Crook (2013a, 2013b)
imulated severe macroeconomic conditions to forecast
ime to default for a credit card portfolio using survival
nalysis, but the forecast horizon was restricted to the lag
f the time-dependent covariates.
An understanding of the dynamics of transitions be-

ween delinquency states is highly important. The sub-
rime financial crisis shed light on howmuch an economy
epends on the banking system, and its soundness is
eavily determined by the risk profile of lending port-
olios. A major failure of risk assessment was to base it
n a mortgage’s past performance without considering
conomic impacts (Hott, 2015). Therefore, the determi-
ation of delinquency transitions based on macroeco-
omic scenarios would help banks to better manage their
redit risk, especially under severe economic conditions.
egulators are particularly concerned about the effect
f adverse scenarios, as ‘‘forecasts of significant losses
an trigger remedial supervisory actions’’ (Kupiec, 2018).
oreover, stress testing is expected to continue being a

elevant topic, either because of regulator requirements
hat change from time to time or because it is considered
ood risk management practice (Schuermann, 2014).
The remainder of this article is organised as follows.

ection 2 presents the methodology to estimate transi-
ion probabilities for a mortgage portfolio using multi-
tate models and considering both recurrent events and
iscontinuous risk intervals. Section 3 relies on the esti-
ation results to build scenario-conditional forecasts of

ransition probabilities. Finally, Section 4 concludes.

. Modelling recurrent delinquency and recovery
vents

We aim to estimate and predict transition probabili-
ies among different delinquency states for a UK mort-

age portfolio applying multi-state (or intensity) models

3

which rely on survival analysis but add the complexity
of handling multiple types of failures or events. By the
delinquency state, we refer to how many payments a
borrower has missed by the contractual due date. We are
interested in analysing the time an individual spends in
a given delinquency state before moving into an alterna-
tive one, and to use this information to predict dynamic
probabilities of movement among the states.

In survival analysis, the focus is on the time to a single
event, and the variable of interest is duration time, which
reflects the time a subject spends in a given state. Multi-
state models are an extension of single-event models
where different types of events are analysed (e.g. the
same borrower can move from up to date to one payment
down and then to two payments down). At the same time,
repeated events can be explicitly considered. This fea-
ture is particularly important given that it avoids making
the strong assumption that the attributes characteris-
ing the first event also characterise consecutive events
of the same type. Ignoring recurrence when estimating
delinquency or default risk leads to biased coefficient
estimates, as failure times within the same subject are
correlated. Therefore, a methodology that handles this
absence of independence is needed. Finally, when con-
sidering multiple events, the objective is to analyse and
understand the different paths an individual might un-
dergo before reaching a certain state. It is then possible to
build transition probabilities to predict future movements
or migrations.

We define T to be a non-negative random variable
which represents the survival time, and we assume that
T is continuous. We consider those individuals who have
not experienced the event of interest by time t . Specifi-
cally, we are interested in knowing the probability that
the event will occur in some small interval [t, t + dt)
provided that it did not happen before t . This probability
is given by α(t)dt , where α(t) is a hazard function defined
as

α(t) = lim
∆t→0

1
∆t

P(t ≤ T < t + ∆t|T ≥ t). (1)

The most common survival model, known as the pro-
ortional hazard model, was introduced by Cox (1972). It
tates that the hazard function is related to a vector of
ovariates in the following way:

(t) = α0(t) exp(β′x(t)), (2)

where α0(t) is the (unspecified) baseline hazard func-
tion, exp(β′x(t)) is a relative risk function, and β =

(β1, . . . , βp)′ is a vector of p coefficients that shows the
effects of the covariates x(t), which may or may not vary
over time t .

2.1. Transition intensities

Cox’s model can be extended to the multi-state frame-
work. The generalisation of the multiplicative intensity
function considering multiple events and time-varying
covariates is

α (t) = Y (t)α (t) exp(β′ Z (t)), (3)
hji hi hj0 hj hji



C. Bocchio, J. Crook and G. Andreeva International Journal of Forecasting xxx (xxxx) xxx

a
b
e
p

d
t
l
i
o
p
t
b
E
t
e
t
u
f

L

t
t
r
b
t
a
s
a
o
i
(
h
r
b
k

l
m
t
e
c
b
b

s
t
i
h
t
a
f
a
p
s

where Yhi(t) is the at-risk indicator process that assumes
the value 1 if the individual i is in state h at time t ,
nd 0 otherwise; αhj0(t) is the (unspecified) non-negative
aseline transition intensity from state h to state j; and
xp(β′

hjZhji(t)) is the relative risk function with unknown
arameters βhj for the individual-specific covariates Zhji(t)

(see Aalen, Borgan, and Gjessing (2008), Andersen, Bor-
gan, Gill, and Keiding (1993)).

The estimators for the unknown parameters (βhj) are
obtained by maximising the logarithm of a partial likeli-
hood function derived from Cox’s model. This estimation
is performed for each transition h → j, separately. Sup-
pose we observe n failure times t1 < t2 < · · · < tn, where
ti is the failure time for the ith individual, and define R(ti)
as the set of individuals at risk of experiencing the event
at t−i (just before ti). Then, the partial likelihood function
(assuming no ties) is given by

Lhj(βhj) =

n∏
i=1

exp(β′

hjZhji(ti))∑
l∈R(ti)

exp(β′

hjZhjl(ti))
. (4)

As the partial likelihood function is based on the or-
ered failure times, if tied events are observed, i.e. more
han one failure at the same time t , then the partial
ikelihood function needs to be adjusted. The problem
s that at a given failure time t where tied events are
bserved, it is not possible to determine the risk set com-
osition. There are three common approaches to handle
ies: the exact method and two approximations developed
y Breslow (1974) and Efron (1977). In this research, the
fron approximation is used given that it considers how
he risk set changes depending on the order of the tied
vents. If two subjects experience the event at the same
ime t , Efron assumes that the probability of each individ-
al failing first is the same.4 Then, the partial likelihood
unction is adjusted accordingly:

hj(βhj)ef

=

n∏
i=1

exp(β′

hjsi(ti))∏di−1
r=0

[∑
l∈R(ti)

exp(β′

hjZhjl(ti)) − rd−1
i

∑
l∈D(ti)

exp(β′

hjZhjl(ti))
] ,

(5)

where di is the number of individuals experiencing the
event at the same time ti and grouped in the set D(ti),
and si(ti) =

∑di
I=1 ZhjiI (ti) measures the sum of covariates

of subjects failing at time ti.5
Transition intensities can be defined in different ways

depending on the underlying population and the char-
acteristics of the events. In this study, we analyse tran-
sitions (or migrations) among alternative delinquency
states considering that the subjects might transit the same
path more than once. There are several Cox-based mod-
els for repeated events (Kelly & Lim, 2000; Thenmozhi,
Jeyaseelan, Jeyaseelan, Isaac, & Vedantam, 2019), e.g. the
Andersen–Gill (AG) counting process (Andersen & Gill,

4 For more information regarding the alternative methods, refer
to Kalbfleisch and Prentice (2002) and Box-Steffensmeier and Jones
(2004).
5 For more details regarding the derivation of the partial likelihood

function, refer to Andersen et al. (1993), Kalbfleisch and Prentice
(2002), and Efron (1977).
4

1982), the Prentice–Williams–Peterson gap time (PWP-
GP) and total time (PWP-CP) models (Prentice, Williams,
& Peterson, 1981), the Wei–Lin–Weissfeld (WLW) and
Lei–Wei–Amato (LWA) marginal models (Lee, Wei, Amato,
& Leurgans, 1992; Wei, Lin, & Weissfeld, 1989), and the
Cox frailty model. Additionally, there are four components
to be considered when analysing recurrent events (Kelly
& Lim, 2000): (i) the definition of the risk interval, (ii)
common versus event-specific baseline hazards, (iii) the
definition of the risk sets, and (iv) within-subject correla-
tion.

A risk interval is defined as the period of time during
which an individual may experience the event. There are
three alternative definitions:

• Counting process: the risk interval depends on previ-
ous events. In order to experience the kth event, first
the subject has to experience the (k − 1)-th event.

• Total time: the risk interval for the kth event is inde-
pendent of the risk interval of any other event. This
means the analysis time starts at zero and finishes
at the time the event is observed.

• Gap time: the risk interval measures the time from
the previous event, re-setting the clock after each
event.

The determination of the baseline hazard is constrained
o the selection of the risk set, as it is possible to differen-
iate between restricted, unrestricted, and semi-restricted
isk sets. In the first case, the risk set for the kth event will
e based on the information provided by all the subjects
hat experience (k−1) events. In the second case, overlaps
re allowed and two individuals can contribute to the
ame risk interval regardless of whether one subject is
t risk of the kth event and the other subject is at risk
f the mth event. The assumption of restricted risk sets
mplies the distinction of event-specific baseline hazards
stratification). On the other hand, a common baseline
azard is estimated under an unrestricted risk set. Semi-
estricted risk sets are characterised by event-specific
aseline hazards but allow subjects to be at risk of the
th event even if they experience less than (k−1) events.
There are two methods to handle within-subject corre-

ation. Variance-corrected approaches which estimate the
odel and correct the variance to take into consideration

he dependency in the observations, and frailty or random
ffects which introduce a random variable to account for
orrelation between repeated events for the same subject
y accounting for unmeasured heterogeneity not captured
y covariates.
For the purpose of this study, we selected three model

pecifications: the Andersen–Gill counting process model,
he PWP-CP model, and the PWP-GT model. These spec-
fications are based on a variance-corrected approach to
andle within-subject correlation. The AG model follows
he structure presented in Eq. (3). It is characterised by
n unrestricted risk set with a common baseline hazard
or repeated events, and the risk interval is described by
counting process. The standard approach assumes inde-
endence between repeated events observed for the same
ubject, but in the AG model this assumption is relaxed
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Fig. 1. Monthly transitions between delinquency states.
by incorporating the number of previous occurrences of
the event for that subject (Kelly & Lim, 2000). Therefore,
information regarding the times an account has been at
risk of moving out of a given state is also considered.
The PWP-CP model differs from the AG model in the
determination of the risk set, which is a restricted one
leading to event-specific baseline hazards, αhj0k(t), where

αhjik(t) = Yhi(t)αhj0k(t) exp(β ′

hjZhji(t)), (6)

and where k is the number of previous experienced events
by time t .

As in the PWP-CP model, the PWP-GT method is de-
fined by a restricted risk set, but the duration time is now
defined as the time since the previous event (t − tk−1).
Therefore, the event-specific baseline hazard is given by
αhj0k(t − tk−1), where

αhjik(t) = Yhi(t)αhj0k(t − tk−1) exp(β ′

hjZhji(t)). (7)

The AG model is a simpler specification, as it han-
dles the dependence between subsequent events through
time-varying covariates (such as the number of previous
events), and the interest is in the overall effect on the
intensity of the occurrence of a recurrent event (Amorim
& Cai, 2015). On the other hand, the PWP-CP model and
the PWP-GT model enable us to understand the impact
of recurrent events at different duration times via strat-
ification. However, the data need to be restricted to a
maximum number of occurrences to ensure the stabil-
ity of the coefficient estimates. Moreover, the PWP-GT
model is convenient for repeated events observed at a
low frequency or when the interest is in estimating the
subsequent event (Amorim & Cai, 2015).

The methods described in this paper assume that cen-
soring is non-informative, meaning that an individual
who is censored at time c should be representative of all
those subjects with the same values of explanatory vari-
ables who survive to c (Cox & Oakes, 1984). It would be
inappropriate to exclude censored cases, as this can bring
selection bias when censored data provide different infor-
mation than uncensored data. Assuming non-informative
or independent censoring still provides valid statistical
inference (Aalen et al., 2008).

In line with Leow and Crook (2014) and Djeundje and
Crook (2018), four delinquency states are defined:
• State 0 = Performing, i.e. the borrower is up to date.

5

• State 1 = One month in arrears, i.e. the borrower is
30 days past due.

• State 2 = Two months in arrears, i.e. the borrower is
60 days past due.

• State 3 = Three months in arrears, i.e. the borrower is
90 days past due. This is also the default definition.

Throughout the life of the mortgage, a borrower can
transit between different states. Fig. 1 depicts transitions
among the delinquency states defined above where the
default definition is considered an absorbing state. The
jumps are those possible in a one-month period, which
results in six plausible types of monthly transitions h → j:
0 → 1, 1 → 2, 2 → 3, 2 → 1, 1 → 0, and 2 → 0.

The intensity processes are structured such that they
account not only for repeated events but also for dis-
continuous risk intervals. This means that an individual
can transit from state h to state j more than once (re-
peated events), and it is possible that a subject is not
at risk of moving into state j for a given period of time
(discontinuous risk interval).

2.2. Data

2.2.1. Portfolio characteristics
Data on 67,827 mortgages originated from June 2006

to December 2015 from a UK financial institution were
gained.6 The dataset consists of both application data and
monthly records of behavioural data. For each account,
information from the origination date is available. Fig. 2
provides an overview of the portfolio’s characteristics.
The volume of new originations fluctuated over the time
horizon, with new lending peaking in the first half of
2008. However, in 2009 the amount of new business
reduced significantly, which suggests that the lender re-
stricted the exposure during the international financial
crisis (see panels (a) and (b)). At the same time, the
average loan-to-value (LTV), a metric that represents how
much collateral is kept behind the loan, decreased dur-
ing this recession period (panel (c)). This is expected, as
financial institutions tend to lend money to less risky
customers under adverse macroeconomic environments.
From 2010 onwards, the portfolio continued to grow.

6 The portfolio data are not available for reasons of commercial
confidentiality.
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Fig. 2. Portfolio data.
The portfolio comprises two types of mortgages: buy-
to-let (BTL) and owner-occupied. Under a BTL contract,
the borrower acquires the property with the objective
of renting it out, while a non-BTL mortgage is acquired
by those who buy a property to make it their residence.
This portfolio is mainly characterised by owner-occupied
mortgages (73.4% of the total lending). At the same time,
we observe different repayment types: interest-only, re-
payment, and split. Under an interest-only scheme, the
borrower commits to regular payments covering only the
interest on the borrowed balance. This means that the
principal does not change over time and the borrower
has to pay it back at the end of the contract (or re-
negotiate new terms, if possible). Repayment mortgages
are more common than interest-only mortgages and they
consist of regular payments covering not only interest
but also a proportion of the outstanding principal. If the
borrower follows the repayment schedule, then the mort-
gage will be fully repaid by the end of the contract.
Finally, split mortgages are a combination of interest-
only and repayment mortgages. In this study, the port-
folio presents 30.8% of interest-only mortgages, 64.5% of
repayment mortgages, and 4.7% of split mortgages.

It is common to observe more than one borrower
behind a mortgage contract. This could be the case when
couples buy their first house, where a joint income en-
ables them to access better contractual conditions. The
portfolio shows mortgages with up to four applicants,
with two applicants being the most common case (54.1%)
followed by single applicants (45.3%).

2.2.2. Macroeconomic data
Macroeconomic variables for the UK economy are also

analysed as potential covariates of the intensity processes
given that when the economy deteriorates, borrowers find
it more difficult to keep their financial commitments up
to date (Crook & Banasik, 2012). The pool of potential
candidates is selected based on economic theory and have
been extensively used in the literature (Bellotti & Crook,
2009, 2013a, 2013b; Djeundje & Crook, 2018; Kiefer &
Larson, 2015; Leow & Crook, 2016; Park, 2016). The fol-
lowing seven macroeconomic variables are included in

the analysis:

6

• Unemployment rate. In a downturn, the percent-
age of unemployed individuals increases, worsening
the repayment affordability, as an account holder is
more likely to be unemployed and unable to repay
as scheduled. Consequently, we would expect to see
higher delinquency rates when the unemployment
rate rises.

• Consumer price index (CPI). An increase in consumer
prices can be seen as a deterioration of purchasing
power, making debt repayments more difficult to
afford. On the other hand, inflation might be caused
by economic growth if the aggregate demand rises
faster than the aggregate supply, in which case it
would have a positive impact on repayments.

• House price index (HPI). The valuation of the prop-
erty (the collateral) is reflected in the reported LTV,
an indicator used by lenders to define the portfolio’s
risk profile. An increment of the property value is
translated into a lower LTV and, therefore, into a
less risky mortgage. This is the case because higher
valuations are seen as increased capital value (eq-
uity) which the borrowers are less keen to lose,
generating extra incentives to repay the mortgage
and greater collateral for a bank to take over if the
mortgage is not repaid.

• Five-year mortgage rate. Increases in the mortgage
rate make payment commitments more expensive,
affecting the individual’s ability to repay a debt.
Moreover, banks tend to offer higher interest rates
to customers that are considered riskier, to cover the
cost of default.

• Industrial production index (IPI). This index com-
piles information regarding the volume of produc-
tion for several industries.7 We used it as a proxy
for the gross domestic product (GDP), which is only
available on a quarterly frequency. Positive changes
represent economic growth and higher incomes;
therefore, we expect a reduction in transitions to-
wards delinquency and an increase in recovery rates
when the index of production improves.

7 Manufacturing, mining and quarrying, energy supply, and water
and waste management.
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Table 1
Potential covariates.
Variable type Variable Units

Borrower’s application data
(time-invariant covariates)

Loan-to-value (LTV) at origination %
Number of applicants 1 to 4
Marital status Categorical
Repayment type Categorical
Buy-to-let (BTL) indicator Categorical
Origination balance £000
Origination interest rate %

Borrower’s behavioural data
(time-variant covariates)

Balance £000
Remaining balance (% of origination balance) Basic points
LTV %

Other portfolio data
(time-variant covariates)

Property value £000
Contractual interest rate %

Macroeconomic data
(time-variant covariates)

Unemployment rate %
Consumer price index Index
House price index Index
5-year mortgage rate %
Industrial production index Index
Consumer confidence index Index
FTSE-100 Index
• Consumer confidence index. This index provides an
indication of expected future developments in house-
hold consumption and saving, based upon answers
regarding their expected financial situation and their
sentiments about the general economic situation,
unemployment, and capability of saving. An increase
in the index implies optimistic expectations regard-
ing the economy, which can be translated into better
recovery rates and lower levels of missed payments.

• FTSE-100. This index is a share price index of the
largest 100 companies listed on the London Stock
Exchange that summarises the financial market state
for the UK. Positive variations in the FTSE-100 are as-
sociated with better financial conditions and, there-
fore, with lower delinquency and default rates.

The complete list of the variables considered is de-
ailed in Table 1.

.3. Estimation results

As one of the objectives is to predict transition proba-
ilities, two independent samples were created: a training
ample consisting of mortgage data observed between
une 2006 and December 2011, and a test sample con-
aining information relating to accounts originated from
anuary 2012. All the estimations are developed on the
raining sample and validated on the test sample. To
nsure independence between the two samples, informa-
ion relating to accounts that originated before January
012 but observed from January 2012 is excluded. We
cknowledge that the selection of the time frames im-
lies that the estimations are performed on data observed
uring the financial crisis, and tested on post-crisis infor-
ation. Therefore, extra analyses considering alternative

ime frames were performed to understand the stability
f the results. More details are available in Appendix.
To account for recurrent events, we define a stratum

s the number of previous events experienced by the bor-
ower at each duration time t . The low number of events

n higher strata needs to be taken into consideration when

7

Table 2
Accounts by stratum.
Stratum 0 → 1 1 → 2 2 → 3 1 → 0 2 → 1 2 → 0

0 64,640 3,343 1,244 2,771 988 1,126
1 2,269 520 592 256 118
2 477 500
3 441

Total 67,827 3,863 1,244 3,863 1,244 1,244

estimating the transition intensities, as the reduced num-
ber of events of a given stratum might bring instability in
the coefficient estimates (Amorim & Cai, 2015). There are
at least three data manipulations that can be performed
to mitigate this problem (Therneau & Hamilton, 1997).
First, we could leave the information as it is and accept
this instability for higher risk intervals. Second, we could
disregard data with low events per stratum. Third, we
could combine the events in higher risk intervals into
one stratum. The last option was selected to estimate the
transition intensities, as it avoids excluding data from the
sample while bringing more robustness to the coefficient
estimates. Table 2 presents the number of accounts by
stratum after grouping. For example, we observe 2,269
accounts experiencing one payment down just once, and
441 accounts experiencing this event at least three times.
The majority of the events are concentrated in move-
ments out of state 0, where we observe accounts ‘‘failing"
several times throughout the sample horizon. Moreover,
the assumption of considering three months in arrears
as an absorbing state is reflected in the definition of the
stratum, as no account has previously moved out of state
3. This is also consistent with the standard definition of
default as 90 days past due.

Table 3 presents the estimated parameters for the
six transition intensities under the AG and PWP models.
For time-dependent variables the first, second, third, and
sixth lags were considered to allow for delayed effects.
Transformations of the macroeconomic variables were
also used (annual growth rates and first differences). As
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Table 3
Regression outputs.
Covariate Transition intensity 0→1 Transition intensity 1→2 Transition intensity 2→3

AG PWP-CP PWP-GT AG PWP-CP PWP-GT AG PWP-CP PWP-GT

Strata 1.519*** 0.643*** n.a.
LTV at Orig. 0.016*** 0.016*** 0.015***
Repaymenta −0.218*** −0.206*** −0.210***
One Applicantb 0.297* 0.297* 0.236**
Marital Status = Singlec 0.413*** 0.416*** 0.349***
Balance at Orig. (Log) −0.162*** −0.170*** −0.157***
Balance left (%), Lag 3 0.168*** 0.172*** 0.164*** 0.210** 0.202* 0.175* 0.249*** 0.249*** 0.187***
LTV, Lag 3 0.003* 0.003* 0.005***
Int. Rate, Lag 3 0.149*** 0.146*** 0.133*** 0.090** 0.088* 0.311*** 0.311*** 0.256***
Unemp. Rate (D1) 0.560*** 0.537*** 0.549***
Unemp. Rate (YoY) 0.954*** 0.961*** 0.558** 1.027** 1.027**

Covariate Transition intensity 1→0 Transition intensity 2→1 Transition intensity 2→0

AG PWP-CP PWP-GT AG PWP-CP PWP-GT AG PWP-CP PWP-GT

Strata −0.123*** 0.638*
One Applicantb −0.210*
Marital Status = Singlec −0.202*** −0.202*** −0.139*** −0.350**
BTLd 0.185*** 0.343* 0.415**
Interest Rate at Orig. −0.302***
Balance at Orig. (Log) 0.123** 0.128** 0.144***
LTV, Lag 1 −0.007** −0.007**
LTV, Lag 3 −0.008*** −0.008*** −0.008*** −0.007** −0.007**
Property Value, Lag 3 0.135** 0.133**
Int. Rate, Lag 3 −0.289*** −0.255*
IPI (YoY), Lag 3 1.286** 1.232*
IPI (D1) 0.225** 0.228** 0.253**
Unemp. Rate (D1) −0.490***
Mortgage Rate (D1) −0.905* −0.938*

*** p < 0.01, ** p < 0.05, * p < 0.1.
D1 = first difference; YoY = year-over-year growth rate.
aRepayment type: 1 = Repay, 0 = Interest-only.
bNumber of applicants: 1 = One applicant, 0 = More than one applicant.
cMarital Status: 1 = Single, 0 = Non-single.
dBTL: 1 = Buy-to-let, 0 = Owner-occupied.
one of the purposes of this study is to build out-of-time
forecasts of transition probabilities, only model speci-
fications with significant coefficient estimates are con-
sidered. This implies using different combinations (and
lags) of covariates to explain the dynamics behind each
intensity process. We performed a pre-assessment based
on univariate analysis by estimating each transition in-
tensity on one covariate at the time, considering differ-
ent lag specifications for both the behavioural variables
and the macroeconomic factors in order to select a first
pool of potential explanatory variables. We then com-
bined several of these explanatory variables, and the final
model specification was selected such that all covariates
were significant at the 10% level. We also controlled for
multicollinearity (by removing all pairs with correlation
above 75%), for autocorrelation and heteroscedasticity (by
implementing robust standard errors).

The covariates for the counting process models (AG
and PWP-CP) are the same, and the respective coefficient
estimates are similar, showing that the marginal effect of
both the account-specific metrics and the macroeconomic
environment is not impacted by the number of previously
experienced events. The stratum (or number of previous
events) is an explicit covariate of the AG model and it
8

is significant in each estimation, except for transitions
2 → 1. Only the transition 1 → 0 shows a negative
coefficient estimate, implying that the chances of recov-
ering from one payment down decelerate if the account
has experienced this event in the past. On the other hand,
accounts that have previously been in the delinquent state
face an increased risk of missing one payment. This risk
is relatively large for movements out of state 0, as having
transited once in the past increases the intensity rate by
356.8% (exp(1.519) − 1).

The different selection of covariates for the PWP-GT
model is triggered by the definition of duration time,
which is defined as the time since the loan was originated
for the AG and PWP-CP models, and as the time since
the previous event for the PWP-GT model. This selection
of explanatory variables differs especially for intensities
towards recovery (1 → 0, 2 → 1, and 2 → 0).

Accounts with high LTV are more likely to miss one
payment throughout the life of the contract. The LTV
represents the proportion of exposure that is collater-
alised against the property, and it is a key element to be
considered in any delinquency or loss model for a retail
mortgage portfolio. The LTV at origination is determined
by the bank’s risk appetite. It describes how much risk
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the financial institution is willing to take. The behavioural
or current LTV is affected by the payments made by
the borrower and by the property’s revaluation. Accounts
with low LTV are considered less risky as they have lower
incentives to default given that they would face a higher
financial loss. Similarly, delinquent accounts with high
current LTV are less prone to recover. These relationships
are analogous to those of Kelly and O’Malley (2016).

The higher the percentage of balance outstanding, the
igher the intensity rate of accounts moving into delin-
uency and into default, implying that borrowers tend
o miss payments in the early stages of the repayment
chedule. Moreover, accounts with a large absolute value
f outstanding exposures at the origination date of the
ontract are less likely to miss a payment, as it is ex-
ected that low-risk accounts will have access to larger
ending. Beran and Djaïdja (2007) found the opposite re-
ationship in their survival model, concluding that large
ortgages are at higher risk of default.
Repayment mortgages show lower transition rates to-

ards delinquency (state 1) compared to interest-only
IO) accounts. Under an interest-only scheme, the bor-
ower commits to regular payments covering only the
nterest on the principal. This means that the balance does
ot change over time and the borrower has to pay it back
t the end of the contract (or re-negotiate new terms, if
ossible). Repayment mortgages consist of regular pay-
ents covering not only interest but also a proportion
f the outstanding principal. IO accounts are more likely
o default at the end of the contract when they need to
ake the final capital payment than throughout the life
f the loan when the contractual payments are relatively
ow (compared to a repayment mortgage).

Banks charge higher interest rates to riskier accounts
nd this is reflected in the positive sign on the interest
ate obtained for the transition towards delinquency and
efault. At the same time, increases in interest rates are
ranslated into higher costs for borrowers under a flexible
nterest rate contract, meaning higher chances of missing
payment. Overall, mortgage accounts with single bor-

owers or one applicant are more likely to miss two or
hree payments, while married borrowers (or those in a
artnership) have better chances of recovering.
Increases in delinquency and default rates are ex-

ected during downturns. For instance, poor macroeco-
omic conditions are reflected in a higher unemployment
ate and in reductions of GDP growth. In economic re-
essions, individuals experience more difficulties keeping
heir finances up to date, resulting in an overall increase
f missed payments. The opposite is expected under a
enign economy, in which access to lending is easier and
ndividuals have more chances of making repayments. A
ood economic environment helps borrowers in the up-
o-date state to stay in that position, while delinquent
ccounts have better opportunities to recover. On the
acroeconomic side, the change in the unemployment

ate helps to explain transitions towards delinquency and
efault. As an economy deteriorates, the percentage of un-
mployed individuals increases, worsening the ability to
epay. Consequently, we expect to see higher delinquency
ates when the unemployment rate rises. The industrial
 t

9

production index and the five-year mortgage rate help
to explain recovery movements, showing expectations
aligned with those discussed in Section 2.2.

Finally, when the same covariate is selected for tran-
sition intensities to move in the opposite direction, the
sign of the coefficient estimates also changes direction
(e.g. marital status and current LTV for intensities 1→2
and 1→0), showing consistency in the impact of the
selected drivers.

2.4. Transition probabilities

The intensity processes described by Eqs. (3), (6), and
(7) represent the instantaneous risk of moving from one
delinquency state to another one. However, practition-
ers and regulators are more interested in understanding
the dynamics of the delinquent subjects. To do so, the
results presented for each intensity process can be trans-
lated into account-specific transition probability matrices.
These matrices show the probabilities Phji(s, t) of moving
from any state h to any state j between any two points
n time s and t , where s < t . Note that s and t are
reated as non-negative integers in subsequent formulae.
pecifically, for each borrower i and duration times s and
, it is possible to predict

i(s, t) =

⎛⎜⎝P00i(s, t) P01i(s, t) P02i(s, t) P03i(s, t)
P10i(s, t) P11i(s, t) P12i(s, t) P13i(s, t)
P20i(s, t) P21i(s, t) P22i(s, t) P23i(s, t)

0 0 0 1

⎞⎟⎠ , (8)

here each row sums to 1, and the last row shows state
(the default state) as an absorbing state.
These transition probabilities are characterised by a

on-homogeneous Markov process and can be estimated
sing the Aalen–Johansen estimator (Aalen & Johansen,
978), also known as the product-integral estimator:

i(s, t) =

∏
u∈(s,t]

{I+dAi(u)} ∼=

∏
u∈(s,t]

{I+Ai(u)−Ai(u−1)}, (9)

here Ai(t), known as the generator matrix, contains
ubject-specific cumulative transition intensities. The el-
ments of Ai(t) are given by

Ahji(t, βhj) =

∫ t

0
αhji(u)du

∼=

t∑
τ=0

Yhi(τ )αhj0(τ ) exp(β′

hjZhji(τ )), (10)

hhi(t, βhj) = −

∑
h̸=j

Ahji(t, βhj, Zhji(t)). (11)

The estimator of the cumulative hazard function is

ˆhji(t, β̂hj) =

t∑
τ=0

Yhi(τ ) exp(β̂
′

hjZhji(τ ))dÂhj0(τ ), (12)

here the estimate for the increment of the cumula-
ˆ
ive baseline hazard, dAhj0(t), when considering tied
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Fig. 3. Estimated cumulative baseline hazards for the AG and PWP-CP models.
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Âhj0(t)

=

di∑
r=1

1∑n
i=1 exp(β̂

′

hjZhji(t)) −
r−1
di

∑di
i=1 exp(β̂

′

hjZhji(t))
. (13)

The estimated cumulative baseline hazards obtained
rom the Andersen–Gill model (Âhj0(t)) and from the PWP-
P model (Âhj0k(t)) are depicted in Fig. 3. The AG cumu-
ative baseline hazards represented by the black dashed
ines are common to all subjects, regardless of the num-
er of previous events. On the other hand, the PWP-CP
umulative baseline hazards are stratified by the num-
er of previous k events. The curve for the first stratum
i.e. for previous events = 0) uses information from all
he accounts that are at risk of experiencing the event
or the first time, while, for instance, the third stratum
ses information of accounts that have experienced the
vents twice and are at risk for the third time. As the clock
ontinues ticking between events, the cumulative base-
ine hazards for the different risk intervals are ‘‘shifted’’
owards the right given that an account has to first ex-
erience the event before being part of a higher stratum.
he baseline cumulative hazards for movements towards

8 See Aalen et al. (2008), Ozenne, Sørensen, Scheike, Torp-Pedersen,
and Gerds (2017).
10
delinquency are higher with a higher number of repeated
events (see panels (a) and (c)). This means that those
accounts that have already missed one or two payments
in the past have a higher probability of doing it again. In
contrast, borrowers are more likely to show a recovery if
they miss one or two payments for the first time. How-
ever, this probability decreases if the account recurrently
enters into a delinquency state (see panels (b), (d), and
(e)), implying that even though the subject might have
been able to totally or partially pay back the amount due,
she struggles to repeat this action.

The common AG cumulative baseline hazard is gener-
ally aligned with the results obtained for the first stratum
(k = 0) of the PWP-CP model. Given that default is
ssumed to be absorbent, the cumulative baseline hazard
nder both approaches is the same. In all cases, we ob-
erve that accounts in state 1 are more prone to recover
han to move into state 2. At the same time, those bor-
owers that miss two payments are also more likely to
ecover than to move into default.

Similar to the PWP-CP model, the PWP-GT approach
enerates risk interval-specific baseline hazards. The dif-
erence relies on the treatment of the duration time.
hile the PWP-CP considers the exact month an event
ccurs (the time from entry), the PWP-GT looks at the
ime from the previous event. Fig. 4 shows that the PWP-
T results are less smooth, and this pattern is driven by
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the concentration of observations for a given stratum. For
instance, the recurrence of transition 2 → 0 is observed at
different times since origination under the PWP-CP model
(from t = 10 to t = 50), while under the gap time
model the same observations are concentrated in the first
six months since the previous event, with a maximum
horizon of 16 months.

Fig. 5 presents the estimated cumulative hazard for
transitions 0 → 1 (i.e. Â01i(t, β̂01)) for two selected
accounts experiencing repeated events. Account 1 moved
from state 0 to state 1 at duration times t = 12 and
t = 21, and moved back to state 0 at times t = 13
nd t = 22. Account 2 transitioned at times t = 50
nd t = 58, returning to state 0 at times t = 51 and
= 59. These ‘‘jumps’’ are represented by the disconti-
uity in the cumulative hazards. The discontinuous risk
nterval appears because the subject is no longer at risk
f making the transition 0 → 1 at those specific duration
imes. When comparing the AG and PWP-CP models, Fig. 5
hows that every time an account misses one payment,
he slope of the estimated cumulative hazard significantly
ncreases, especially if the event is observed in the early
onths since origination. Moreover, the estimated impact

s larger when we stratify the baseline hazard by the
umber of previous events (panel (b)). This characteristic
s also observed under the PWP-GT model, where the
uration time resets to zero after each observed transition
panel (c)).
11
The following step is to translate the estimated cumu-
ative intensities into account-specific transition probabil-
ties. In order to bound these probabilities to the space
0, 1], the Aalen–Johansen estimator (Eq. (9)) can only be
pplied to constant or increasing cumulative hazards. The
haracteristics behind the results obtained from the PWP-
P and the PWP-GT models (stratified hazards with lower
r crossing cumulative baseline hazards for recurrent re-
overy events; see panels (b), (d), and (e) of Figs. 3 and
) imply that we face a limitation to obtain the corre-
ponding transition probabilities. However, these model
pecifications shed light on the impact recurrent events
ave on the instantaneous risk of transitioning. Conse-
uently, in the remainder of this study, we concentrate
n results obtained from the AG model (see Fig. 6).
We assess the accuracy of the model by applying the

ethodology developed by Leow and Crook (2014) to test
he results obtained through the estimation process of
he transition intensities. The coefficient estimates from
he AG model are applied to the accounts observed in
he test sample, and transition probabilities P̂hji(s, t) are
omputed for each account. These probabilities are then
sed to predict transitions from state h to state j. Finally,
he predictions are compared against actuals (observed
ransitions) to validate the estimation results.

The first step is to define a time horizon, as the proba-
ilities can be computed for any combination of duration
imes s and t . For this exercise, we are interested in three
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Fig. 5. Estimated cumulative hazard, Â01i(t, β̂01). Example.
Fig. 6. Distribution of estimated transition probabilities between 12 and 15 months on book.
predictions: P̂hji(s, s + 1), P̂hji(s, s + 3), and P̂hji(s, s + 6).
The aim is to study different time lengths, e.g. predictions
one, three, and six months apart from the starting point.
Given that any starting point could have been selected, we
concentrated on accounts observed between six and 18
months since the origination date, i.e. s = {6, . . . , 18}. The
second step is to compute cut-off values (chj) to predict
whether a transition takes place. These cut-offs are se-
lected such that the proportion of accounts observed to go
through the transition h → j in the training sample is the
same proportion predicted to transit in the test sample.
For each individual i in the test sample, the prediction to
12
move to state j at time t given an initial state h at time s
is defined as

j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if P̂h0i(s, t) > ch0
1 if P̂h0i(s, t) ≤ ch0 and P̂h1i(s, t) > ch1
2 if P̂h0i(s, t) ≤ ch0 and P̂h1i(s, t) ≤ ch1

and P̂h2i(s, t) > ch2
3 otherwise.

(14)

The first step is to note the observed transitions (pro-
portions) in the training sample between each pair of

states. For instance, if we concentrate on movements out
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of state 0, these observed proportions are calculated as

P train
0j (s, t)

=
N train

0j (s, t)

N train
00 (s, t) + N train

01 (s, t) + N train
02 (s, t) + N train

03 (s, t)
,

(15)

where j = {0, 1, 2, 3}.
We then estimate cut-off probabilities, c0j, such that

the proportion of accounts predicted to transit in the test
sample matches the observed proportion in the training
sample obtained in Eq. (15). To do so, the target number
of accounts predicted to undergo the transition 0 → 0 in
the test sample is defined as

N̂ test
00 (s, t) = P train

00 (s, t)

∗
(
N test
00 (s, t) + N test

01 (s, t) + N test
02 (s, t) + N test

03 (s, t)
)
. (16)

Once we define this target, we order the predicted
transition probabilities P̂ test

00 (s, t) from the highest to the
lowest value. The first N̂ test

00 (s, t) accounts obtained from
this list are predicted to stay in state 0 (0 → 0). The
estimated transition probability at which this occurs is
the cut-off value, c00. We then repeat this exercise for
the remaining transitions (0 → 1, 0 → 2, and 0 → 3),
and the same approach is followed for movements out of
states 1 and 2.

This methodology possesses the disadvantage of dis-
regarding the natural competing risk of the states, where
the order of selecting the accounts to move to any delin-
quency state has an impact on the final results. For ex-
ample, those accounts first selected to be in state 0 can
no longer be selected to be in state 1 at time t . Instead
of comparing all the estimated transition probabilities at
the same time, a step-process is specified. Given that
this method focuses on the observed proportions of ac-
counts undergoing the different states, it ensures predic-
tions among all the states, and therefore it was selected
for this analysis.9

Table 4 summarises the prediction results obtained
for accounts in the test sample. The table presents the
average proportion of accounts in the test sample that are
predicted to be in state j at time t after applying the cut-
offs defined by Eq. (14) relative to the observed accounts
in state j, i.e. predicted accounts in state j

observed accounts in state j . Moreover, bootstrap-
ing analysis was performed to determine confidence
ntervals around these accuracy ratios. Specifically, for
ach combination of s and t analysed here, we generated
000 random samples with replacement and calculated
he 95th percentile confidence intervals. Notice that at
igher states, the confidence interval is much larger than
t lower states, and this is probably due to the smaller
umber of observations in those states.
Predictions for the up-to-date portfolio, that is for ac-

ounts in state 0, are very accurate across the three win-
ows considered, as an accuracy ratio very close to 1 was
btained. On the other hand, the test sample has few cases
n the delinquency states (less than 0.5% of the portfolio);

9 Refer to Djeundje and Crook (2018) for an alternative approach to
define the cut-off values.
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therefore, it is reasonable to observe less accuracy in
the results for the under-performing accounts. Except for
transitions towards state 2 at time t = s + 1, the model
tends to overestimate the number of accounts missing
payments, especially for the defaulted population three
and six months after the starting reference date, where
the predicted number of accounts in state 3 is on average
2.61 times and 2.68 times, respectively, the number of
observed accounts. To understand whether this overes-
timation is produced by model bias or by population
drifts, we repeated this exercise on an 80% random sample
obtained from the training sample (in-sample analysis).
The difference between the predicted and observed values
decreased compared to the results obtained for the test
sample (see Table 5). This suggests that the overestima-
tion might be explained by population drift and not by
estimation biases. Note that population change is a known
problem in credit risk modelling (Leow & Crook, 2016).

3. Scenario-conditional transition probabilities

Scenario-conditional forecasts for the six transition
intensities are made using the parameter estimates
obtained from the AG model. This implies that each
component of Table 3 needs to be projected across a pre-
defined horizon window. There are three types of covari-
ates for which we need forecasts: application variables,
behavioural variables, and macroeconomic variables. Ap-
plication variables are, by definition, static across time,
and the macroeconomic scenarios were obtained from the
Bank of England.10 A challenge is then to consistently
forecast the account-level behavioural data considering
that the economy and the delinquency state of the ac-
count that are unobserved at each future time t would
have an impact on the account’s behaviour. We present a
method to do this in Section 3.2, below.

3.1. Macroeconomic scenarios

Every year, the Prudential Regulation Authority (PRA)
publishes two stress testing scenarios (one baseline and
one severe) that UK financial institutions are meant to
use for the Internal Capital Adequacy Assessment Process
(ICAAP). The scenarios are given such that consistency
in the correlation among the different macroeconomic
factors is retained. The PRA provides macroeconomic sce-
narios on a quarterly frequency. However, the transition
intensities in our paper are estimated and projected on
a monthly frequency, as movements across delinquency
states occur from one month to another. This implies
that an interpolation process to obtain monthly macroe-
conomic series is necessary. A simple approach could
involve assuming a constant growth rate for the months
belonging to the same quarter; nevertheless, this pro-
cess would dismiss any volatility within a given quarter.
To avoid this problem, a natural cubic spline interpola-
tion was implemented by assuming that the information
provided by the PRA matches the quarter-end values.

10 https://www.bankofengland.co.uk/stress-testing/2016/stress-test-
scenarios-2016

https://www.bankofengland.co.uk/stress-testing/2016/stress-test-scenarios-2016
https://www.bankofengland.co.uk/stress-testing/2016/stress-test-scenarios-2016
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Table 4
Prediction results: Out-of-time and out-of-sample average accuracy ratios.
State t = s + 1 t = s + 3 t = s + 6

Accuracy (Conf. interval) Accuracy (Conf. interval) Accuracy (Conf. interval)

0 0.9989 (0.9988, 0.9991) 0.9984 (0.9982, 0.9986) 0.9979 (0.9977, 0.9982)
1 1.4249 (1.3588, 1.5309) 1.4754 (1.4048, 1.5929) 1.5449 (1.4734, 1.6681)
2 0.9926 (0.9127, 1.2778) 1.2930 (1.1826, 1.6537) 1.2300 (1.1340, 1.5371)
3 1.7179 (1.2778, 2.7969) 2.6090 (1.8078, 3.7287) 2.6778 (1.8922, 4.2445)

Note: The table presents the number of predicted accounts relative to the number of observed accounts in each
state j for borrowers in the test sample. The ratios are mean values across duration times s = {6, . . . , 18}. We

present the 95th percentile bootstrapped confidence intervals in parentheses.
Table 5
Prediction results: In-sample average accuracy ratios.
State t = s + 1 t = s + 3 t = s + 6

Accuracy (Conf. interval) Accuracy (Conf. interval) Accuracy (Conf. interval)

0 0.9996 (0.9994, 0.9998) 0.9993 (0.9991, 0.9995) 0.9990 (0.9987, 0.9992)
1 1.0994 (1.0583, 1.1573) 1.1387 (1.0930, 1.2044) 1.1672 (1.1267, 1.2434)
2 0.9725 (0.9043, 1.1229) 1.1326 (1.0517, 1.3551) 1.2032 (1.1029, 1.4551)
3 0.8751 (0.8002, 1.3647) 1.0502 (0.9083, 1.7036) 1.2152 (1.0444, 2.1550)

Note: The table presents the number of predicted accounts relative to the number of observed accounts in each
state j for borrowers in the training sample. The ratios are mean values across duration times s = {6, . . . , 18}.

We present the 95th percentile bootstrapped confidence intervals in parentheses.
Fig. 7. UK macroeconomic scenarios used for forecasting transition intensities.
Based on the results presented in Table 3, the macroe-
onomic factors determining the alternative transition in-
ensities are the house price index (HPI) used to esti-
ate the borrower’s property value, the unemployment

ate, the industrial production index, and the five-year
ortgage rate. Given that the PRA only provides scenario-
pecific forecasts for the HPI and the unemployment rate,
t was necessary to extend the PRA’s assumptions to ob-
ain scenario-specific forecasts for the industrial produc-
ion index and for the mortgage rate. To do so, the PRA’s
vailable information was used as a proxy to expand the
cenarios. We performed regression analyses to select the
ombination of PRA variables that better represent the
ovements of the target variables based on in-sample fit.
e applied the estimated coefficient estimates to the se-

ected explanatory variables to obtain estimated baseline
nd stressed values for the industrial production index
nd mortgage rate.11
The macroeconomic series used to forecast the tran-

ition probabilities under the alternative scenarios are
resented in Fig. 7.

11 Refer to Appendix A.3 in the Appendix for more details relating
this methodology.
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3.2. Forecasting scenario-conditional transition intensities
and transition probabilities

The UK mortgage data show account-level applica-
tion and monthly behavioural information until December
2015 for accounts originated between June 2006 and De-
cember 2015. A two-year forecast starting in January 2016
was chosen to allow for enough spread between the base-
line and stress scenarios. All non-defaulted accounts that
originated between July 2014 and June 2015 and were
still open as of December 2015 were selected to produce
the forecasts. The selection of alternative origination dates
implies that different duration times are considered at the
starting point (i.e. January 2016).

The first step to forecast transition probabilities is
to produce scenario-conditional cumulative hazard func-
tions. For each scenario scen, the cumulative hazard is
estimated following Eq. (17):

Âscen
hji (t, β̂hj) =

t∑
τ=0

Y scen
hi (τ ) exp(β̂

′

hjZ
scen
hji (τ ))dÂhj0(τ ). (17)

The cumulative baseline hazard (Âhj0(t)) is not risk
interval-specific, meaning that each borrower receives the

same specification regardless of how many times she has
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experienced the event of interest. However, this variance-
corrected approach uses the risk interval information to
account for dependency on repeated events for the same
subject, implying that we need to know how many times
an account has transited by any future time t .12. A one-
step process was developed:

1. Select all non-defaulted accounts as of the lat-
est available reporting date. Detect the final delin-
quency status to allocate the accounts into the
corresponding risk set considering if the accounts
have already experienced the event.

2. For each account, estimate the cumulative intensity
since the origination date (in-sample estimation).

3. For each account and for each macroeconomic sce-
nario, forecast the six transition intensities one
month out-of-time, i.e. from t to t + 1.

4. For each account and for each macroeconomic sce-
nario, estimate the one-month transition probabil-
ity using the Aalen–Johansen estimator:

P̂scen
i (t, t + 1) = I + Âscen

i (t + 1) − Âscen
i (t). (18)

5. Based on the transition probabilities estimated in
step 4, decide whether each account undergoes
the transition h → j. A series of cut-off values
was defined by applying Eq. (14) to each single
one-month transition using the training and test
samples. This meant obtaining different cut-off val-
ues for different duration times. Because the cut-off
values were determined in-sample, these are not
scenario-dependent. The comparison between the
estimated P̂scen

i (t, t + 1) and the cut-off values de-
termines whether a transition takes place between
t and t + 1. The estimated delinquency status ob-
tained at this stage becomes the starting point for
forecasting the transition in the following month,
i.e. for P̂scen

i (t + 1, t + 2).
6. Based on the delinquency status estimated in step

5, determine the current value for the behavioural
variables.

7. Reset the at-risk indicator Yhi(t) based on the re-
sults from step 5, and repeat from step 3 until
reaching the end of the forecasting window.

The steps listed above involve different levels of so-
phistication. The challenge appears in the forecast of the
behavioural variables as the application variables remain
constant across time and the macroeconomic scenarios
are given by the series depicted in Fig. 7. The time-
varying portfolio data needed for the estimation pro-
cess are account-level information for the exposure (or
balance), the property value (to determine the current
LTV), and the interest rates at each future time t . As the
behavioural data used in the estimation processes are
lagged, we first decide whether the account experiences
a transition and we then estimate the current value of the
behavioural information based on this decision.

Balance: if the account is selected to be performing
(i.e. the account is selected to be in state 0) the balance is

12 The stratum is a component of Zscen(t) in Eq. (17).
i
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amortised following the expected contractual repayment:

Balancesceni (t) = Balancesceni (t − 1)

−
(
ContractualRepaymenti − Interestsceni (t)

)
, (19)

here ContractualRepaymenti is the account-specific con-
ractual repayment covering both balance amortisation
nd interest payments, and Interestsceni (t) is the interest
aid on the remaining balance, defined as

nterestsceni (t) = Balancesceni (t − 1) × MonthlyInterestRatei.

(20)

We assume that the contractual repayment remains
onstant across time, i.e. that the borrower does not make
ignificant overpayments and the contractual interest rate
oes not change. If the account is selected to be under-
erforming (i.e. in state 1 or 2), the balance observed in
he previous month is increased by accrued interest:

alancesceni (t) = Balancesceni (t − 1)

× (1 + MonthlyInterestRatei). (21)

Property value: the collateral value is indexed using
the scenario-specific house price index (HPI):

CollateralValuesceni (t) = CollateralValuesceni (t − 1)

×
HPIscen(t)

HPIscen(t − 1)
. (22)

This information is used to forecast the borrower’s LTV
t each future reporting time t:

urrentLTV scen
i (t) =

Balancesceni (t)
CollateralValuesceni (t)

. (23)

Contractual interest rate: assumed to be fixed through-
out the life of the mortgage.

This methodology enabled us to build a full path of
transition probabilities considering, for example, a two-
year forecast (from January 2016 to December 2017) un-
der alternative macroeconomic scenarios. Fig. 8 compares
the distributions of the estimated transition probabili-
ties for movements towards delinquency and default. In
line with economic intuition, transition probabilities un-
der stressed scenarios are higher compared to the base-
line. This is evidenced by the fatter tail of the stressed
distributions.

As the vast majority of the portfolio does not show
missed payments, the remainder of this analysis is con-
centrated on transitions out of state 0. Fig. 9 presents
the average relative spread between stress and baseline
cumulative hazards for transitions 0 → 1 by origina-
tion vintage.13 Panel (a) shows that while the spread
follows a similar shape across all origination vintages,
the level of the peak is significantly different. By Decem-
ber 2016, the average cumulative hazard under stress is
12.1% higher than the cumulative hazard under baseline
for the 2015m6 vintage, while for the 2014m7 vintage,

13 The relative spread is calculated as
(Ast

01(t)
Abl
01(t)

− 1
)

× 100, where bl

= baseline and st = stress.
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Fig. 8. Distributions of scenario-conditional transition probabilities.
Fig. 9. Average cumulative hazard 0 → 1. Relative spread stress/baseline.
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this spread is approximately 7.5%. This implies that the
relative risk of moving into one payment down under
stress decreases the longer the account has been on book.

Fig. 10 presents the average transition probabilities
for both baseline and stress scenarios. In line with eco-
nomic theory, the probability of staying in state 0 is
lower under stressed conditions. Similarly, movements
into delinquency are more likely in a downturn.

The scenario-conditional transition probabilities also
differ by segments. Repayment accounts and single appli-
cants show a higher risk of entering into delinquency than
repayment and multiple/married applicants. This line of
reasoning is also reflected in the analysis by scenario.
Fig. 11 shows average transition probabilities P̂ scen

01 (t) by
scenario and origination segment. While the spread be-
tween stress and baseline figures for a given segment
is similar, the level of the transition probability is sig-
nificantly different. For example, by October 2016, the
average stressed P̂ scen

01 (t) is 0.38% for IO accounts and 0.45%
for repayment accounts, while the spread between stress
o

16
and baseline for both segments remains around 28.4%
(panel (b)). Similarly, single applicants face an average
transition probability of 0.47% in October 2016, while
married applicants have a lower probability of 0.40%, but
in both cases the spread between stress and baseline
scenarios is similar (panel (c)).

It is possible to apply the Aalen–Johansen estimator
to obtain transition probabilities between any duration
times under each macroeconomic scenario by applying
Eq. (24):

P̂scen
i (s, t) =

∏
(s,t]

{I + Âscen
i (u) − Âscen

i (u − 1)}. (24)

Fig. 12 presents the average one-, three-, and six-
onth transition probabilities, where, considering the up-

o-date book as the starting state, we plot the probability
f being in state 0 (panel (a)) or in state 1 (panel (b)) one,
hree, and six months after. Because these are forward
ransition probabilities, we expect to observe the peak

f the stressed scenario at different calendar times. For
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Fig. 10. Average one-month transition probabilities by scenario.
Fig. 11. Average one-month transition probabilities P̂ scen
01 (t, t + 1) by scenario and segment.
instance, P̂ scen
01 (t, t + 1) incorporates transition intensity

information of the following month, while P̂ scen
01 (t, t + 6)

considers transition intensity information of the next six
months. Furthermore, the results show that the levels of
17
the average transition probabilities change together with
the forecast time horizon, as it is more probable that an
account that is in state 0 at any time t will stay in the
same state the following month, but it has more chances
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Fig. 12. Average one-, three-, and six-month transition probabilities by scenario.
f moving towards delinquency in the next six months
under any scenario).

.3. Model usage: Practical implications

An added complexity that IFRS9 brought to finan-
ial institutions is forecasts of forward-looking expected
redit losses when performing stress testing exercises.
FRS9 requires a bank to allocate accounts into stages
f a significant increase in credit risk since the initial
ecognition has been observed. The criteria to trigger a
hange in stage allocation can be quantitative (based on
efault risk) or qualitative. The repayment performance or
elinquency status is an example of a qualitative criterion.
herefore, being able to estimate and predict transitions
etween delinquency states for any macroeconomic sce-
ario enables the lender to better reflect the impact of
efault risk in future provisions.
For instance, predicting the timing of a movement

rom up to date (state 0) to one payment down (state 1)
ranslates into triggering a staging criterion to allocate the
oan into stage 2, resulting in the calculation of lifetime
xpected credit losses. Multi-state models allow one to in-
er the time an account will spend in a given state before
ransitioning to an alternative delinquency state. If the
oan is then predicted to move back to state 0, then 12-
onth expected credit losses will be calculated instead.
his might impose a significant reduction in provisions,
epending on the loan’s characteristics and maturity date.
owever, this might not be the case under a stressed
cenario. Understanding the probable path this account
ill experience under different economic environments
elps forecast impairment losses at any future point.

. Conclusions

The literature studying the applications of survival
odels and intensity models to credit risk portfolios has
ncreased rapidly in recent years. At the same time, stress

18
Table 6
Macroeconomic data sources.
Variable name Source

Consumer Confidence Index OECD
Consumer Price Index (CPI) ONS
FTSE-100 Yahoo Finance
House Price Index (HPI) HM Land Registry
Industrial Production Index OECD
Unemployment Rate ONS
5-year Mortgage Rate Bank of England

testing analysis is a vitally important activity for banks
to protect depositors and the wider public from losses
in the event of severe but plausible adverse economic
events. Banks need to provide stress testing results to
regulators on a regular basis and carry out stress tests to
compute economic capital. This study presented a new
approach to forecast delinquency states and transition
probabilities among alternative macroeconomic scenar-
ios based on a dynamic multi-state model, providing a
suitable framework under IFRS9.

The contribution of this research is threefold. First, we
estimated a delinquency multi-state model for residen-
tial mortgages. Previous studies have focused on similar
specifications for credit cards (Djeundje & Crook, 2018;
Leow & Crook, 2014), but ours is the first study to consider
six plausible types of transitions for a mortgage lending
portfolio. (Kelly and O’Malley (2016) based their study on
movements into and out of default only.) Our estimation
process considered both account-specific data (applica-
tion and behavioural information) and macroeconomic
series. The signs obtained for the coefficient estimates
were aligned with expectations and economic intuition.

Second, the estimation and forecast of transition prob-
abilities accounted for recurrent events. We considered
three types of variance-corrected approaches: the Ande-
rsen–Gill model and the PWP-CP and PWP-GT models
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Table 7
Stability of coefficient estimates, transition intensity 0 → 1.
Covariate Up to 2011 Up to 2012 Up to 2013 Random 70%

AG PWP-CP PWP-GT AG PWP-CP PWP-GT AG PWP-CP PWP-GT AG PWP-CP PWP-GT

Strata 1.519*** 1.495*** 1.480*** 1.494***
LTV at Orig. 0.016*** 0.016*** 0.015*** 0.014*** 0.014*** 0.014*** 0.013*** 0.013*** 0.012*** 0.011*** 0.010*** 0.010***
Repaymenta −0.218*** −0.206*** −0.210*** −0.166*** −0.146*** −0.156*** −0.108*** −0.087** −0.100*** −0.058 −0.034 −0.064*
Balance at Orig. (Log) −0.162*** −0.170*** −0.157*** −0.127*** −0.132*** −0.125*** −0.095** −0.100** −0.094** −0.077* −0.077* −0.071*
Balance left (%), Lag 3 0.168*** 0.172*** 0.164*** 0.171*** 0.174*** 0.165*** 0.174*** 0.177*** 0.167*** 0.166*** 0.169*** 0.156***
Current Int. Rate, Lag 3 0.149*** 0.146*** 0.133*** 0.143*** 0.133*** 0.125*** 0.148*** 0.130*** 0.126*** 0.230*** 0.207*** 0.210***
UK Unemp. Rate (D1) 0.560*** 0.537*** 0.549*** 0.570*** 0.497*** 0.469*** 0.587*** 0.482*** 0.428*** 0.385** 0.290* 0.218

***p < 0.01, **p < 0.05, *p < 0.1.
D1 = first difference.
aRepayment type: 1 = Repay, 0 = Interest-only.
Table 8
Stability of coefficient estimates, transition intensity 1 → 2.
Covariate Up to 2011 Up to 2012 Up to 2013 Random 70%

AG PWP-CP PWP-GT AG PWP-CP PWP-GT AG PWP-CP PWP-GT AG PWP-CP PWP-GT

Strata 0.643*** 0.679*** 0.692*** 0.672***
Marital Status = Singlea 0.413*** 0.416*** 0.349*** 0.364*** 0.366*** 0.314*** 0.247*** 0.245*** 0.205*** 0.231*** 0.217*** 0.186***
Balance left (%), Lag 3 0.210** 0.202* 0.175* 0.173 0.173 0.152 0.181 0.176 0.147 0.334*** 0.316*** 0.200**
Current LTV, Lag 3 0.003* 0.003* 0.005*** 0.003* 0.003* 0.005*** 0.003** 0.003** 0.005*** 0.002 0.002 0.003***
Int. Rate, Lag 3 0.090** 0.088* 0.056 0.053 0.032 0.028 0.0004 −0.004
Unemp. Rate (YoY) 0.954*** 0.961*** 0.558** 0.939*** 0.935*** 0.605** 0.961*** 0.951*** 0.470** 1.044*** 1.039*** 0.391*

***p < 0.01, **p < 0.05, *p < 0.1.
YoY = year-over-year growth rate.
aMarital Status: 1 = Single, 0 = Non-single.
Table 9
Stability of coefficient estimates, transition intensity 2 → 3.
Covariate Up to 2011 Up to 2012 Up to 2013 Random 70%

AG PWP-CP PWP-GT AG PWP-CP PWP-GT AG PWP-CP PWP-GT AG PWP-CP PWP-GT

One Applicanta 0.297* 0.297* 0.236** 0.308** 0.308** 0.243** 0.222* 0.222* 0.177** 0.293** 0.293** 0.207**
Balance left (%), Lag 3 0.249*** 0.249*** 0.187*** 0.248*** 0.248*** 0.181*** 0.225*** 0.225*** 0.178*** 0.233*** 0.233*** 0.146***
Int. Rate, Lag 3 0.311*** 0.311*** 0.256*** 0.216*** 0.216*** 0.191*** 0.253*** 0.253*** 0.231*** 0.151** 0.151** 0.154***
Unemp. Rate (YoY) 1.027** 1.027** 0.962** 0.962** 1.229*** 1.229*** 1.334*** 1.334***

***p < 0.01, **p < 0.05, *p < 0.1.
YoY = year-over-year growth rate.
aNumber of applicants: 1 = One applicant, 0 = More than one applicant.
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with event-specific baseline hazards. To the best of our
knowledge, only Djeundje and Crook (2018) controlled
by repeated events using a multi-state frailty model for
credit cards. By implementing the AG model, we found
that the number of times an account has experienced
the event is significant, while the estimation of the PWP
models explicitly showed the impact on stratified risks.
We also presented how recurrent events have a direct
impact on the level of the cumulative intensities.

Third, this study adds to the existing literature on
stress testing in that scenario-conditional transition prob-
abilities based on dynamic multi-state models were not
analysed before. The methodology we proposed allowed
us to forecast delinquency states and transition proba-
bilities consistent with changes in the underlying eco-
nomic conditions and considering alternative macroeco-
nomic scenarios. By forecasting each component of the
intensity processes, we were able to predict transition
probabilities for any future and unobserved time, i.e. be-
yond the lag of the time-varying covariates. We conclude
that stress scenarios have a larger impact on younger
vintages than on older vintages, suggesting that more
recent borrowers are more likely to become delinquent
under severe economic conditions. Moreover, the relative
impact of the scenario also differs by origination charac-
teristics, such as the number of applicants, the repayment
type, or the occupancy type. We also found that both
19
the level of the transition probabilities and their spread
between stress and baseline scenarios change depending
on the selected horizon (t, t + τ ].

We believe there is space for more research to be
xplored. This methodology captures the impact of recur-
ent events either by considering the number of previous
vents as a covariate or through stratified baseline haz-
rds. It would be interesting to analyse the impact that
ecurrence has on the coefficient estimates of other co-
ariates, such as loan characteristics and macroeconomic
ata. On the other hand, we briefly mentioned the impli-
ations the selection of the development sample has on
oefficient estimates, and we showed (in the Appendix)
his impact for different samples. However, when stability
f parameters is not observed, it would be interesting
o analyse the effect on the level of transition probabil-
ties and jumps towards alternative delinquency states.
lthough model re-calibrations and model re-estimations
re expected in practice, understanding how the esti-
ated impact of covariates changes across time would
ring a better comprehension of the dynamics of these
odels. Finally, the forecast horizon for the prediction of
cenario-conditional transition intensities is restricted to
he length of the cumulative baseline hazards estimated
n-sample. Therefore, a model that extends these baseline
azards beyond the last observation would be needed for
onger forecasting windows.
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Table 10
Stability of coefficient estimates, transition intensity 1 → 0.
Covariate Up to 2011 Up to 2012 Up to 2013 Random 70%

AG PWP-CP PWP-GT AG PWP-CP PWP-GT AG PWP-CP PWP-GT AG PWP-CP PWP-GT

Strata −0.123*** −0.141*** −0.145*** −0.163***
Marital Status = Singlea −0.202*** −0.202*** −0.139*** −0.165*** −0.166*** −0.117*** −0.136** −0.134** −0.086** −0.113* −0.115* −0.093**
BTLb 0.185*** 0.196*** 0.201*** 0.137***
Balance at Orig. (Log) 0.123** 0.128** 0.144*** 0.083 0.083 0.108*** 0.091* 0.094* 0.108*** 0.128** 0.129** 0.125***
LTV, Lag 3 −0.008*** −0.008*** −0.008*** −0.007*** −0.007*** −0.007*** −0.006*** −0.007*** −0.006*** −0.005*** −0.005*** −0.006***
IPI (YoY), Lag 3 1.286** 1.232* 1.658*** 1.553** 1.286** 1.178* −0.078 −0.172
Unemp. Rate (D1) −0.490*** −0.263 −0.049 0.211

***p < 0.01, **p < 0.05, *p < 0.1.
D1 = first difference; YoY = year-over-year growth rate.
aMarital Status: 1 = Single, 0 = Non-single.
bBTL: 1 = Buy-to-let, 0 = Owner-occupied.
Table 11
Stability of coefficient estimates, transition intensity 2 → 1.
Covariate Up to 2011 Up to 2012 Up to 2013 Random 70%

AG PWP-CP PWP-GT AG PWP-CP PWP-GT AG PWP-CP PWP-GT AG PWP-CP PWP-GT

One Applicanta −0.210* −0.216* −0.180* −0.326***
BTLb 0.343* 0.415** 0.242 0.281* 0.278* 0.300* −0.179 −0.174
LTV, Lag 1 −0.007** −0.007** −0.004 −0.004 −0.001 −0.001 0.001 0.001
LTV, Lag 3 −0.007** −0.004** −0.002 −0.002
Mortgage Rate (D1) −0.905* −0.938* −1.023** −1.113** −1.062** −1.081** −0.986 −0.937

***p < 0.01, **p < 0.05, *p < 0.1.
D1 = first difference.
aNumber of applicants: 1 = One applicant, 0 = More than one applicant.
bBTL: 1 = Buy-to-let, 0 = Owner-occupied.
Table 12
Stability of coefficient estimates, transition intensity 2 → 0.
Covariate Up to 2011 Up to 2012 Up to 2013 Random 70%

AG PWP-CP PWP-GT AG PWP-CP PWP-GT AG PWP-CP PWP-GT AG PWP-CP PWP-GT

Strata 0.638* 0.538* 0.409* −0.107
Marital Status = Singlea −0.350** −0.337** −0.176 −0.066
Interest Rate at Orig. −0.302*** −0.220** −0.132* −0.057
LTV, Lag 3 −0.007** −0.006** −0.006** −0.006**
Property Value, Lag 3 0.135** 0.133** 0.085 0.090 0.108** 0.105** 0.023 0.027
Int. Rate, Lag 3 −0.289*** −0.255* −0.309*** −0.296*** −0.244*** −0.232*** −0.183*** −0.186***
IPI (D1) 0.225** 0.228** 0.253** 0.177** 0.182** 0.186*** 0.141* 0.152* 0.147** 0.174** 0.168** 0.190**

***p < 0.01, **p < 0.05, *p < 0.1.
D1 = first difference
aMarital Status: 1 = Single, 0 = Non-single.
Table 13
Exhaustive regression analysis for the Industrial Production Index (YoY).
Variable Transformation Lag Expected sign

Real GDP YoY 0, 1, 3, 6 Positive
Nominal GDP YoY 0, 1, 3, 6 Positive
Disposable income YoY 0, 1, 3, 6 Positive

Unemployment rate none, YoY, 0, 1, 3, 6 Negative1st diff, 3rd diff, 6th diff, 12th diff
FTSE-100 YoY 0, 1, 3, 6 Positive
HPI YoY 0, 1, 3, 6 Positive
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ppendix

.1. Sources of macroeconomic data

Table 6 lists the sources of macroeconomic data used
o estimate the transition intensities presented in Sec-
ion 2.3.
20
Table 14
Exhaustive regression analysis for the five-year mortgage rate.
Variable Unit Lag Expected sign

Monetary Policy Rate Level 0, 1, 3, 6 Positive
3-month Yield Level 0, 1, 3, 6 Positive
5-year Yield Level 0, 1, 3, 6 Positive
10-year Yield Level 0, 1, 3, 6 Positive

A.2. Training and test samples: Stability of coefficient esti-
mates

The estimation of the transition intensities presented
in Section 2.3 is constrained by the data availability. Given
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Table 15
Industrial production index (YoY). Regression analysis.
Rank order Explanatory variables Coefficient estimates Adj.R2 RMSE Adj.R2/

RMSE

1 FTSE-100 (YoY) - Lag 1 ; Unemp. rate (6th Diff) ; HPI (YoY) - Lag 6 0.13*** ; −0.01** ; 0.21*** 0.8293 0.0342 24.265
2 FTSE-100 (YoY) - Lag 1 ; Unemp. rate (3rd Diff) ; HPI (YoY) - Lag 6 0.13*** ; −0.02** ; 0.22*** 0.8279 0.0342 24.243
3 FTSE-100 (YoY) - Lag 1 ; Unemp. rate (3rd Diff) - Lag 1 ; HPI (YoY) - Lag 6 0.13*** ; −0.02** ; 0.22*** 0.8275 0.0341 24.237
4 FTSE-100 (YoY) - Lag 1 ; Unemp. rate (1st Diff) ; HPI (YoY) - Lag 6 0.13*** ; −0.04** ; 0.23*** 0.8274 0.0341 24.235
5 FTSE-100 (YoY) - Lag 1 ; HPI (YoY) - Lag 6 0.14*** ; 0.25*** 0.8196 0.0338 24.234
6 FTSE-100 (YoY) - Lag 1 ; Unemp. rate (1st Diff) - Lag 1 ; HPI (YoY) - Lag 6 0.13*** ; −0.04** ; 0.23*** 0.8269 0.0341 24.227
7 FTSE-100 (YoY) - Lag 1 ; Unemp. rate (1st Diff) - Lag 3 ; HPI (YoY) - Lag 6 0.13*** ; −0.04** ; 0.22*** 0.8261 0.0341 24.215
8 FTSE-100 (YoY) ; HPI (YoY) - Lag 6 0.13*** ; 0.29*** 0.8167 0.0338 24.188
9 FTSE-100 (YoY) - Lag 1 ; HPI (YoY) - Lag 3 0.09*** ; 0.3*** 0.8124 0.0337 24.119
10 FTSE-100 (YoY) - Lag 3 ; Unemp. rate (3rd Diff) - Lag 1 ; HPI (YoY) - Lag 6 0.14*** ; −0.03*** ; 0.12** 0.8135 0.0339 24.012

** p < 0.05 , *** p < 0.01. Newey–West HAC standard errors. Number of observations: 120.
Table 16
Five-year mortgage rate. Regression analysis.
Rank
order

Explanatory variables Coefficient
estimates

Adj.R2 RMSE Adj.R2/
RMSE

1 3-month Yield - Lag 1 0.497*** 0.9858 0.1288 7.6550
2 Monetary Policy Rate 0.500*** 0.9814 0.1474 6.6563
3 Monetary Policy Rate - Lag 1 0.501*** 0.9803 0.1516 6.4651
4 3-month Yield 0.495*** 0.9781 0.1597 6.1250
5 3-month Yield - Lag 3 0.495*** 0.9688 0.1908 5.0786
6 Monetary Policy Rate - Lag 3 0.495*** 0.9524 0.2356 4.0425
7 3-month Yield - Lag 6 0.479*** 0.8974 0.3459 2.5941
8 5-year Yield - Lag 1 0.669*** 0.8961 0.3480 2.5750
9 5-year Yield 0.668*** 0.8930 0.3533 2.5279
10 5-year Yield - Lag 3 0.665*** 0.8837 0.3683 2.3995

** p < 0.05 , *** p < 0.01. Newey–West HAC standard errors. Number of observations: 144.
Table 17
Tests on residuals.
Estimated variable Dickey–

Fuller
Phillips–Perron Shapiro–Wilk Breusch–Pagan &

Cook–Weisberg
Breusch–
Godfrey

Ind. Prod. Index (YoY) −5.642*** −5.629*** −0.254 1.42 39.683***
5-year Mort. Rate −1.102 −0.740 2.897*** 170.45*** 126.486***

*** p < 0.01, ** p < 0.05. Newey-HAC standard errors were implemented to deal with the presence of autocorrelation
and/or heteroskedasticity in the residuals.
hat one of the objectives of the methodology presented
n this paper is to predict transition probabilities between
elinquency states, it is necessary to test the estimation
utputs on an independent sample. The training sample
as defined as all information observed from June 2006
o December 2011, while the test sample was defined as
ll accounts originated from January 2012 and observed
ntil December 2015. Note that any cut-off date could
ave been selected without impacting the methodology,
s the contribution is to develop an approach that en-
bles us to estimate and predict transition probabilities
etween delinquency states and between any two points
n time and under alternative macroeconomic scenarios
or a mortgage portfolio.

To maximise the number of observations, the samples
ere determined such that each of them would roughly
ontain 50% of the accounts. This definition may have an
mpact on coefficient estimates because the training sam-
le is observed during the financial crisis, and tested on
post-crisis period. Note that, in practice, re-calibrations
r re-estimations of the transition intensities are expected
nce more data become available, and this might have
n impact of the coefficient estimates. To investigate this
urther, we performed extra analyses by re-defining the
raining sample as 1) data observed until 2012, 2) data
bserved until 2013, and 3) a random sample containing
21
70% of the accounts observed at any point. Tables 7 to 12
compare the results obtained for each transition inten-
sity. Although the parameters for each sample are in
general quite stable, those estimated from the 70% ran-
dom sample present the largest differences compared to
those estimated for the period up to 2011, especially for
movements out of states 1 and 2. This is expected, as
the composition of the sample significantly differs from
the development sample used in this research. Except for
the transition 1 → 0, we observe that the estimates
for the macroeconomic factors remain significant when
extending the development sample to account for data
observed up to 2012 and up to 2013. In terms of account-
level data, most of the coefficient estimates also remain
significant; however, we observed instability for some of
them (e.g. Marital Status in transition 1 → 0, BTL in
transition 2 → 1, and Strata in transition 2 → 0).

A.3. Estimated paths for industrial production index and
five-year mortgage rate by scenario

We ran an exhaustive regression analysis on the year-
on-year growth of the industrial production index and on
the five-year mortgage rate considering a set of macroeco-
nomic variables provided by the PRA as potential covari-

ates. The aim was to produce scenario-conditional paths
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Fig. 13. Observed values vs. estimated values.
Table 18
Estimated industrial production index (YoY). VIF.
Explanatory Variable VIF

FTSE-100 (YoY) - Lag 1 1.91
Unemp. Rate (6th Diff.) 1.75
HPI (YoY) - Lag 6 1.33

Mean VIF 1.66

for these two variables that were consistent with the
PRA’s scenarios. These potential covariates were obtained
from the 2016 stress testing scenarios and are listed in
Tables 13 and 14.14

This exhaustive regression analysis implied analysing
the combination of all potential covariates using up to
three explanatory variables and considering both contem-
poraneous and lagged effects. Once all these regressions
were obtained, we kept those with significant coefficient
estimates at the 5% level that also showed the expected
sign based on economic intuition. To avoid multicollinear-
ity, combinations of covariates with a correlation above
|0.75| were disregarded. As several models satisfied these
constraints, we then selected the specification with the
highest Adjusted R2

RMSE ratio, as it represents the model with
best in-sample fit.

Tables 15 and 16 present the top ten models based on
in-sample fit. The specifications ranked first (highlighted
in grey) were selected.

A.3.1. Regression analysis
See Tables 15 and 16.

A.3.2. In-sample fit
See Fig. 13.

14 Note that these series were not used to estimate the transition
intensities, as we restricted the estimations presented in Section 2.3
to macroeconomic data available on a monthly frequency to avoid bias
on the coefficient estimates driven by the usage of quarterly data.
22
A.3.3. Residual analysis
See Table 17.

A.3.4. Multicollinearity analysis
See Table 18.
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