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Investigation of the generalization capability of a
generative adversarial network for large eddy simulation of

turbulent premixed reacting flows

L. Nistaa,˚, C. D. K. Schumanna, T. Grengaa, A. Attilib, H. Pitscha

a Institute for Combustion Technology, RWTH Aachen University, Aachen, 52056, Germany
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Abstract

In the past decades, Deep Learning (DL) frameworks have demonstrated excellent performance in modeling non-
linear interactions and are a promising technique to move beyond physics-based models. In this context, super-
resolution techniques may present an accurate approach as subfilter-scale (SFS) closure model for Large Eddy
Simulations (LES) in premixed combustion. However, DL models need to perform accurately in a variety of
physical regimes and generalize well beyond their training conditions. In this work, a super-resolution Generative
Adversarial Network (GAN) is proposed as closure model for the unresolved subfilter-stress and scalar-flux ten-
sors of the filtered reactive Navier-Stokes equations solved in LES. The model trained on a premixed methane/air
jet flame is evaluated a-priori on similar configurations at different Reynolds and Karlovitz numbers. The GAN
generalizes well at both lower and higher Reynolds numbers and outperforms existing algebraic models when the
ratio between the filter size and the Kolmogorov scale is preserved. Moreover, extrapolation at a higher Karlovitz
number is investigated indicating that the ratio between the filter size and the thermal flame thickness may not
need to be conserved in order to achieve high correlation in terms of SFS field. Generalization studies obtained
on substantially different flame conditions indicate that successful predictive abilities are demonstrated if the gen-
eralization criterion is matched. Finally, the reconstruction of a scalar quantity, different from that used during
the training, is evaluated, revealing that the model is able to reconstruct scalar fields with large gradients that
have not been explicitly used in the training. The a-priori investigations carried out assess whether out-of-sample
predictions are even feasible in the first place, providing insights into the quantities that need to be conserved for
the model to perform well between different regimes, and represent a crucial step toward future embedding into
LES numerical solvers.

Keywords: Large Eddy Simulation; Generative Adversarial Network; Premixed Combustion Modeling; Data-Driven Modeling;
Generalization Capability
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1. Introduction

Large Eddy Simulations (LES) are essential for
the design of future energy-conversion systems
due to their superior accuracy and still affordable
computational cost in capturing high-order features
(e.g., turbulence-combustion interaction, mixing be-
havior, etc.) compared to the most widely used
Reynolds Averaged Navier-Stokes (RANS) approach
[1]. In LES, the flow field is decomposed into the
explicitly resolved flow and the unresolved subfilter-
scale (SFS) flow. The filtering operation results in
unclosed terms (e.g., subfilter-scale stress tensor term
(momentum), subfilter scalar-flux and filtered chem-
ical source terms (scalar-transport equation), etc.,)
that must be modeled. In the past decades, consid-
erable attention has been paid to LES closure model
developments through algebraic-based equations [2].
Recently, Deep Learning (DL) techniques have per-
formed well in modeling non-linear flow interactions,
and thus hold the promise of advancing modeling and
analyzing the intricate structures associated with tur-
bulent reacting flows [3, 4]. The usage of DL meth-
ods for LES closure models has been identified as one
of its key applications by the fluid dynamics commu-
nity [5]. The new models are typically evaluated a-
priori, which means that modeled SFS terms are com-
pared with the exact solution computed from Direct
Numerical Simulations (DNS).

A-priori studies have been performed to demon-
strate that Neural Networks (NN) can be potentially
suitable to close equations in the context of turbulence
combustion [3]. Vollant et al. [6] considered an ANN
to predict the subgrid-scalar mixing using the optimal
estimation theory. Seltz et al. [7] trained a Convolu-
tional Neural Network (CNN) model for the predic-
tion of the filtered progress variable source term, Yel-
lapantula et al. [8] employed a deep Artificial Neural
Network (ANN) to predict the scalar dissipation rate,
and similarly, Yao et al. [9] used an ANN for the clo-
sure of the conditional scalar dissipation rate in turbu-
lent spray flames, all demonstrating good agreement
with the DNS data. Lapeyre et al. [10] used a CNN
architecture to estimate the subfilter-scale wrinkling
in turbulent premixed flames. These a-priori inves-
tigations have shown that their configurations were
able to achieve very high accuracy in predicting un-
resolved fields, usually outperforming conventional
models at similar conditions to the ones used for train-
ing.

Less attention has been devoted to the modeling
of the unresolved subfilter-scale stress tensor and the
unresolved scalar flux, for which Super-Resolution
(SR) techniques can be used to reconstruct high-
resolution (e.g., DNS) from low-resolution flow fields
(e.g., LES). The SR research field has received sub-
stantial attention from the computer vision research
community and has a wide range of applications.
Early works based on SRCNN have shown excellent
performance in producing images with outstanding
visual quality [11]. In this view, Ledig et al. [12] pro-

posed a novel architecture, the Super-Resolution Gen-
erative Adversarial Network (SRGAN), using percep-
tual and adversarial losses to favor outputs residing
on the manifold of natural images. Thanks to their
distinguished capabilities, several of those architec-
tures have been recently applied for closure model-
ing [4]. In the context of LES modeling, the work
of Fukami et al. [13] demonstrated the ability to use
deep CNNs to super-resolve three-dimensional in-
compressible turbulent flows solely from the coarse-
grained data fields, enhancing subfilter physical struc-
tures. Hassanaly et al. [14] demonstrated how an ad-
versarial approach can be used to sample conditional
high-dimensional distributions for the deconvolution
of turbulent atmospheric flow data. Recently, Bode
et al. [15] presented a novel Physics-Informed En-
hanced Super Resolution Generative Adversarial Net-
work (PIESRGAN), which was trained with unsu-
pervised DL using adversarial and physics-informed
losses. With this approach, the authors were able
to match the energy and scalar spectra of homoge-
neous isotropic turbulence DNS nearly perfectly and
demonstrated the model’s ability to work in an a-
posteriori context.

However, ML-based approaches might perform
poorly when applied to configurations substantially
different from those they were trained on, as data from
different regimes is usually absent from the training
dataset and the prediction of the networks are en-
tirely data-driven [16]. This might cause convergence
issues in a-posteriori applications, as suggested by
Lapeyre et al. [17]. Attili et al. [18] and Xing et
al. [19], using similar architectures, performed some
preliminary a-priori generalization studies. Their
work demonstrated that the CNNs can be trained on
canonical simple cases and applied to practical con-
figurations indicating good extrapolation capabilities.
Another potential drawback of data-based ML mod-
els is that highly-resolved data needed for the train-
ing is available only at a relatively low Re number
compared to real applications (e.g., gas-turbine com-
bustors) due to the prohibitive cost of DNS. Without
generalization capabilities, the supervised data-driven
models are limited to physical conditions for which
DNS data or highly-resolved LES is available [4].

In this work, a SR Generative Adversarial Network
(GAN) [20], is employed as closure model for the un-
resolved Reynolds-stress and scalar-flux tensors. The
filtered momentum equation reads [2]

Bρ rui

Bt
`

Bρ ruiruj

Bxi
“ ´

Bp

Bxj
`

Bτ ij

Bxi
´

B ρ τr
ij

Bxi
, (1)

where the unresolved stress tensor τr
ij is given by

τr
ij “ pĆuiuj ´ rui rujq. (2)

Similarly, in the filtered temperature transport equa-
tion, τT

i is the unresolved scalar flux defined as

τT
i “ pĄuiT ´ rui

rT q, (3)
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but the same argument can applied to any scalar quan-
tity (in the rest, for the sake of brevity, the mass-
weighted filtering ˜̈ is indicated by the simple filtering
operation ¨). The proposed method uses the gener-
ator of a GAN architecture to reconstruct the high-
resolution field (DNS) from the lower-resolution F-
DNS field (LES-like), so that Eq. (2) and Eq. (3)
can be evaluated directly at the DNS level. The a-
priori investigations reported in this work consider the
Filtered-DNS (F-DNS) field to be statistically similar
to an LES field.

As limitations with respect to generalizability are
largely unexplored, the aim of the work is to inves-
tigate the ability to generalize to flow conditions that
are different from the training data. First, analyses
are devoted to the investigation of the model’s ca-
pability to extrapolate towards higher and lower Re
numbers. Moreover, a-priori extrapolation capabili-
ties at a higher Karlovitz number on a similar and a
different configuration are analyzed. In addition, the
reconstruction of a scalar quantity, specifically not in-
cluded during the training, is investigated to assess
the generalization towards different physical quanti-
ties. Finally, the implication of the results obtained
are discussed.

2. DNS Dataset

The training of the GAN architecture is only per-
formed on the R2K1 configuration, which is part of a
DNS dataset composed of four premixed methane/air
turbulent slot jet flames, produced by Luca et al. [21].
This dataset includes DNSs at four different Reynolds
numbers with approximately constant Kolmogorov
scale η. A summary of all relevant flow parameters
is provided in Table 1. Turbulent premixed planar jet
flames with equivalence ratio ϕ “ 0.7 at unburnt tem-
perature of 800K and pressure of 4 atm, bulk veloc-
ity U of 100 m{s and surrounded by a coflow with
composition equivalent to the fully burnt mixture are
considered. The computational domain is sized 24H
in the streamwise x, 16H in the cross-stream y, and
4.3H in the spanwise z direction. Periodic boundary
conditions were applied in the spanwise directions,
open boundary conditions were imposed at the outlet
and, no-slip conditions were prescribed at the cross-
wise boundaries. The grid resolution is uniform in all
directions, with dx “ dy “ dz “ 20 µm for all
four DNS. The laminar flame speed is SL “ 1 m{s
while the thermal flame thickness is δL “ 110 µm.
This leads to dx{η ă 2 and thus δL{dx « 6. DNS
data were extracted after a statistically stable state has
been reached. The training is comprised exclusively
of data from the R2K1 simulation, whereas the flames
R1K1, and R4K1 are considered only as test datasets
for a-priori evaluations.

To investigate the generalization at different
Karlovitz number, an additional turbulent premixed
jet flame of methane/air with similar flow conditions
to the R2K1 configuration but higher Karloviz num-
ber is considered, i.e., R2K2 [23]. This turbulent pre-

mixed jet flame has an unburnt temperature of 500K
and a pressure of 4 bar. The grid size is uniform such
that dx{η ă 2, equivalent to the previous series of
DNS and the δL{dx « 15. The laminar flame speed
is SL “ 0.25m{s.

Furthermore, a similar turbulent premixed planar
jet flame with a hydrogen/air mixture, called H2K2,
at Re “ 5000 and Ka “ 43.5 [22, 24] is considered
to assess generalization capabilities to different con-
figurations and flame properties. It is composed of a
central jet of a gaseous mixture of hydrogen and oxy-
gen at stoichiometric equivalence ratio. For this mix-
ture, the thermal flame thickness is δL “ 435 µm,
and the laminar flame speed SL “ 1.195 m{s. Fur-
ther characterization of the turbulence statistics can
be found in [22].

3. Methodology and neural network architecture

3.1. Generative adversarial network architecture
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Fig. 1: The structure of the generator (above) and the dis-
criminator (below) of the GAN architecture. ϕF indicates
the filtered field, ϕSR is the super-resolved field, and ϕGT

refers to the ground-truth field. Moreover, k is the kernel
size, n is the number of filter maps, and s is the strides along
each spatial dimension.

The GAN employed in this work, schematically
shown in Fig. 1, is composed of two different CNNs,
a generator, and a discriminator, already introduced in
previous work [20] and designed for physical appli-
cations. Based on the PIESRGAN architecture devel-
oped by Bode et al. [15], both generator and discrim-
inator heavily rely on the use of three-dimensional
Convolutional Layers (CL) with leaky rectified lin-
ear units as activation functions, in contrast to the
original ESRGAN structure [11] which relies on two-
dimension CLs.

The generator aims to increase information con-
tent of the low-resolution input and learn all relevant
complex transformations to map the input to the high-
resolution output. This is efficiently achieved by the
usage of residual-in-residual dense blocks (RRDB)
and skip-connections [11]. In this architecture, there
is only one RRDB compared to the 23 RRDBs em-
ployed in the original ESRGAN [11]. After the ex-
traction of distinct level features, differently to the
PIESRGAN structure, three upsampling layers are
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Table 1: Simulation parameters of the premixed methane/air and hydrogen/air turbulent flames [21, 22], evaluated in the fully
turbulent region. H is the inlet slot width, Ka is the Karlovitz number, and u1 is the turbulent velocity fluctuation.

R1K1 R2K1 R2K2 R3K1 R4K1 H2K2
Re [-] 2800 5600 5600 11200 22400 5000

U [m/s] 100 100 90 100 100 93
H [mm] 0.6 1.2 0.8 2.4 4.8 1.08
Ka [-] 39 23 240 21 21 43.5

u1
{SL [-] 14.2 10.0 35.0 9.8 11.6 7.85
η [µm] 18 23 13 25 25 10.2
δL [µm] 110 110 200 110 110 444

employed to consistently increase the input dimen-
sions by a factor of 8 in each spatial direction. Each
layer doubles the dimensions of the input by nearest
neighbor interpolations to replicate consecutive grid
points, followed by a convolutional layer to improve
the approximation [11]. The number of filter maps for
each CL is constant and set to 64. The total number
of trainable parameters of the generator is around 25
million with 4 channels (variables).

The discriminator is a CNN with binary classifi-
cation output, which provides non-linear feedback to
the generator on the quality of the field produced. The
discriminator network structure is kept unchanged
compared to the PIESRGAN implementation, switch-
ing from two-dimensional to three-dimensional CLs
compared to the original ESRGAN architecture. The
number of filter maps doubles for each CL starting at
64.

The original perceptual loss introduced on the ES-
RGAN implementation [11] is replaced by a combi-
nation of three loss functions: the pixel loss (Lpixel),
the pixel gradient loss (Lgradient), and the relativis-
tic average discriminator loss (LRaGAN) (its precise
definition can be found in [11]:

Lgen “ β1Lpixel ` β2Lgradient ` β3LRaGAN

Lpixel “ MSEpϕSR, ϕDNSq

Lgradient “ MSEp∇⃗ϕSR, ∇⃗ϕDNSq,

(4)

where the coefficients β “ r0.89, 0.06, 0.00006s

were previously tuned [20]. The Mean-Squared Error
(MSE) is computed between the reconstructed (SR)
and the ground-truth (DNS) fields, as indicated in
Eq. 4. The MSE operator is applied separately to
all elements when tensor quantities are considered.
The L1 norm is applied to each component of the
loss function to drive the network’s optimization. The
generator, initialized with random weights, is pre-
trained using only pixel loss and without the adver-
sarial component to prevent GAN convergence fail-
ure [20]. Subsequently, the pre-trained generator is
used to initialize the GAN training, and trained until
no additional improvement on the reconstructed field
is observed.

3.2. Training strategy

As all the DNS were performed on domains much
larger than the flames themselves, only relevant sub-
sections of each domain are considered for training
and testing. In order to obtain flow fields compara-
ble to those obtained from LES simulations, all the
DNS flames are downsampled using a box filter with
width ∆ “ 8 dx. The training is then performed only
using the R2K1 dataset. Due to the impracticable,
large computational domain compared to the avail-
able GPU memory, training and validation processes
employed randomly extracted sub-boxes with size
643 and 83 for high- and low-resolution fields, respec-
tively. A total of 73100 boxes are used for the train-
ing, where the last 10% of the available snapshots are
not included in the training dataset as they are used
for validation and testing purposes. To prevent over-
fitting, data augmentation is considered by randomly
flipping and rotating the sub-boxes. Each dataset in-
cludes various physical quantities, such as the veloc-
ity components (U , V , W ) and various scalar fields,
such as the temperature T and OH mass fraction, al-
though not all fields are considered for training. The
model is trained using all velocity components and
a single scalar field, the temperature, as indicated in
Eq. 5. Both velocity components and scalar quantity
of high- and low-resolution data are normalized with
their global (i.e., computed using all snapshots) max-
imum and minimum to augment the network’s per-
formance. The generator performs then a consistent
upsampling of the input variables proportional to the
upsampling factor:

pU, V,W, T q “fgeneratorpU, V ,W, T q

fgenerator : RΩ
Ñ RΩx83 ,

(5)

where Ω is a regular three-dimensional F-DNS grid,
x8 is the upsampling factor employed in each direc-
tion, and the input/output variables are normalized
consistently. The input/output quantities are schemat-
ically reported in Fig. 1.

Given the large number of boxes available as well
as the deep GAN framework (based on TensorFlow
v2), the whole training process is parallelized to em-
ploy multi-node, multi-GPUs resources. The compu-
tations are performed on the Jülich DEEP-EST clus-
ter by using four nodes, each hosting one NVIDIA
Tesla V100 32GB GPU. This allows reducing the to-
tal wall training time from roughly 5 days to 28 hours.
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A mini-batch size per GPU of 8 boxes, an initial learn-
ing rate of 10´4 and the ADAM optimizer are chosen
based on previous optimizations [20].

4. Results

To inspect the achieved quality of the training, the
GAN model, trained on the R2K1 configuration us-
ing both velocity and temperature fields, is initially
tested on a in-sample snapshot, i.e., on data that are
statistically equivalent to the training data. Figure 2
(a) shows the a-priori joint Probability Density Func-
tion (jPDF) of the GAN as SFS stress tensor closure
model (Eq. (2)) that can be compared with the per-
formance of the dynamic Smagorinsky model (Fig. 2
(b)). The data-driven model performs extremely well
on data that are statistically equivalent to the training
data, as there is a remarkable alignment with the di-
agonal, where the dynamic Smagorinsky model [25]
exhibits a relatively low correlation. In this respect,
the dynamic Smagorinsky model [25] is chosen as
a reference due to its popularity and wide applica-
tion [26], though it might be not optimal for such anal-
ysis. Possible suitable comparisons, for example, de-
convolution methods based on the Taylor-series could
be found in Hassanaly et al. [14]. Figure 2 (c) shows
the a-priori performance of the GAN as SFS scalar
flux closure model. The narrow spread over a wide
range along the diagonal and the alignment of the bin
cloud with the diagonal indicate that the GAN per-
forms well. However, the model is not so accurate
in predicting negative SFS scalar values, as the bins
increasingly deviate from the diagonal. The results
indicate that the training approach is successfully and
the model can be used as reference model for the fol-
lowing investigations.

4.1. Generalization at different Reynolds numbers

To assess the generalizability of the trained GAN
to different Reynolds numbers, the model obtained by
training on the R2K1 configuration is used for the pre-
diction of flames at different Reynolds numbers [21].

Fig. 3 shows the contour plots of the velocity mag-
nitude of the F-DNS, the super-resolved field using
the GAN network, and the DNS field of the R1K1
simulation, i.e., at decreased Re relative to the train-
ing dataset, providing just an intuitive metric to judge
the reconstruction quality. The Root Mean Squared
Error (RMSE) of the super-resolved fields is roughly
75% less than the RMSE of the F-DNS, demonstrat-
ing a considerable improvement. However, percep-
tually the SR field has still some textures that differ
from the true DNS. This is reasonable as the whole
training strategy has been developed to obtain suffi-
cient physical accuracy, which may come at a trade-
off with the perceptual quality. Hence, the model
is able to reconstruct small-scale structures close to
those from DNS fairly well. Figure 4 (a) shows the
jPDF plot of one component of the SFS stress ten-
sor computed using the GAN model trained on the

R2K1 configuration and applied to the R1K1 dataset.
There are no substantial differences when the model
is applied to a lower Re configuration as the align-
ment with the diagonal is similar to the reference case.
Moreover, Fig. 5 (a) shows the jPDF plot of one com-
ponent of the SFS scalar flux. The decreased accuracy
in predicting negative SFS scalar values is compara-
ble to the R2K1 result, meaning that such behavior
does not impact the generalization capability. More-
over, Fig. 4 (b) and Fig. 5 (b) show the same statis-
tical quantities as for the previous investigation when
the model is trained on R2K1 and applied to R4K1
configuration, i.e., to higher Re. Analogous conclu-
sions can be drawn from this analysis, where Fig. 4
(b) shows a slightly worse correlation compared to the
previous case. However, the overall trend does not re-
veal any major qualitative differences when the model
is applied at different Reynolds numbers. Additional
statistical quantities that support such analyses are in-
cluded in the supplementary material. The analysis
suggests that the network is able to reconstruct the
velocity and temperature field of premixed jet flame
configurations, extrapolating well at both lower and
higher Re.

Among the four configurations, two different ra-
tios are essentially conserved: the ∆{η « 8 and
∆{δL « 1.45. Those might then represent ratios fun-
damental to achieve extrapolation capabilities, as it
was previously found when predicting the progress
variable variance [19]. The relative importance of
these two parameters on the predictive capability is
then analyzed on the following sections.

4.2. Generalization at higher Karlovitz number

A further generalization test in terms of Ka is per-
formed. The previously trained model is used to pre-
dict the flow field of the R2K2 simulation, that has
a Ka approximately 10 times larger than the data
the model was trained on. Between the two datasets,
only one of the previous ratios is strictly conserved,
namely the ∆{η « 8. Indeed, ∆{δL « 0.062 ratio
is quite smaller compared to the training condition.To
provide the reader with a sense of the relative per-
formance of the model, the same statistics as shown
before are reported. The performance of the GAN
model as an a-priori SFS stress tensor closure model
(Fig. 4(c)) is confirmed by the narrow spread over a
wide range along the diagonal, and the alignment of
the data with the diagonal. However, the data with
lower probability are the ones with a larger distance
from the diagonal compared to the other two analyses,
i.e., Fig. 4(a) and Fig. 4(b). Moreover, the model has
a similar tendency in predicting negative SFS values,
where there are no quantitative differences compared
to the reference case.

Despite the different thermo-physical properties
between training and testing conditions, this result in-
dicates that both velocity and temperature fields are
reconstructed fairly consistently with the DNS data.
Correct representation of turbulence dynamics, which
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(a) (b) (c)
Fig. 2: jPDF plot of the subfilter-scale stress tensor component τr12 computed using the GAN model compared with the DNS
result (a), jPDF plot of the subfilter-scale stress tensor component τr12 computed using the dynamic Smagorinsky model [2]
compared with the DNS result (b), and jPDF plot of the subfilter-scale scalar flux component τT1 computed using the GAN
model compared with the DNS result (c) for an in-sample snapshot of the R2K1 dataset.

Fig. 3: Contour plot (sliced in the spanwise direction)
of the velocity magnitude for the Filtered DNS field (F-
DNS), super-resolved field using the GAN network (SR),
and ground-truth (DNS) field of the R1K1 simulation.

strongly influences the transport of the scalar, indi-
cates that the ratio ∆{δL might be not fundamental
for generalizability.

To investigate further, the model trained on the
R2K1 dataset is tested on the H2K2 jet flame, which
presents the most general test performed. Although
both datasets have comparable Ka and Re numbers,
the ratios dx{η and dx{δL ratios are substantially dif-
ferent from those of the training dataset. Two inde-
pendent approaches are performed. First, the testing
dataset is filtered with a filter width of 8 in each direc-
tion, consistent with the training filter width. In this
scenario, the ratios ∆{η « 14.88 and ∆{δL « 0.31
are considered, which are substantially different from
the training dataset. Figure 6 (above) shows the con-
tour plots of the velocity magnitude. The GAN model
strongly overpredicts the velocity in the jet region
which results thicker and without small-scales turbu-
lent oscillations, while the error is less marked in the

coflow. This behavior is quantitatively confirmed by
the Probability Density Function (PDF) of the nor-
malized velocity gradient in Fig. 7 (above), where the
GAN model tends to overpredict the large gradients.

As a counter test, the filter width is chosen to be
consistent with the ratio ∆{η « 8 used during the
training, so that the filter size of 4 in each direction
is employed leading to a ratio ∆{η « 6.6 which is
closer to that used during the training. Figure 6 (be-
low) shows the same contour plots as before. The ve-
locity magnitude of the SR field is increased or de-
creased resulting in a field that looks visibly sharper,
where some features at the jet regions are enhanced.
However, the model seems to under-resolve thin or
fine features, which are bulkier and less detailed rela-
tive to the DNS field. This is partially due to the fact
that the model can perform only an upsampling 8 (the
one on which has been trained), so it is rather difficult
to match the ratio ∆{η precisely.

The conclusions drawn from the previous analy-
sis are bolstered by looking at the PDF of the nor-
malized velocity gradient in Fig. 7 (below). The SR
line marginally deviates from the DNS solution with
a tendency to slightly underestimate the larger struc-
tures. This indicates that the ratio ∆{η needs to be
conserved between training and application of the net-
work. However, the ∆{δL ratio does not seems to be
fundamental.

4.3. Generalization towards different physical
quantities

To further explore the predictive capabilities of the
GAN, the model previously trained on the R2K1 con-
figuration using the three velocity components and
temperature as input variables is employed to predict
the OH mass fraction field of a snapshot of the same
dataset, which was never seen during the training. As
such quantity was not included during the training, the
error of the SR field should be consistent throughout
the entire field. This is however not the case. Fig. 8
depicts the contour plots of OH mass fraction on a
sub-domain located at the center and 15H far from
the inlet.
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(a) (b) (c)
Fig. 4: jPDF plot of the subfilter-scale stress tensor component τr12 computed using the GAN model when trained on the R2K1
configuration and evaluated on R1K1 (a), R4K1 (b), and R2K2 (c) datasets.

(a) (b) (c)
Fig. 5: jPDF plot of the subfilter-scale scalar flux streamwise component τT1 computed using the GAN model when trained on
the R2K1 configuration and evaluated on R1K1 (a), R4K1 (b), and R2K2 (c) datasets.

Fig. 6: Contour plot (sliced in the spanwise direction)
of the velocity magnitude for the Filtered DNS field (F-
DNS), super-resolved field using the GAN network (SR),
and ground-truth (DNS) field of the H2K2 simulation keep-
ing the filter size consistent with the training strategy (above)
and keeping the ∆{η ratio consistent with the training strat-
egy (below).

Fig. 7: PDF of the normalized velocity gradient in the
streamwise direction on the H2K2 simulation keeping the
filter size consistent with the training strategy (above) and
keeping the ∆{η ratio consistent with the training strategy
(below).
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The coflow and the central jet regions with nearly
constant values, are captured rather poorly and the
error is exacerbated relative to the F-DNS as non-
physical oscillations are introduced. However, at the
boundary between the jet and the coflow, where the
majority of heat is released and the gradients of the
scalar fields are the most profound, the error is clearly
mitigated, and the network creates structures that are
almost alike the DNS. Such behavior could be ex-
plained by the link between the OH mass fraction and
the velocity fields as indicated by Barwey et al.[27].
The results obtained might be a consequence of the
gradient loss term Lgradient and may highlight the
need to move beyond simple pixel-loss approaches if
physically accurate fields are desired. The capabil-
ity of GAN to predict quantities having different val-
ues and dynamics than those used for the training is
promising, although this would need a deeper study
in future work.

Fig. 8: Contour plot of the OH mass fraction for the Filtered
DNS field (F-DNS), super-resolved field using the GAN net-
work (SR), and ground-truth (DNS) field of the sub-domain
of the R2K1 simulation (sliced in the spanwise direction)

4.4. Discussion of the results obtained
The results obtained indicate that the GAN can be

employed as an accurate a-priori subfilter-scale model
only when the ratio ∆{η is consistently ensured be-
tween training and testing conditions. The prediction
capabilities deteriorate when such a key parameter is
not conserved; early tests had shown that there was
a consistent over- or under-prediction of the recon-
structed fields in such a case. This represents a chal-
lenge for ML models that requires further understat-

ing, as recently reported by Attili et al. [18]. In addi-
tion, as the LES-to-DNS grid ratio and the filter width
are fixed in the network architecture and set before
even training the GAN, additional investigations are
required to achieve superior generalization capabili-
ties. This restriction to relying on a single value of
∆{η may be relaxed by training the GAN model on
a range of filter size values. Moreover, while the a-
priori generalization capabilities obtained are promis-
ing, memory limitations must be taken into account
in the upsampling of three-dimensional fields. Fur-
thermore, the analyses conducted must be confirmed
through a-posteriori LES investigations in which the
GAN model is embedded into numerical solvers.

5. Conclusions

A super-resolution GAN has been employed to
model the unresolved subfilter-scale stresses and
scalar flux for LES of premixed combustion. A turbu-
lent methane/air premixed jet flame has been consid-
ered for the training, using as input the three velocity
components and the temperature field. A-priori anal-
yses have shown that the model performs extremely
well when applied to in-sample data, indicating that
the training approach was successfully executed and
the trained model could be used as reference. The
capability of the GAN model to extrapolate at either
lower and higher Re has been demonstrated using
a set of four methane/air premixed flames. As the
ratio between the filter width and the Kolmogorov
scales, ∆{η, was unchanged, the GAN model pre-
dicted accurately the subfilter-scale stress tensor and
scalar flux. Promising extrapolation towards a higher
Karlovitz number was further demonstrated on sim-
ilar and rather disparate flame conditions indicating
the importance of preserving the ratio ∆{η. Though,
the ratio between the filter size and thermal flame
thickness, ∆{δL, appeared to be a less relevant pa-
rameter to be conserved. In addition, the GAN model
showed promising results also in the prediction of
scalar quantities, e.g., a species mass fraction, differ-
ent from those used during the training, showing that
the model was able to reconstruct scalar fields with
large gradients.

Additional a-priori investigations of such extrap-
olation capabilities, fundamental for universal clo-
sure models, are recommended since the performance
of DL models to far-from-training conditions is still
mainly unexplored. For instance, the presented re-
sults do not consider the performance below the crit-
ical Karlovitz number where the impact of the flame
thickness might be fundamental. Similarly, general-
ization to different fuels is advised. Finally, the work
highlights the importance of interpreting DL models
suggesting the development of physical-inspired ar-
chitectures and the need to confirm those conclusions
through a-posteriori LES simulations, in which the in-
teraction of the model with the intrinsic numerical er-
rors in CFD solvers could provide further challenges.
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