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Abstract

Recent self-supervised representation learning tech-
niques have largely closed the gap between supervised and
unsupervised learning on ImageNet classification. While
the particulars of pretraining on ImageNet are now rela-
tively well understood, the field still lacks widely accepted
best practices for replicating this success on other datasets.
As a first step in this direction, we study contrastive self-
supervised learning on four diverse large-scale datasets.
By looking through the lenses of data quantity, data do-
main, data quality, and task granularity, we provide new
insights into the necessary conditions for successful self-
supervised learning. Our key findings include observations
such as: (i) the benefit of additional pretraining data beyond
500k images is modest, (ii) adding pretraining images from
another domain does not lead to more general representa-
tions, (iii) corrupted pretraining images have a disparate
impact on supervised and self-supervised pretraining, and
(iv) contrastive learning lags far behind supervised learn-
ing on fine-grained visual classification tasks.

1. Introduction

Self-supervised learning (SSL) techniques can now pro-
duce visual representations which are competitive with rep-
resentations generated by fully supervised networks for
many downstream tasks [20]. This is an important mile-
stone for computer vision, as removing the need for large
amounts of labels at training time has the potential to scale
up our ability to address challenges in domains where super-
vision is currently too difficult or costly to obtain. However,
with some limited exceptions, the vast majority of current
state-of-the-art approaches are developed and evaluated on
standard datasets like ImageNet [43]. As a result, we do not
have a good understanding of how well these methods work
when they are applied to other datasets.

Under what conditions do self-supervised contrastive
representation learning methods produce “good” visual
representations? This is an important question for computer
vision researchers because it adds to our understanding of
SSL and highlights opportunities for new methods. This is

3. Quality 4. Task granularity
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Figure 1. What conditions are necessary for successful self-
supervised pretraining on domains beyond ImageNet? We
investigate the impact of self-supervised and supervised training
dataset size, the downstream domain, image quality, and the gran-
ularity of downstream classification tasks.

also an important question for domain experts with limited
resources who might be interested in applying SSL to real-
world problems. With these objectives in mind, we attempt
to answer the following questions:
(i) What is the impact of data quantity? How many un-
labeled images do we need for pretraining, and when is it
worthwhile to get more? How much labeled data do we
need for linear classifier training or end-to-end fine-tuning
on a downstream task? In which regimes do self-supervised
features rival those learned from full supervision?
(ii) What is the impact of the pretraining domain? How
well do self-supervised representations trained on one do-
main transfer to another? Can we learn more general repre-
sentations by combining datasets? Do different pretraining
datasets lead to complementary representations?
(iii) What is the impact of data quality? How robust are
self-supervised methods to training time image corruption
such as reduced resolution, compression artifacts, or noise?
Does pretraining on corrupted images lead to poor down-
stream performance on uncorrupted images?
(iv) What is the impact of task granularity? Does SSL
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result in features that are only effective for “easy” classifi-
cation tasks, or are they also useful for more challenging,
“fine-grained” visual concepts?

We address the above questions through extensive quan-
titative evaluation across four diverse large-scale visual
datasets (see Figure 1). We make several interesting ob-
servations and recommendations including:
• For an ImageNet-scale dataset, decreasing the amount of

unlabeled training data by half (from 1M to 500k images)
only degrades downstream classification performance by
1-2% (Figure 2). In many contexts this trade-off is rea-
sonable, allowing for faster and cheaper pretraining. This
also indicates that current self-supervised methods cou-
pled with standard architectures may be unable to take
advantage of very large pretraining sets.

• Self-supervised representations that are learned from im-
ages from the same domain as the test domain are much
more effective than those learned from different domains
(Table 1). Self-supervised training on our current datasets
may not be sufficient to learn representations that readily
generalize to many contexts.

• Neither (i) combining datasets before pretraining (Ta-
ble 2) nor (ii) combining self-supervised features learned
from different datasets (Table 3) leads to significant per-
formance improvements. More work may be required be-
fore self-supervised techniques can learn highly general-
izable representations from large and diverse datasets.

• Pretraining on corrupted images affects supervised and
self-supervised learning very differently (Figure 4). For
instance, self-supervised representations are surprisingly
sensitive to image resolution.

• Current self-supervised methods learn representations
that can easily disambiguate coarse-grained visual con-
cepts like those in ImageNet. However, as the granu-
larity of the concepts becomes finer, self-supervised per-
formance lags further behind supervised baselines (Fig-
ure 5). The contrastive loss may lead to coarse-grained
features which are insufficient for fine-grained tasks.

2. Related Work
SSL for visual representations. Early self-supervised
representation learning methods typically centered around
solving hand-designed “pretext tasks” like patch location
prediction [18], rotation prediction [22], inpainting [40],
cross-channel reconstruction [64], sorting sequences of
video frames [35], solving jigsaw puzzles [38], or coloriza-
tion [63]. However, more recent work has explored con-
trastive learning-based approaches where the pretext task
is to distinguish matching and non-matching pairs of aug-
mented input images [30, 39, 51]. The prototypical exam-
ple is SimCLR [10, 11], which is trained to identify the
matching image using a cross-entropy loss. Other vari-
ations on the contrastive SSL framework include using a

momentum encoder to provide large numbers of negative
pairs (MoCo) [13, 27], adaptively scaling the margin in
MoCo (EqCo) [67], and contrasting clustering assignments
instead of augmented pairs (SwAV) [8]. Moving beyond
the contrastive loss entirely, some papers recast the problem
in a “learning-to-rank” framework (S2R2) [56], use sim-
ple feature prediction (SimSiam) [14], or predict the output
of an exponential moving average network (BYOL) [26].
[6] investigates the role of negatives in contrastive learn-
ing, though we note that BYOL and SimSiam avoid us-
ing negatives explicitly. In this work, our focus is on self-
supervised visual classification. We do not explore alter-
native settings such as supervised contrastive learning [33],
contrastive learning in non-vision areas like language [42]
or audio [44], or other methods that aim to reduce the anno-
tation burden for representation learning such as large-scale
weak supervision [37].

SSL beyond ImageNet. ImageNet classification has long
been viewed as the gold standard benchmark task for SSL,
and the gap between supervised and self-supervised perfor-
mance on ImageNet has steadily closed over the last few
years [8,10,26,27]. There is now a growing expectation that
SSL should reduce our dependence on manual supervision
in challenging and diverse domains which may not resem-
ble the traditional object classification setting represented
by ImageNet. A number of papers have studied how well
self-supervised representations pretrained on ImageNet per-
form on downstream tasks like fine-grained species classi-
fication [60], semantic segmentation [7], scene understand-
ing [26], and instance segmentation [27].

More recently, researchers have begun to study the ef-
fectiveness of contrastive learning when pretraining on
datasets other than ImageNet. In the case of remote sens-
ing, the unique properties of the data have motivated the
development of domain-specific contrastive learning tech-
niques [4,32]. In the medical domain, where images tend to
be very dissimilar to ImageNet, it has been shown that con-
trastive pretraining on domain-specific images leads to sig-
nificant gains compared to pretraining on ImageNet [11,46].
[34] compared the representations learned from five differ-
ent datasets, and showed that in most cases the best per-
forming representations came from pretraining on similar
datasets to the downstream task. In the case of fine-grained
data, [54] found that contrastive pretraining on images of
animals and plants did not lead to superior performance on
downstream bird classification compared to pretraining on
ImageNet. These apparently conflicting observations may
be explained by the relationship between the pretraining
and downstream data distributions, which we investigate in
our experiments. [65] and [53] pretrained on several dif-
ferent datasets and showed that there was surprisingly little
impact on downstream detection and segmentation perfor-
mance, unless synthetic data was used for pretraining [65].
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[50] pretrained on very large datasets (JFT-300M [47] and
YFCC100M [49]), but did not observe an improvement over
ImageNet pretraining in the standard regime.

We build on the above analysis by performing controlled,
like-for-like, comparisons of SSL on several large datasets.
This allows us to separate dataset-specific factors from gen-
eral patterns in SSL performance, and deliver new insights
into the necessary conditions for successful pretraining.
Analysis of SSL. A number of works have explored ques-
tions related to the conditions under which SSL is success-
ful. [45] showed that self-supervised representations gen-
eralize better than supervised ones when the downstream
concepts of interest are less semantically similar to the pre-
training set. [20] showed that contrastive pretraining on
ImageNet performs well on downstream tasks related to
object recognition in natural images, while leaving more
general study of pretraining in different domains to future
work. While these works show that SSL on ImageNet can
be effective, our experiments demonstrate that current SSL
methods can perform much worse than supervised baselines
on non-ImageNet domains, e.g. fine-grained classification.

Existing work has also investigated other aspects of SSL,
e.g. [41] examined the invariances learned, [12] showed that
easily learned features can inhibit the learning of more dis-
criminative ones, [10,53,65] explored the impact of differ-
ent image augmentations, [12,53] compared representations
from single vs. multi-object images, and [10, 25] varied
the backbone model capacity. Most relevant to our work
are studies that vary the amount of data in the pretraining
dataset, e.g. [34,53,61,65]. We extend this analysis by pre-
senting a more detailed evaluation of the impact of the size
of the unlabeled and labeled datasets, and investigate the
role of data quality, data domain, and task granularity.

3. Methods
Datasets. We perform experiments on four complemen-
tary large-scale datasets: ImageNet [17], iNat21 [53],
Places365 [66], and GLC20 [15]. Collectively, these
datasets span many important visual properties, including:
curated vs. “in-the-wild” images, fine- vs. coarse-grained
categories, and object-centric images vs. scenes. Each
dataset has at least one million images, which allows us to
make fair comparisons against the traditional ImageNet set-
ting. ImageNet (1.3M images, 1k classes) and Places365
(1.8M images, 365 classes) are standard computer vision
datasets, so we will not describe them in detail. For Ima-
geNet, we use the classic ILSVRC2012 subset of the full
ImageNet-21k dataset. For Places365, we use the official
variant “Places365-Standard (small images)” where all im-
ages have been resized to 256x256. iNat21 (2.7M images,
10k classes) contains images of plant and animal species
and GLC20 (1M images, 16 classes) consists of remote
sensing images. As both are recent datasets, we discuss

them in the supplementary material.
Fixed-size subsets. For some experiments we control for
dataset size by creating subsampled versions of each dataset
with sizes: 1M, 500k, 250k, 125k, and 50k images. We
carry out this selection only once, and the images are cho-
sen uniformly at random. We refer to these datasets using
the name of the parent dataset followed by the number of
images in parentheses, e.g. ImageNet (500k). Note that sub-
sets of increasing size are nested, so e.g. ImageNet (500k)
includes all of the images in ImageNet (250k). These sub-
sets are also static across experiments, e.g. ImageNet (500k)
always refers to the same set of 500k images. With the ex-
ception of Figures 2 and 3, we use the full dataset for any
type of supervised training (i.e. linear evaluation, fine tun-
ing, or supervised training from scratch). We always report
results on the same test set for a given dataset, regardless of
the training subset used.
Training details. All experiments in this paper are based on
a ResNet-50 [28] backbone, which is standard in the con-
trastive learning literature [8,10,27]. We primarily perform
experiments on SimCLR [10], a simple and popular con-
trastive learning method that contains all the building blocks
for state-of-the-art self-supervised algorithms. We follow
the standard protocol of first training with self-supervision
alone and then evaluating the learned features using linear
classifiers or end-to-end fine-tuning. Unless otherwise spec-
ified, we use hyperparameter settings based on [10] for all
methods and datasets. While this may not lead to maximal
performance, it is likely to be representative of how these
methods are used in practice – due to the high computa-
tional cost of contrastive pretraining, extensive hyperparam-
eter tuning is not feasible for most users. We also consider
MoCo [27] and BYOL [26] in Figure 3. Full training details
are provided in the supplementary material.

4. Experiments
We now describe our experiments in which we investi-

gate the impact of data quantity, data domain, data quality,
and task granularity on the success of contrastive learning.

4.1. Data quantity

First we consider the question of how much data is re-
quired to learn a “good” representation using SSL. There
are two important notions of data quantity: (i) the number
of unlabeled images used for pretraining and (ii) the num-
ber of labeled images used to subsequently train a classifier.
Since labels are expensive, we would like to learn represen-
tations that generalize well with as few labeled images as
possible. While unlabeled images are cheap to acquire, they
still incur a cost because pretraining time is proportional to
the size of the pretraining set. To understand when SSL is
cost-effective, we need to understand how performance de-
pends on these two notions of data quantity.
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To study this question, we pretrain SimCLR using differ-
ent numbers of unlabeled images. Each pretrained represen-
tation is then evaluated using different numbers of labeled
images. In Figure 2 we present these results for iNat21 (left
column), ImageNet (center column), and Places365 (right
column). We also include results for supervised training
from scratch (in black). We show linear evaluation results
in the top row and corresponding fine-tuned results in the
bottom row. Each curve in a figure corresponds to a dif-
ferent pretrained representation. The points along a curve
correspond to different amounts of supervision used to train
a linear classifier or fine-tune the network.
There is little benefit beyond 500k pretraining images.
The gap between the 500k (blue) and 1M (orange) pretrain-
ing image curves is typically less than 1-2% in top-1 accu-
racy. This means that for a dataset with one million images,
we can trade a small decrease in accuracy for a 50% de-
crease in pretraining time. If a 2-4% top-1 accuracy drop
is acceptable, then the pretraining set size can be reduced
by a factor of four (from 1M to 250k). However, the dif-
ference between 50k (pink) pretraining images and 250k
(green) pretraining images is substantial for each dataset,
often in excess of 10% top-1 accuracy. We conclude that
SimCLR seems to saturate well before we get to ImageNet-
sized pretraining sets. This is consistent with observations
from the supervised learning literature, though more images
are required to reach saturation [37].
Self-supervised pretraining can be a good initializer
when there is limited supervision available. In the bot-
tom row of Figure 2 we see that when only 10k or 50k
labeled images are available, fine-tuning a SimCLR repre-
sentation is significantly better than training from scratch.
When supervision is plentiful, fine-tuned SimCLR repre-
sentations achieve performance similar to supervised train-
ing from scratch. It is interesting to compare this to findings
from the supervised setting which suggest that networks
which are initially trained on distorted (i.e. augmented) im-
ages are unable to recover when subsequently trained with
undistorted ones [3].
Self-supervised representations can approach fully su-
pervised performance for some datasets, but only by us-
ing lots of labeled images. The ultimate goal of SSL is
to match supervised performance without the need for large
amounts of labeled data. Suppose we consider the right-
most point on the black curves in Figure 2 as a proxy for
“good” supervised performance. Then in both the linear
and fine-tuned cases, the gap between SimCLR (pretrained
on 1M images) and “good” supervised performance is quite
large unless well over 100k labeled images are used. For
instance, the gap between “good” supervised performance
and a classifier trained using 50k labeled images on top of
SimCLR (1M) is around 11% (11%) for Places365, 23%
(21%) for ImageNet, and 58% (56%) for iNat21 in the lin-

ear (and fine-tuned) case. Although SSL works well when
lots of supervision is available, further innovation is needed
to improve the utility of self-supervised representations in
the low-to-moderate supervision regime.
iNat21 is a valuable SSL benchmark. Figure 2 shows
a surprisingly large gap (∼ 30%) between supervised and
self-supervised performance on iNat21 in the high supervi-
sion regime. In Figure 3 we see that other SSL methods
exhibit similar limitations. The newer BYOL outperforms
MoCo and SimCLR, but a considerable gap (∼ 25%) re-
mains. The high supervised performance shows that the
task is possible, yet the self-supervised performance re-
mains low. It seems that iNat21 reveals challenges for SSL
that are not apparent in ImageNet, and we believe it is a
valuable benchmark for future SSL research.

4.2. Data domain

In the previous section we observed that increasing the
pretraining set size yields rapidly diminishing returns. In
this section we consider a different design choice: what
kind of images should we use for pretraining? Since most
contrastive learning papers only pretrain on ImageNet, this
question has not received much attention. We take an ini-
tial step towards an answer by studying the properties of
SimCLR representations derived from four pretraining sets
drawn from different domains.

We train SimCLR on iNat21 (1M), ImageNet (1M),
Places365 (1M), and GLC20 (1M). By holding the pretrain-
ing set size constant, we aim to isolate the impact of the
different visual domains. We present in-domain and cross-
domain linear evaluation results for each representation in
Table 1. In Table 2 we consider the effect of pretraining on
pooled datasets, i.e. new image collections built by shuf-
fling together existing datasets. Finally, in Table 3 we study
different fused representations, which are formed by con-
catenating the outputs of different feature extractors.
Pretraining domain matters. In Table 1 we see that
in-domain pretraining (diagonal entries) consistently beats
cross-domain pretraining (off-diagonal entries). The gap
can be surprisingly large, e.g. in-domain pretraining pro-
vides a 12% boost on iNat21 compared to the best cross-
domain pretraining (ImageNet). One might have expected
that a visually diverse dataset like ImageNet would lead
to a better self-supervised representation than a more ho-
mogeneous dataset like GLC20 (even when evaluating on
GLC20) but this is not what we observe.

The off-diagonal entries of Table 1 show that training
SimCLR on ImageNet leads to the best cross-domain per-
formance, while GLC20 leads to the worst cross-domain
performance. Since the pretraining protocols and dataset
sizes are held constant, we suggest that the characteristics
of the image sets themselves are responsible for the differ-
ences we observe. The strong cross-domain performance of
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(a) Linear Evaluation

(b) Fine-Tuning

Figure 2. How much data does SimCLR need? Linear evaluation results (top row) and fine-tuning results (bottom row) as a function
of the number of unlabeled images used for pretraining and the number of labeled images used for downstream supervised training. The
“Supervised” curve (black) corresponds to training from scratch on different numbers of labeled images. It is the same for the top and
bottom plots in each column. Most SSL papers focus on the “high data” regime, using ∼ 106 images (e.g. all of ImageNet) for both
pretraining and classifier supervision, but there are significant opportunities for improvement in the “low-data” regime. Even with 106

labeled images for linear classifier training, SimCLR performs far worse than supervised learning on iNat21, suggesting that iNat21 could
be a more useful SSL benchmark than ImageNet in future.

Figure 3. How does SimCLR compare to other self-supervised
methods? Linear evaluation results on iNat21 for SimCLR,
MoCo, and BYOL. All methods are pretrained on 1M images for
1000 epochs and follow the same linear evaluation protocol. The
more recent BYOL performs better than the others, but a large gap
remains to supervised performance.

SimCLR pretrained on ImageNet may be due to semantic
similarity – perhaps it is better to pretrain on a dataset that
is semantically similar to the downstream task, even in a
self-supervised context. This makes sense because there are
classes in ImageNet that are similar to classes in iNat21 (an-
imals) and Places365 (scenes). This also explains the weak
performance of GLC20, since remote sensing imagery is

Pretraining iNat21 ImageNet Places365 GLC20
iNat21 (1M) SimCLR 0.493 0.519 0.416 0.707
ImageNet (1M) SimCLR 0.373 0.644 0.486 0.716
Places365 (1M) SimCLR 0.292 0.491 0.501 0.693
GLC20 (1M) SimCLR 0.187 0.372 0.329 0.769
Supervised (All Images) 0.791 0.741 0.539 0.826

Table 1. Does pretraining domain matter? Linear evaluation
results for representations derived from different million-image
datasets. We train the linear classifiers using the full training
sets. The results in the “Supervised” row correspond to super-
vised training from scratch on the full training set. We report MAP
for GLC20 and top-1 accuracy for other datasets. In all cases, in-
domain pretraining outperforms cross-domain pretraining. In each
column we highlight the best and second-best results.

not similar to the other datasets.
Adding cross-domain pretraining data does not neces-
sarily lead to more general representations. We have
seen that pretraining on different domains leads to represen-
tations with significantly differing capabilities. This leads to
a natural question: what happens if we combine our datasets
and then learn a representation?

Table 2 gives linear evaluation results for SimCLR pre-
trained on different “pooled” datasets. In each row, n im-
ages from dataset A and m images from dataset B are shuf-
fled together to produce a pretraining set of size n+m. For
instance, the pretraining dataset in the first row of Table 2
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250k 250k - - 0.444 0.597 0.467
- 250k 250k - 0.334 0.596 0.490

250k - 250k - 0.428 0.531 0.483
250k 250k 250k 250k 0.410 0.574 0.482
In-Domain (250k) 0.451 0.608 0.485
In-Domain (500k) 0.477 0.629 0.499
In-Domain (1M) 0.493 0.644 0.501

Table 2. The effect of dataset pooling. Linear evaluation results
for self-supervised representations derived from pooled datasets,
where two or more datasets are shuffled together. We train the
linear classifiers using the full training sets. The “In-Domain” re-
sults correspond to pretraining on subsets of the dataset named at
the top of the column. Pooling datasets increases pretraining set
size and diversity, but we find that performance decreases relative
to comparable in-domain pretraining. The “In-Domain (1M)” row
corresponds to the diagonal entries of Table 1.

consists of 250k iNat21 images and 250k ImageNet images
shuffled together.

If we compare the “In-Domain (500k)” row against the
(equally sized) pooled datasets in the first three rows of Ta-
ble 2, we see that the in-domain pretraining on 500k images
is always better. Similarly, the “In-Domain (1M)” row beats
the 1M-image pooled dataset (consisting of 250k images
from the four datasets). The more diverse pooled pretrain-
ing sets always lead to worse performance compared to the
more homogeneous pretraining sets of the same size.

Table 2 also allows us to say whether it is worthwhile to
add pretraining data from a different domain (as opposed to
swapping out some in-domain data for some data from a dif-
ferent domain, as we have been discussing so far). The “In-
Domain (250k)” row is better than the 1M-image pooled
dataset and almost all of the 500k-image pooled datasets. It
seems that adding pretraining data from a different domain
typically hurts performance. In contrast, Figure 2 shows
that increasing the amount of in-domain pretraining data
consistently improves performance.

We hypothesize that the reason for this lackluster per-
formance is that diverse images are easier to tell apart,
which makes the contrastive pretext task easier. If the con-
trastive task is too easy, the quality of the representation
suffers [6, 12]. While more investigation is needed, the fact
that increasing pretraining data diversity can hurt perfor-
mance suggests a “diversity-difficulty trade-off” that should
be considered when creating pretraining sets for SSL.
Self-supervised representations can be largely redun-
dant. From Table 1 it is clear that pretraining on dif-
ferent datasets leads to representations that differ signifi-
cantly. For instance, iNat21 SimCLR beats ImageNet Sim-
CLR on iNat21 (+12.4% ) and ImageNet SimCLR beats
iNat21 SimCLR on ImageNet (+12.7%). Do these repre-
sentations learn complementary information, or do they just
capture the same information to different degrees?

ImageNet iNat21 Dim. ImageNet iNat21
SimCLR - 2048 0.647 0.380
- SimCLR 2048 0.520 0.506
Sup. - 2048 0.711 0.434
- Sup. 2048 0.490 0.769
Sup. Sup. 4096 0.712 0.772
SimCLR SimCLR 4096 0.641 0.520
SimCLR & Sup. - 4096 0.720 0.472
- SimCLR & Sup. 4096 0.527 0.772
SimCLR Sup. 4096 0.605 0.769
Sup. SimCLR 4096 0.717 0.553

Table 3. The effect of representation fusion. Linear evalu-
ation results for different combinations of supervised and self-
supervised representations on ImageNet and iNat21. We train the
linear classifiers using the full training sets. For comparability, the
in-domain supervised results in this table (ImageNet Sup. evalu-
ated on ImageNet and iNat21 Sup. evaluated on iNat21) are for
linear classifiers trained on representations learned from full su-
pervision. “Dim.” is the representation dimensionality. In each
column we highlight the best and second-best results.

To probe this question we concatenate features from dif-
ferent pretrained networks and carry out linear evaluation
on these “fused” representations. In Table 3 we present
linear evaluation results for fused representations on Im-
ageNet and iNat21. Combining ImageNet SimCLR and
iNat21 SimCLR is worse than ImageNet SimCLR alone on
ImageNet (-0.6%), but better than iNat21 SimCLR alone
on iNat21 (+1.4%). These effects are small relative to the
> 12% difference between ImageNet SimCLR and iNat21
SimCLR. This suggests that the two self-supervised repre-
sentations are largely redundant.

There is a larger effect when combining supervised
and self-supervised representations. For iNat21, adding
ImageNet Sup. (i.e. supervised ImageNet features) on
top of iNat21 SimCLR improves performance significantly
(+4.7%). However, adding iNat21 Sup. on top of ImageNet
SimCLR actually decreases performance (-4.2%). These re-
sults are consistent with the hypothesis that dataset seman-
tics are important even for SSL. Since ImageNet is seman-
tically broader than iNat21 (ImageNet has animal classes,
but also many other things), features learned from ImageNet
(supervised or self-supervised) should be more helpful for
iNat21 than vice-versa.

4.3. Data quality

We have seen that the characteristics of the pretraining
data can have a significant impact on the quality of self-
supervised representations. In this section we dig deeper
into this question by studying the impact of pretraining
on artificially degraded images. This serves two purposes.
First, this is a practical question since there are many set-
tings where image quality issues are pervasive e.g. medical
imaging [48] or camera trap data [5]. Second, it can help us
understand the robustness properties of SSL.

To create a corrupted dataset we apply a particular image
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Figure 4. What is the effect of pretraining image corruption?
Decrease in linear evaluation accuracy on ImageNet due to pre-
training on corrupted versions of the ImageNet training set. The
zero point corresponds to pretraining (supervised or SimCLR) on
uncorrupted images followed by linear evaluation. “Supervised”
and “SimCLR” have different zero points. All linear classifiers
are trained using the full uncorrupted ImageNet training set.

corruption to each image in the dataset. This is a one-time
offline preprocessing step, so corruptions that have a ran-
dom component are realized only once per image. Given a
corrupted dataset we then pretrain as normal. During linear
evaluation, we use the original clean images for training and
testing, i.e. the corrupted images are only used for pretrain-
ing.

In Figure 4 we present linear evaluation results on Im-
ageNet for a simple but diverse set of corruptions. The
zero point corresponds to pretraining on uncorrupted im-
ages, and we measure how much performance drops when
pretraining on corrupted images. The “Salt and Pepper”
corruption is salt and pepper noise applied independently
to each pixel, in each channel, with probability 0.01. The
“JPEG” corruption is JPEG compression with a very low
quality level of 10. For “Resize”, we resize each image
so that the short side is 256 pixels while preserving the as-
pect ratio. This reduces the resolution of the crops used
for training. For our downsampling corruptions, we follow
the resize operation with downsampling by 2x or 4x and
then upsampling by the same factor. This holds constant
the image size and the fraction of the image occupied by
each object, but reduces resolution. Implementation details
and examples can be found in the supplementary.
Image resolution is critical for SSL. “Downsample (2x)”
and “Downsample (4x)” are by far the most damaging cor-
ruptions for SimCLR, reducing accuracy by around 15%
and 34%, respectively. Since SimCLR already involves
extreme cropping, we might expect more robustness to
changes in image resolution. This finding could be par-
tially explained by the difficulty of generalizing to higher-
resolution images during linear classifier training [52].
However, supervised pretraining faces the same challenge
but the effect of downsampling is much less dramatic. This

suggests that the performance drop is due to deficiencies in
the features learned by SimCLR.
SSL is relatively robust to high-frequency noise. “JPEG”
and “Salt & Pepper” both add high-frequency noise to the
image. For SimCLR, these corruptions have a much milder
impact than the downsampling corruptions. One possible
explanation is that downsampling destroys texture informa-
tion, which is known to be a particularly important signal
for convolutional neural networks [21, 31]. For supervised
pretraining the ranking of corruptions is very different, with
“JPEG” landing between 2x and 4x downsampling.

4.4. Task granularity

We have seen that the properties of pretraining datasets
are important for determining the utility of self-supervised
representations. But are there downstream tasks for which
self-supervised representations are particularly well or
poorly suited? We consider fine-grained classification and
show that classification performance depends on task gran-
ularity, i.e. how fine or coarse the labels are. While there
are formal methods for measuring dataset granularity [16],
we claim by intuition that iNat21 is more fine-grained than
ImageNet, which is more fine-grained than Places365.

In Figure 5 we use label hierarchies (which are available
for ImageNet, iNat21, and Places365) to explicitly study
how performance depends on label granularity. We treat
“distance from the root of the hierarchy” as a proxy for
granularity, so labels further from the root are considered to
be more fine-grained. We perform (i) linear classifier train-
ing (for SimCLR) and (ii) end-to-end training from scratch
(for “Supervised”) using the labels at the finest level of the
taxonomy and re-compute accuracy values as we progres-
sively coarsen the predictions and labels. We do not re-train
at each level of granularity. A complete description of this
process can be found in the supplementary materials.
The performance gap between SSL and supervised
learning grows as task granularity becomes finer. We
start with the iNat21 results in Figure 5. The supervised
and SimCLR pretrained models perform similarly at the
coarsest levels of the label hierarchy (“Kingdom”). Both
models perform worse as task granularity increases, but the
SimCLR model degrades much more rapidly (“Species”).
This suggests that SimCLR may fail to capture fine-grained
semantic information as effectively as supervised pretrain-
ing. We also observe a growing supervised/self-supervised
gap for ImageNet and Places365. The magnitude of this
gap seems to track dataset granularity, since iNat21 (most
fine-grained) has the largest gap and Places365 (least fine-
grained) has the smallest gap. The fact that supervised
learning achieves high performance on iNat21 while SSL
lags behind suggests that iNat21 could be a valuable bench-
mark dataset for the next phase of SSL research.
Are the augmentations destructive? State-of-the-art con-
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Figure 5. How does performance depend on label granularity? Linear evaluation at different levels of label granularity for iNat21,
ImageNet, and Places365. Each plot compares supervised learning from scratch against a linear classifier trained on top of in-domain
SimCLR. Both are trained using the full training sets. We plot top-1 accuracy against label granularity, which is more fine-grained as we
move from left to right. The numbers on the x-axis are the class counts at a given level of the label hierarchy. We do not re-train at coarser
granularity levels, we just change the evaluation label set. The definitions of the hierarchy levels are given in the supplementary material.

trastive learning techniques are designed for ImageNet, so
the default augmentation policy may be poorly tuned for
other datasets [60]. For instance, if color is a key fine-
grained feature for species classification then the “color jit-
ter” augmentation used by SimCLR may destroy important
information for iNat21 classification. Could this explain the
rapid drop in performance exhibited by iNat21 SimCLR for
fine-grained classes? Notice that there is a similar, though
less extreme, fine-grained performance drop for ImageNet
SimCLR in Figure 5. Since the ImageNet-tuned augmenta-
tions are presumably not destructive for ImageNet, it does
not seem likely that this fully explain our observations.
Does contrastive learning have a coarse-grained bias?
We hypothesize that the contrastive loss tends to cluster im-
ages based on overall visual similarity. The intuition is that
fine-grained features are often subtle, and subtle features are
unlikely to be very useful for distinguishing between pairs
of images in the contrastive pretext task. If our hypothe-
sis is correct then the boundaries between different clus-
ters would not be well-aligned with the boundaries between
fine-grained classes. This effect could be overlooked when
evaluating on coarse-grained classes, but would become ap-
parent on a more fine-grained task. Additional analysis is
required to fully understand this “granularity gap” in SSL,
which we leave to future work.

5. Conclusion
We have presented a comprehensive set of experiments

to address several aspects of the question: when does con-
trastive visual representation learning work? In Section 4.1
we found that we need fewer than 500k pretraining images
before encountering severe diminishing returns. However,
even the best self-supervised representations are still much
worse than peak supervised performance without hundreds
of thousands of labeled images for classifier training. In
Section 4.2 we found that self-supervised pretraining on 1M
images from different domains results in representations

with very different capabilities, and that simple methods
for combining different datasets do not lead to large gains.
In Section 4.3 we showed that image resolution is critical
for contrastive learning and, more broadly, that some image
corruptions can degrade a self-supervised representation to
the point of unusability while others have almost no impact.
Finally, in Section 4.4 we found that supervised pretrain-
ing retains a substantial edge when it comes to fine-grained
classification. These experiments highlight several areas
where further research is needed to improve current SSL
algorithms, most of which were not evident from traditional
evaluation protocols, i.e. top-1 accuracy on ImageNet.

Limitations. We mainly perform experiments using one
self-supervised method. We focus on SimCLR because it
reflects the essence of state-of-the-art contrastive learning
methods without introducing additional architectural com-
plexities. While our MoCo and BYOL experiments are
not much different from SimCLR, it is important to vali-
date our results on other self-supervised methods. It would
also be interesting to explore alternative backbone archi-
tectures [9, 19], though after controlling for training set-
tings, ResNet-50 remains competitive with newer architec-
tures [58, 59]. We study only classification tasks, so addi-
tional work is also required to understand how these results
translate to segmentation [57] or detection [29,68]. Finally,
we only consider datasets up to roughly ImageNet scale.
We believe this is the most practical setting for most use
cases, but it is possible that some patterns may be different
for significantly larger datasets and models [23, 24].
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A. Additional Results
A.1. How does task granularity affect different self-

supervised learning methods?

In Figure 5 we saw that there is a large gap between
supervised and self-supervised (SimCLR) performance on
iNat21. Figure A1 extends Figure 5 by adding results for
MoCo and BYOL. Across all granularity levels, MoCo is
slightly worse than SimCLR and BYOL is significantly
better. For all three self-supervised methods, performance
drops rapidly as the evaluation is made more fine-grained.
While BYOL is much better than SimCLR, it still lags be-
hind fully supervised performance by 20% top-1 accuracy.

A.2. Do larger models scale better in terms of pre-
training set size?

In Figure 2 we observe that doubling the pretraining set
size from 500k images to 1M images leads to small bene-
fits (1-2%) across three large-scale datasets. However, all
of those results are based on a ResNet-50. Does the story
change for larger or smaller models? In Figure A2 we study
this question using ResNet-34, ResNet-50, and ResNet-101.
When we double the size of the pretraining set from 125k to
250k, ResNet-50 and ResNet-101 make significantly larger
gains than ResNet-34. However, doubling the size of the
pretraining set from 500k to 1M produces gains of <2% for
all models. While ResNet-101 gains more than ResNet-50
with each increase in pretraining set size, the gap between
them is very small by the time we reach 1M images. This is
the same conclusion we reached in Figure 2.

A.3. Does semantic similarity explain patterns in
self-supervised performance?

In Section 4.2 we saw that (i) in-domain SimCLR pre-
training always beats cross-domain SimCLR pretraining
and (ii) ImageNet is the best dataset for cross-domain pre-
training. One hypothesis which could explain these patterns
is that semantic similarity between the pretraining dataset
and the downstream task leads to better performance. This
would require that modern self-supervised methods capture
high-level semantic information. In this section we consider
evidence for this hypothesis.
ImageNet SimCLR performs well on iNat21 classes that
are similar to ImageNet classes. ImageNet includes
around 200 mammal categories, 60 bird categories, and
30 categories of insects and reptiles. A breakdown of the
categories in iNat21 can be found in [54]. In Figure A3
we analyze per-categories accuracy averaged over six tax-
onomic classes of animals (Arachnida, Insecta, Amphibia,
Mammalia, Reptilia) and two taxonomic classes of plants
(Liliopsida and Magnoliopsida). Surprisingly, ImageNet
SimCLR outperforms iNat21 SimCLR on mammals (Mam-
malia) and nearly matches the performance of iNat21 Sim-

Figure A1. How does performance depend on label granular-
ity? Linear evaluation at different levels of label granularity for
iNat21. We compare end-to-end training from scratch against lin-
ear classifiers trained on top of in-domain self-supervised repre-
sentations (SimCLR, MoCo, and BYOL). All classifiers (linear
and end-to-end) are trained using the full iNat21 training set. This
plot is identical to Figure 5 except that we have added curves for
MoCo and BYOL.

Figure A2. Increasing pretraining set size leads to rapid dimin-
ishing returns across different model sizes. Linear evaluation
results on iNat21 for SimCLR. We show the increase in top-1 ac-
curacy on iNat21 that results from doubling pretraining set size.
Each color is a different architecture. For a given color, each line
uses a different amount of labeled data for linear classifier training.

CLR on birds (Aves). We also evaluate Places365 Sim-
CLR pretraining, which does not have any categories cor-
responding to animals or plants. We do not see any taxo-
nomic classes for which Places365 SimCLR performs close
to iNat21 SimCLR.
Most of the ImageNet classes for which iNat21 SimCLR
beats ImageNet SimCLR are animals or plants. We find
similar effects in the context of ImageNet classification.
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Figure A3. Semantic similarity may predict transfer perfor-
mance. Linear evaluation results on iNat21 for different pre-
trained representations. We compare representations pretrained on
Places365, ImageNet, and iNat21 (full datasets, not subsampled)
in terms of top-1 linear classification accuracy on iNat21. The
result for each taxonomic class (Arachnida, Insecta, Amphibia,
Aves, Mammalia, Reptilia, Liliopsida, Magnoliopsida) is the aver-
age of the per-species accuracy over all species in that taxonomic
class.

When we compare the per-category accuracy for ImageNet
SimCLR with the per-category accuracy for iNat21 Sim-
CLR, we find that ImageNet SimCLR leads to a higher ac-
curacy for all but 80 categories. Of those 80 categories, 68
(i.e. 85%) are animals or plants.

In-domain pretraining helps some classes and hurts oth-
ers. To develop a deeper understanding of the effect of
pretraining domain, we compute the per-class accuracy im-
provement that results from using in-domain SimCLR in-
stead of ImageNet SimCLR. We present these results for
iNat21 and Places365 in Figure A4. For these results we
pretrain on the full datasets, not the million-image subsets.
We see that in-domain pretraining leads to an improvement
for ∼ 60% of classes, while the rest stay the same or de-
grade. In Table A1 we list the most harmed and most
improved classes. Interestingly, all of the most improved
classes for iNat21 are plants. Around 40% of the images in
iNat21 are plants, but of course the self-supervised method
does not have access to the labels. We also notice that many
of the most harmed classes for iNat21 are similar to classes
we might find in ImageNet, e.g. birds, mammals, and rep-
tiles. This is consistent with the hypothesis that the success
of SimCLR is partially governed by the semantic similarity
between the pretraining set and the downstream task, even
though no labels are used for representations learning. The
patterns seem less clear for Places365.

Figure A4. In-domain contrastive learning improves accuracy
on most (but not all) classes. Increase in per-class linear evalua-
tion results for different pretrained representations compared to an
ImageNet SimCLR baseline. In Table 1 we saw that in-domain
pretraining was better than cross-domain pretraining. Here we
break down those results in terms of the per-class accuracy in-
crease for in-domain SimCLR with respect to ImageNet SimCLR
(represented by the dashed line). For both Places365 (green line)
and iNat21 (orange line), in-domain SimCLR pretraining benefits
around 60% of classes while around 40% of classes are either the
same or worse off. Note that the curves for Places365 and iNat21
are sorted independently so the species ordering is different for
each. See Table A1 for lists of the most harmed and most im-
proved classes for both datasets.

A.4. Is SimCLR overly tuned for ImageNet?

One possible explanation for the strong cross-domain
performance of ImageNet SimCLR we observe in Table 1
is that the training procedures, augmentations, and hyper-
parameters for SimCLR were designed with ImageNet in
mind. This might lead SimCLR to produce better represen-
tations when trained on ImageNet than it does when trained
on other datasets. However, we see that in-domain SimCLR
is better than ImageNet SimCLR for iNat21, Places365, and
GLC20. If SimCLR is somehow “overfit” to ImageNet, that
effect seems to be overwhelmed by the effect of domain
similarity.

A.5. What is the effect of native image resolution?

ImageNet and iNat21 have larger images than Places365
and GLC20. While images are always resized to 224x224
before they are passed in to the network, that happens after
random crops are chosen. This means that we are train-
ing on more detailed 224x224 images for ImageNet and
iNat21 compared to Places365 and GLC20. This could af-
fect cross-domain performance comparisons such as those
in e.g. Table 1. To understand the impact of this difference,
we compare pretraining on resized images to pretraining on
the original images for ImageNet and iNat21. We provide
linear evaluation results in Table A2. It seems that resizing
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iNat21 Places365
Most Improved Most Harmed Most Improved Most Harmed

summer-cypress Ferruginous Hawk /a/airport_terminal /s/slum
Greater Tickseed Western Banded Gecko /r/roof_garden /h/home_office

Annual Blue-eyed Grass Desert Cottontail /r/restaurant /s/swamp
Jamaica Snakeweed Arizona Alligator Lizard /g/gazebo/exterior /a/arena/performance

California Jacob’s ladder Petticoat Mottlegill /b/bedroom /b/beach
tomato Elk /b/booth/indoor /c/canal/urban

leatherleaf fern Ruddy Ground-Dove /r/rice_paddy /o/orchard
northern bugleweed Long-tailed Weasel /c/castle /o/ocean

mock azalea Little Blue Dragonlet /m/museum/indoor /g/garage/indoor
Mexican False Calico Signal Crayfish /l/locker_room /u/underwater/ocean_deep

Table A1. In-domain pretraining helps some classes and harms others. Lists of the ten most improved and the ten most harmed classes
when we change from ImageNet SimCLR pretraining to in-domain SimCLR pretraining. See Figure A4 for the corresponding curves
showing the distribution of accuracy improvement over all classes.

Pretraining iNat21 ImageNet Places365 GLC20
iNat21 0.506 0.520 0.413 0.865
iNat21 (Resize) 0.505 0.500 0.412 0.865
Change -0.001 -0.020 -0.001 0.000
ImageNet 0.380 0.647 0.488 0.710
ImageNet (Resize) 0.394 0.632 0.471 0.712
Change +0.014 -0.015 -0.017 +0.002

Table A2. Analysis of the effect of native image size. Linear
evaluation results for representations pretrained on resized ver-
sions of ImageNet and iNat21. ImageNet and iNat21 have images
that vary in size, many of which are much larger than the 256x256
images in Places365 and GLC20. Here we analyze the effect of
pretraining on resized variants of ImageNet and iNat, which have
been preprocessed so that all images have a short side of 256. We
use the “Resize” corruption described in Appendix C. Note that
the downsampling results in Figure 4 start from resized datasets –
in this table we are analyzing the effect of the initial resizing.

can introduce a 1-2% difference in top-1 accuracy, which
can be significant on datasets like ImageNet where the per-
formance improvements of new methods are also on the or-
der of 1-2%.

A.6. Is class difficulty preserved between different
representations?

To analyze the differences between self-supervised rep-
resentations a bit further, we ask whether the same classes
are “difficult” or “easy” under different representations. In
Figure A5 we illustrate how per-class accuracy changes for
iNat21 (top row) and Places365 (bottom row) when switch-
ing between ImageNet SimCLR and in-domain SimCLR.
The panels in the left column define the hardest and easi-
est examples based on ImageNet SimCLR, while the pan-
els in the right column define the hardest and easiest ex-
amples based on in-domain SimCLR. We observe that class
difficulty is not preserved between ImageNet SimCLR and
iNat21 SimCLR (top row), but it is largely preserved be-
tween ImageNet SimCLR and Places365 SimCLR (bottom
row). We also note that the overall patterns are the same
whether we track the easiest/hardest examples for ImageNet
SimCLR and move to the in-domain representation (left col-
umn) or track the easiest/hardest examples for in-domain

SimCLR and move to ImageNet SimCLR (right column).

A.7. What is the effect of within-dataset diversity?

In Table 2 we saw that adding pretraining images from a
different dataset provides little to no benefit whereas adding
pretraining images from the same dataset consistently helps.
The surprising conclusion is that a larger, more diverse pre-
training dataset can be worse than a smaller, homogeneous
pretraining dataset. In this section we present a prelimi-
nary study of a milder form of data diversity by changing
the number of classes in our pretraining data while holding
the number of images constant. We construct three equally
sized subsets of ImageNet: one with 200 classes (500 im-
ages per class), one with 500 classes (200 images per class),
and one with 1k classes (100 images / class). We present
linear evaluation results in Table A3. The class information
is only used to construct the datasets, which are then used
for self-supervised pretraining. Linear classifiers trained on
top of these representations use full training sets as usual.

If we assume that class count is a valid proxy for visual
diversity, then Table A3 indicates that increasing diversity
improves performance on Places365 (+3.9% top-1) but de-
grades performance on iNat21 (-2.4% top-1). All else be-
ing equal, we might intuitively expect a more diverse pre-
training set to be beneficial. This seems to be the case for
Places365. However, the result for iNat21 shows that this
is not necessarily the case. It is possible that more homo-
geneous pretraining data leads to more fine-grained self-
supervised features, which would account for the decrease
in performance with increasing diversity for iNat21. Since
Places365 is not very fine-grained, it would not benefit from
this effect. However, this is a small-scale experiment on one
dataset so it should be interpreted with caution.

If these results stand up to under further scrutiny, then
we would need to reconcile this finding with our results in
Table 2, which show that increased diversity (achieved by
replacing some in-domain data with some data from another
domain) degrades performance even for Places365. The
simplest explanation is that the increased diversity here is
much milder - we are simply changing how images are dis-

14



(a) Results for iNat21 classification.

(b) Results for Places365 classification.

Figure A5. Difficulty depends on the representation. Visualization of the change in per-class linear evaluation results when the underly-
ing self-supervised representation is changed. We show the hardest 5% of classes (red lines) and the easiest 5% of classes (blue lines) for
the representation named in the bottom left corner of each panel. Left and right plots simply reverse which representation is being used to
define the easy and hard classes. Each line represents one class, and shows how the accuracy for that class increases or decreases when we
replace the representation named in the bottom-left corner of each panel with the representation named in the bottom-right corner of each
panel. Note that the iNat21 validation set has 10 images per class, so all class accuracy values for the top plots lie in {0, 0.1, . . . , 0.9, 1.0}.

Classes Images / Class ImageNet iNat21 Places365
200 500 0.509 0.314 0.390
500 200 0.531 0.305 0.415
1000 100 0.522 0.290 0.429

Table A3. What is the effect of image diversity within a
dataset? Linear evaluation results for self-supervised represen-
tations based on 100k ImageNet images distributed over different
numbers of classes.

tributed over classes, not adding images from other datasets
entirely. Our results indicate that this mild diversity is ben-
eficial for pretraining, but too much diversity may render
the contrastive pretraining task too easy, resulting in weaker
features.

B. Qualitative Examples

Images from different domains. In our paper we consider
four datasets: ImageNet, iNat21, Places365, and GLC20.
We illustrate their qualitative differences by showing some
randomly chosen images from each dataset in Figure A6.
By comparing the first row (ImageNet) with the second

(iNat21) and third (Places365) rows, we can see that there
are ImageNet images that are semantically similar to images
from iNat21 (e.g. the animals in the first and third images)
and Places365 (e.g. the bridge scene in the fourth image).
The images from GLC20 (bottom row) are quite distinct
from the images from the other three datasets.
Corrupted images. In Figure A7 we show examples of the
image corruptions we use in Figure 4. While all of these
corruptions may seem subjectively mild, Figure 4 shows
that they can have a considerable impact on the quality of
the learned representations.

C. Implementation Details
C.1. Datasets

iNat21. The 2021 iNaturalist Challenge dataset (iNat21) is
a fine-grained species classification dataset [54], with 2.7M
training images covering 10k species. Unlike prior iNatu-
ralist datasets [55], iNat21 has an approximately balanced
training set. The 100k official validation images are evenly
sampled from each species, and we use it as our test set.

15



GLC20. GeoLifeCLEF 2020 [15] is a collection of remote
sensing imagery, designed to facilitate research on location-
based species prediction, while also serving as a land cover
(LC) classification dataset. Each image is associated with a
vector describing the distribution of land cover classes in a
256m2 patch centered at that location. For the purposes of
this work, we binarize this vector (1 for any land cover class
whose proportion is nonzero, 0 otherwise) and treat the task
as multi-label classification. We only use the half of the
dataset from the US, which means we have 1M training im-
ages covering 16 land cover classes. Throughout the paper,
we refer to this subset of the GeoLifeCLEF 2020 dataset as
GLC20. We use the official validation set as a test set, which
has around 27k images that were held out in spatial blocks
to mitigate the effects of spatial autocorrelation. Note that
the labels for this dataset are noisy, so we are mainly inter-
ested in GLC20 as a pretraining set.

C.2. Training hyperparameters

SimCLR pretraining. Unless otherwise specified, we use
the same settings as the ImageNet experiments in [10]. One
exception is that we omit Gaussian blur from the augmen-
tation set since [10] found that it provides a relatively small
benefit, around 1% top-1 accuracy on ImageNet. Full de-
tails of the augmentations are given in Section C.4. We
train with a batch size of 4096 for 1000 epochs and use 16
TPUs for training. We use the LARS optimizer [62] with
a learning rate of 4.8 (following 0.075 × batch size/256),
decayed on a cosine schedule [36] with a 10-epoch lin-
ear warmup and no restarts. For small datasets (size 50k
or smaller), we use a lower learning rate of 0.4 (following
0.025× batch size/256) decayed on a cosine schedule. Our
projection head has two layers and an output dimension of
128. A temperature parameter of τ = 0.1 is set for the
contrastive loss. Batch normalization statistics are synchro-
nized across TPU cores with a decay parameter of 0.9.
MoCo pretraining. We use the same settings as the Im-
ageNet experiments in [27], with the improvements noted
in [13]. As in our SimCLR experiments, we train with a
batch size of 1024 using 16 TPUs. For comparability, we
use the same augmentation strategy as we do for SimCLR
and train for 1000 epochs. Like [10] but unlike [13, 27], we
do not standardize images by subtracting per-channel means
and dividing by per-channel standard deviations.
BYOL pretraining. We use the same settings as the Ima-
geNet experiments in [26]. As in our SimCLR experiments,
we train with a batch size of 4096 using 16 TPUs. For com-
parability, we use the same augmentation strategy as we do
for SimCLR (which happens to be the default for [26]) and
train for 1000 epochs. Like [10] but unlike [26], we do not
standardize images by subtracting per-channel means and
dividing by per-channel standard deviations.
Linear supervised training. Linear classifiers are trained

for 90 epochs using SGD with Nesterov momentum. We
use a momentum of 0.9, a batch size of 1024, and a learning
rate of 0.4, following the scaling rule 0.1× batch size/256.
The learning rate follows a cosine decay schedule without
linear warmup or restarts [36]. Unless otherwise specified,
we do not use weight decay / L2 regularization or data aug-
mentation. We take a square center crop with edge length
equal to 87.5% of the short side of the image and resize to
224× 224. We use four Tesla V100 GPUs for training.
End-to-end fine-tuning. We use the same settings as lin-
ear supervised training with the following exceptions. We
train using a smaller batch size of 512 and a lower learn-
ing rate of 0.1, following the learning rate scaling rule
0.05 × batch size/256. To mitigate overfitting we use L2
regularization (10−4) for the classifier head and data aug-
mentation (random cropping and horizontal flips). These
augmentations use the same implementation as the cropping
and flipping used for SimCLR pretraining.
End-to-end supervised training from scratch. We use the
same hyperparameters as end-to-end fine-tuning with the
following exceptions. We train for 90 epochs using a tra-
ditional piece-wise constant learning rate schedule where
the initial learning rate of 0.1 is decayed by a factor of 10
at epochs 30 and 60. We also use L2 regularization of 10−4

throughout the network.

C.3. Taxonomies

Three of our datasets are equipped with label tax-
onomies: ImageNet, iNat21, and Places365. We describe
these taxonomies below.
ImageNet. We use the WordNet [2] label hierarchy for Ima-
geNet. The finest labels are the standard ImageNet-1k class
labels. To coarsen these labels, we start at the deepest level
of the hierarchy and merge all leaf nodes at that level with
their parents. This produces a new hierarchy, whose leaf
nodes will now be used as categories. Each category set is
named “Depth k” where k is the depth of the leaf node that
is further from the root. We repeat this process until the leaf
nodes merge with the root.
iNat21. Since the categories in iNat21 are animal and plant
species, the “tree of life” serves as a natural taxonomy. The
taxonomic levels are Species (finest, 10k categories), Genus
(4884 categories), Family (1103 categories), Order (273
categories), Class (51 categories), Phylum (13 categories),
and Kingdom (coarsest, 3 categories). For additional details
see [54].
Places365. Places 365 is equipped with a 3-tier hierar-
chy. The finest labels are the standard category labels for
the dataset (“Depth 2”). These categories fall into 16 scene
types which constitute the “Depth 1” level of the hierarchy.
Examples include water, mountain, transportation, sports,
industry, etc. Then the “Depth 0” level consists of a coarser
grouping of these scene types into three categories: indoor,
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outdoor (natural), and outdoor (man-made).

C.4. Augmentations

In this paper we use three augmentation operations: ran-
dom horizontal flipping, random cropping, and random
color jittering. When training SimCLR, we use use all three
augmentations. When fine-tuning we only use random hor-
izontal flipping and random cropping as in [10]. We do the
same when training from scratch. We do not use any data
augmentation when training linear classifiers. For each of
these operations we use the implementation from [10] with
default settings. We give brief descriptions of each augmen-
tation operation below.
Random horizontal flipping. With probability 1/2, flip the
image over the vertical center line.
Random cropping. Randomly select a rectangular subset
of the image covering between 8% and 100% of the whole
image, with aspect ratio between 3/4 and 4/3.
Random color jitter. Randomly perturb the brightness,
contrast, saturation, and hue of the image according to a
strength parameter s. See [10] for the exact implementa-
tion. We set the strength parameter to s = 1.0.

C.5. Corruptions

In Section 4.3 of the main paper we investigate the im-
pact of pretraining on artificially degraded images. Here we
provide implementation details for each of the image cor-
ruption operations.
Resize. We resize the image so that the shorter side is 256
pixels long, but we preserve the aspect ratio. As described
below, this corruption allows us to make comparisons which
control for image size. Images are resized using the stan-
dard PIL [1] function PIL.Image.resize with the de-
fault nearest-neighbor interpolation.
Resize and downsample. We first apply the “Resize”
corruption and then downsample by 2x or 4x before up-
sampling by the same factor. The initial resizing is im-
portant because some of our datasets have larger images
than others and larger images are less affected by down-
sampling by a constant factor than their smaller counter-
parts. Downsampling and upsampling is accomplished us-
ing PIL.Image.resize with default settings, just like
the “Resize” corruption.
JPEG compression. We use the standard PIL function
PIL.Image.save to perform JPEG compression. We
set the quality parameter to 10, which is low enough to
cause significant visual artifacts.
Salt and pepper noise. Each pixel in each channel is inde-
pendently corrupted with probability 1/100, and corrupted
pixels are set to 0 (“pepper”) or 1 (“salt”) with equal proba-
bility.
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(a) ImageNet

(b) iNat21

(c) Places365

(d) GLC20

Figure A6. Examples from the datasets used. We show five randomly selected images from each dataset: ImageNet (top row), iNat21
(second row), Places365 (third row), and GLC20 (bottom row). Note that all images in GLC20 and Places365 are 256×256 pixels, while
ImageNet and iNat21 have higher-resolution images and varying aspect ratios. “Places365-Standard” does have varying image resolutions,
but we use “Places365-Standard (small images)” which is an official variant that has been resized to 256×256.
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(a) Resize (b) Resize & Downsample
(2x)

(c) Resize & Downsample
(4x)

(d) JPEG Compression (e) Salt & Pepper

Figure A7. Examples of corrupted images. We show the effect of different image corruptions on one randomly chosen image from each
dataset: ImageNet (top row), iNat21 (second row), Places365 (third row), and GLC20 (bottom row).
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