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Abstract 

Codon usage is the outcome of different evolutionary processes and can inform us about the 

conditions in which organisms live and evolve. Here we present R_ENC’, which is an 

improvement to the original S index developed by dos Reis et al. (2004). Our index is less 

sensitive to G+C content, which greatly affects synonymous codon usage in prokaryotes, making 

it better suited to detect selection acting on codon usage. We used R_ENC’ to estimate the extent 

of selected codon usage bias in 1800 genomes representing 26 prokaryotic phyla. We found that 

Gammaproteobacteria, Betaproteobacteria, Actinobacteria, and Firmicutes are the 

phyla/subphyla showing more genomes with selected codon usage bias. In particular, we found 

that several lineages within Gammaproteobacteria and Firmicutes show a similar set of 

functional terms enriched in genes under selected codon usage bias, indicating convergent 

evolution. We also show that selected codon usage bias tends to evolve in genes coding for the 

translation machinery before other functional GO terms. Finally, we discuss the possibility to use 

R_ENC’ to predict whether lineages evolved in copiotrophic or oligotrophic environments. 

Keywords: translational selection, genome evolution, codon usage, prokaryotes. 
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Introduction 

The genetic code consists of a set of molecular interactions used by all cells to translate 

information encoded in nucleotide sequences into proteins. The principle of these interactions 

lies in the assignment of 61 codons to the main 20 amino acids that make up proteins. The code 

is degenerate, meaning that the same amino acid can be specified by more than one synonymous 

codon. The relative frequency of these synonymous codons varies between genes and genomes. 

This uneven use of codons is known as codon usage bias (Grantham et al. 1981; Ikemura 1981a, 

b, 1985; Plotkin and Kudla 2011; Parvathy et al. 2022).  

The codon usage of a gene is the result of the combined action of mutational bias, genetic drift, 

and natural selection (Bulmer 1991). When natural selection is not strong enough, the codon 

usage of a gene is mostly the result of genetic drift sampling on codons originated by mutation. 

This is particularly notable in the genomes of endosymbiotic bacteria of insects that tend to 

become A+T rich by nonadaptive processes (Martínez-Cano et al. 2015). In these cases, it is 

typical to find the majority (if not all) of the genes in the genome showing a bias towards A+T 

rich codons. 

There are other occasions when natural selection is strong enough to modify the codon usage of 

genes. For instance, in highly expressed genes (like those encoding ribosomal proteins and 

translation factors), selection favors a codon usage that facilitates translation. This is, in highly 

expressed genes, selection favors codons that best match the abundance of tRNA species in the 

cytoplasm. This effect is more pronounced in species that have short generation times (Rocha 

2004; Sharp et al. 2005; Vieira-Silva and Rocha 2010). Genes showing this kind of selected 
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codon usage bias, which is also called translational selection, are translated faster and released 

earlier from the ribosome, making their translation more efficient (Quax et al. 2015; Gustafsson 

et al. 2004; Ran and Higgs 2012; Frumkin et al. 2018). In genomes where selection affects codon 

usage bias, highly expressed genes typically show codon usage that correlates with tRNA 

abundance; while for genes with lower levels of expression codon usage is determined by 

mutational bias.  

Selected codon usage bias has been related to the lifestyle of bacteria and archaea. Prokaryotes 

showing selected codon usage bias tend to live in a wider range of habitats (like pathogenic 

bacteria that can live outside or within their host); while prokaryotes with a more specialized 

lifestyle (like thermophiles, mutualistic endosymbiotic bacteria, or obligate intracellular 

parasites) tend to show no selected codon usage bias (Botzman and Margalit 2011). According to 

these observations, selected codon usage bias allows bacteria to grow faster and to face 

metabolic diverse environments where competition is strongest.  

Organisms that are able to grow in environments where nutrients are scarce are known as 

oligotrophs. By contrast, organisms that grow in environments with larger nutrient availability 

are known as copiotrophs (Koch 2001). Oligotrophs tend to grow slowly and make efficient use 

of resources, while copiotrophs are capable of growing faster when nutrients are available 

(Roller and Schmidt 2015). An association between selected codon usage bias and nutrient 

availability (oligotrophic/copiotrophic) has been recently demonstrated. Copiotrophic 

environments favor bacteria showing translational selection in their ribosomal protein-coding 

genes, while genomes of bacteria in oligotrophic environments suggest codon usage bias 

selection playing a relaxed role (Okie et al. 2020). 
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There have been several attempts to measure the strength of selected codon usage bias. One of 

the first was developed by Wright (1990) and then modified by Fuglsang (2006). In this work, 

we propose an improvement to a previous method developed by dos Reis et al. (2004). We then 

use this improved method to revisit a) the correlation between selected codon usage bias and 

minimal generation time taking into account the phylogenetic structure of the data; b) the pattern 

of selected codon usage bias in different functional GO terms across diverse lineages of bacteria 

and archaea; and c) the evolutionary precedence of selected codon usage bias of the genes coding 

for the translation apparatus relative to other functional GO terms.  

Materials and Methods 

Improving selected codon usage bias estimation  

To estimate the strength of selected codon usage bias we relied on the method proposed by dos 

Reis et al. (2004). In summary, this method works as follows. For a given genome: first 1) 

measure the tRNA adaptation index (tAI); then 2) measure the difference between the expected 

and observed number of codons (dNc); and 3) calculate a Pearson correlation coefficient between 

tAI and dNc. This correlation is named S by dos Reis et al. (2004). The higher the correlation 

coefficient, the stronger natural selection is predicted to have shaped codon usage bias on a 

whole-genome basis. 

There are two important things to note about S. The first one is that S measures the coadaptation 

between the codon usage and the tRNA gene pool (this pool is taken as a proxy of the abundance 

of cytoplasmic tRNA). The second one is that S measures the effects of selection on codon usage 

bias irrespectively of a specific set of protein-coding genes. Therefore, S does not assume a priori 

that there is a set of genes (like those coding for ribosomal proteins) on which selected codon 
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usage will be strongest. In this last respect, S differs from other methods that rely on ribosomal 

protein-coding genes as gold standards to measure the strength of selected codon bias. 

We improved S by making dNc less sensitive to G+C content as follows. First, dNc is the 

difference between the expected number of codons due to G+C content at third codon positions 

(Nce) and the observed number of codons (Nc) in a given gene [Equation 1]. It measures how far 

the effective number of codons depart from the neutral expectancy due to the G+C content of 3rd 

codon positions.  

[Equation 1] 

dNc = Nce - Nc  

To calculate the expected number of codons under the hypothesis of no selection (Nce), dos Reis 

et al. (2004) used [Equation 2]: 

[Equation 2] 

Nce = f1 (xg) = a + xg + (b/(x2
g + (c - xg)

2))   

Where xg is the GC content of a gene g, and a, b, and c are constants whose values were 

estimated empirically.  

To calculate the observed number of codons (Nc), dos Reis et al. (2004) used the original 

formula developed by Wright (1990) [Equation 3]: 

[Equation 3] 

Nc = 2 + (9/F2) + (1/F3) + (5/F5) + (3/F6) 
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Where: 

[Equation 4] 

Fa = (na ⅀
k
i=1 p

2
i - 1)/(na - 1) 

And na is the observed number of codons for the a amino acid; pi is the frequency of the ith 

codon, and k is the number of synonymous codons for the amino acid of interest. 

Unfortunately, Nc is affected by G+C content since it assumes equal usage of all codons. Here 

we used instead, an improved statistic (Nc’) to calculate the expected effective number of codons 

that better accounts for background nucleotide composition (Novembre 2002). In this new 

formulation, Novembre (2002) used the Pearson X2 statistic “to quantify the departure of each 

codon’s usage (pi) from some expected usage (ei) for each amino acid” [Equation 5]: 

[Equation 5] 

X2
a = ⅀k

i=1 (na(pi - ei)
2/ei) 

And using the X2
a values to calculate F’a: 

[Equation 6] 

F’a = (X2
a + na - k)/k(na - 1) 

And then the F’a are used to calculate Nc’ with Equation 7 which is equivalent to Equation 3 (see 

Novembre 2002 for details).  

[Equation 7] 
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Nc’ = 2 + (9/F’2) + (1/F’3) + (5/F’5) + (3/F’6) 

Here we estimate selected codon usage bias by measuring the correlation between tAI and Nc’ 

and multiplying Pearson’s correlation coefficient by -1 (to make it comparable to S). We call this 

statistic R_ENC’ to differentiate it from the S of dos Reis et al. (2004). 

Estimation of selected codon usage bias from prokaryotic genomes 

Nc, dNc, Nc’ and tAI were calculated on all protein coding regions encoding a minimum of 100 

amino acids from 1800 genomes downloaded from Genome list NCBI browser searching only 

for complete prokaryotic genomes (https://www.ncbi.nlm.nih.gov/genome/browse/#!/overview/). 

These genomes are representative of 26 bacterial and archaeal phyla (Supplementary Table S1).  

The strategy for these calculations was as follows. Nc was calculated using CodonW (J Peden, 

version 1.4.2 http://codonw.sourceforge.net/) taking as input the CDS nucleotide sequences from 

each genome. dNc was calculated by using an in-house R script on the CodonW output. CodonM 

was used to calculate the codon appearance in CDS (dos Reis et al. 2004). For the calculation of 

tAI, all tRNAs were annotated de novo with tRNAscan-SE (Lowe & Eddy, version 2.0, 

http://lowelab.ucsc.edu/tRNAscan-SE/). And then, tAI was calculated in R using the tAI function 

from dos Reis et al. (2004) and the CodonM output. Nc’ was calculated by the ENCprime 

software (Novembre, 2002).  

Estimating tAI from RNA-seq data 

We also introduced a modified version of tAI. As mentioned above, tAI indicates how well 

adapted a given gene is to the tRNA pool based on the diversity and abundance of coded tRNA 

and taking into account wobble base pair interactions (see dos Reis et al. 2004 for details). 

http://codonw.sourceforge.net/
http://codonw.sourceforge.net/
http://lowelab.ucsc.edu/tRNAscan-SE/
http://lowelab.ucsc.edu/tRNAscan-SE/
http://lowelab.ucsc.edu/tRNAscan-SE/
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Instead of using tRNA coding genes, when data were available, we estimated tAI from tRNA 

abundances as measured by RNA-seq experiments. We call this value tAI’. For tAI’, we 

calculated transcripts per million (tpm) from RNA-seq experiments conducted during log phase 

or exponential growth that were fetched from GEO DataSets 

(https://www.ncbi.nlm.nih.gov/gds/) and processed by (Wei et al. 2019). We estimated tAI’ on 

the following experiments (genomes): SRX020805 (Bacteroides thetaiotaomicron); SRX515181 

(Bacillus  subtilis); SRX515174 (Escherichia coli); SRX2448246 (Leptospira interrogans); 

SRX1372108 (Mycobacterium tuberculosis); SRX1638989 (Salmonella  enterica); SRX347145 

(Synechocystis sp. PCC 6803).  

Other measures of selected codon usage bias  

For the sake of comparison, we also estimated selected codon usage bias by using the approach 

followed by Vieira-Silva and Rocha (2010). These authors proposed to estimate translational 

selection by an index named ΔENC’. To estimate ΔENC’ we first estimated translational 

selection by averaging Nc’ values from all ribosomal protein-coding genes (ENC’r) [Equation 8]: 

[Equation 8] 

𝐸𝑁𝐶′𝑟 = ∑ 𝑁𝑐′𝑖/𝑘

𝑘

𝑖=1

 

𝑘 = number of ribosomal protein coding genes 

𝑁𝑐′𝑖 = Nc’ from the ith ribosomal protein coding gene 

And used the above value to calculate ΔENC’, which is a standardization of the mean Nc’ from 

all coding genes in the genome with respect to the mean of the ribosomal protein coding genes 

ENC’r values [Equation 9].  

https://www.ncbi.nlm.nih.gov/gds/
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[Equation 9] 

𝛥𝐸𝑁𝐶′ = 𝑁𝑐′ −  𝐸𝑁𝐶𝑟′/𝑁𝑐′ 

We also calculated the average tAI for ribosomal protein coding genes (tAIr) [Equation 10] and 

fitted it to a Z distribution with mean 0 and standard distribution 1 named here as tAIrz. 

[Equation 10] 

𝑡𝐴𝐼𝑟 = ∑ 𝑡𝐴𝐼𝑖/𝑘

𝑘

𝑖=1

 

 

𝑘 =number of ribosomal protein coding genes 

𝑡𝐴𝐼𝑖= tAI from the ith ribosomal protein coding gene 

It was necessary to normalize tAIr to a Z distribution to be able to compare this value between 

genomes. Additionally, we calculated ΔtAI [Equation 11]  

[Equation 11] 

𝛥𝑡𝐴𝐼 = 𝑡𝐴𝐼 −  𝑡𝐴𝐼𝑟/𝑡𝐴𝐼 

Phylogenomic inference, phylogenetic signal and phylogenetic contrasts 

Data on minimal generation times (d) from diverse prokaryotes were gathered and published by 

Vieira-Silva and Rocha (2010) (Supplementary Table S2). A phylogenomic tree of these 210 

organisms was inferred using a concatenation of five protein sequences: valine--tRNA ligase 

(valS); elongation factor G (fusA); ATP-dependent zinc metalloprotease FtsH (ftsH); DNA-

directed RNA polymerase subunit beta (rpoC); and elongation factor Tu (tufA). These 

phylogenetic markers were detected and aligned using PhyloPhlAn (Segata et al. 2014). For 

phylogenetic inference, the best model (LG;+G) was predicted by SMS (Lefort et al. 2017) and 
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the tree was reconstructed by PhyML (Guindon et al. 2010) with non-parametric branch support 

based on the Shimodaira-Hasegawa-like procedure (SH-like). 

 

Phylogenetic signals for selected codon usage bias and minimal generation times were estimated 

with Pagel’s lambda (λ) as implemented in the Phytools R package (Revell 2012).  

Correlations between minimal generation time and: R_ENC’, ENCr’, ΔENC’, tRNA copy 

number, tAIrz and ΔtAI were evaluated with a Spearman's rank-order correlation and taking into 

account phylogenetic inertia by performing phylogenetic contrasts with the PGLS method as 

implemented in the Caper R package (Orme 2018). 

GO terms enriched in genes showing selected codon usage bias 

We also wanted to know if there were GO terms enriched in genes showing selected codon usage 

bias. First, for each one of the genomes in Table S2, we normalized Nc’ and tAI values to mean 0 

and standard deviation 1. Next, we performed two different enrichment analyses. For the first 

one, we plotted all genes from each genome from Table S2 in a tAI versus Nc’ chart (see Figure 

4). We then asked whether the set of ribosomal protein coding genes is enriched in the upper left 

quadrant by using a Kolmogorov–Smirnov test (p-value < 0.05). The results of these analysis are 

shown in Figure 4 and Supplementary Table S7. We also tested the above association by using a 

logistic regression.  

For the second enrichment analysis, we grouped genes according to their Gene Ontology terms 

(Ashburner et al. 2000). Gene ontology annotations were downloaded from the UniProt database 

(UniProt Consortium, 2019; https://www.uniprot.org/). In order to assess statistical significance, 

a Kolmogorov–Smirnov test was implemented for each metric (Nc’ and tAI) by using the topGO 

https://www.uniprot.org/
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R package (Alexa and Rahnenfuhrer 2021). We obtained a total of 85 non-redundant terms 

automatically by using REVIGO (Supek et al. 2011) and manually inspecting the GO hierarchy. 

We only consider a term as statistically significant if it has an FDR adjusted p-value < 0.05 in 

Nc’ and tAI. The results of these analyses are shown in Figure 5.  

We also wanted to know if minimal generation times were significantly different between 

organisms differing in having (or not) a given GO term enriched in genes showing selected 

codon usage bias. For this, Wilcoxon one-side signed-rank tests were performed for GO terms 

under inspection (Supplementary Table S3). The same procedure was done using tAI’ for the 

model organisms (Bacteroides thetaiotaomicron, Bacillus subtilis, Escherichia coli, Leptospira 

interrogans, Mycobacterium tuberculosis, Salmonella entérica, and Synechocystis sp. PCC 

6803). And as above, a given GO term is considered enriched only if it is significantly enriched 

at the same time in the metrics tAI and Nc’. 

Ancestral state reconstruction 

To study the evolutionary precedence of selected codon usage bias in the translation machinery 

with respect to other GO terms, we applied the following procedure on the set of 210 genomes. 

First, we defined two kinds of events: “T” and “G”. The “T” event was defined to occur when 

the “Translation” term (GO:0006412) appeared as significantly enriched in the two metrics (Nc’ 

and tAI, FDR < 0.05); and the “G” event was defined to occur when a given GO term, other than 

“Translation”, appeared as significantly enriched in the same two metrics. The frequency of 

these events per genome and GO term is shown in Supplementary Table S4. GO terms without 

“T” or “G” events were discarded from further analysis. Other GO terms directly linked to 

“Translation” were removed manually by looking at the GO hierarchy.  
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Next, events “T” and “G” were converted to binary [0,1] resulting in two vectors: One vector for 

“T” and another for “G” events. In these vectors, the number “1” represents that the event (“T” 

or “G”) occurred. In the case of having more than one “G” event in different GO terms, we 

simply assigned a number “1” to the vector of “G” events. Next, we used these vectors as 

character states at the tips of the phylogenetic tree to infer the ancestral character states at the 

internal nodes. For this, we applied a maximum likelihood method from the phytools R package 

that was developed by Yang et al. (1995). This method uses the rerooting function with a 

symmetric Q matrix (Revell 2012); and a parsimony method by using the function 

asr_max_parsimony from the castor R package (Louca and Doebeli 2018).  

All our scripts are available at  https://github.com/PacoMax/CUBs_max. 

Results 

R_ENC’ is less influenced by G+C content than S  

We revisited the unified framework proposed by dos Reis et al. (2004) to estimate selected codon 

usage bias. In particular, we replaced dNc by Nc’ in the Pearson correlation calculations (see 

Materials and Methods). We used Nc’ because it is less biased by G+C content and performs 

better when evaluating codon usage bias (Liu et al. 2018). As expected, (Figure 1A and B), our 

index R_ENC’ is less influenced by G+C content than the index (S) proposed by dos Reis et al. 

(2004). Since G+C content is a major determinant of codon usage in the absence of selection 

(Sharp et al. 2010), we consider the improvement presented here to be significant. For larger 

values, R_ENC’ and S tend to converge to similar values (Figure 1 C). 

https://github.com/PacoMax/CUBs_max
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As proposed by dos Reis et al. (2004), the genomic landscape is defined by the tRNA gene copy 

number and genome size (dos Reis et al. 2004) and can be used to study the effect of the above 

variables on selected codon usage bias. To gain insights on the behavior of the two metrics 

(R_ENC’ and S) in the context of the prokaryotic genomic landscape, we built simple additive 

models (corrected and log scaled). As described in Supplementary Figure S1, both models show 

similar fit to the genomic landscape (lm R2 = 0.246 p-value < 2.2e-16 for S; and lm R2 = 0.264 p-

value < 2.2e-16 for R_ENC’). However, a more sophisticated analysis like that of dos Reis et al. 

(2004) and the inclusion of eucaryotes which are out of the scope of this work, would be required 

to properly account for the correlation between tRNA gene copy number and genome size. 

 

Prokaryotic lineages showing strongest selected codon usage bias 

We then explored the distribution of R_ENC’ values across 1800 genomes from 26 bacterial and 

archaeal phyla. Four lineages: Gammaproteobacteria, Firmicutes, Actinobacteria, and 

Betaproteobacteria, showed significantly stronger genome selected codon usage bias than the rest 

of the taxa (Figure 2, Table S5a, FDR <= 0.05). It is important to mention that these four phyla 

(Gammaproteobacteria, Firmicutes, Actinobacteria, Betaprotebacteria) together with 

Alphaproteobacteria, Bacteroidetes/Chlorobi and Delta/epsilon are the most represented in the 

sample. To investigate whether the above result is due to sampling bias, we repeated the analysis 

10 times by randomly selecting 30 genomes from each phylum. The results show that in most 

repetitions, the same four phyla show significantly stronger genome selected codon usage bias 

than the rest of the taxa (Table S5b, FDR <= 0.05).  
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It is worth mentioning that Escherichia coli stands as the species showing the strongest R_ENC’ 

value, closely followed by the Gammaproteobacteria: Tolumonas auensis, Ferrimonas balearica, 

and Citrobacter freundii. The first two species are facultative anaerobes while C. freundii is an 

opportunistic pathogen. Within Firmicutes, the species showing the strongest selected codon 

usage bias is the heterofermentative lactic acid bacterium Weissella cibaria; for 

Betaproteobacteria it is Neisseria sicca, an opportunistic pathogen; and Glutamicibacter 

arilaitensis for Actinobacteria, which grows on the surface of Reblochon cheese from France. 

Vibrio stands as the genus most represented among the Gammaproteobacteria showing strong 

R_ENC’; Neisseria among Betaproteobacteria; Lactobacillus among Firmicutes; and most 

notably Corynebacterium among Actinobacteria. On the other extreme of the distribution, the 

species showing the weakest R_ENC’ value was Blochmannia endosymbiont of Camponatus 

ants, followed by Candidatus Kinetoplastibacterium blastocrithidii, a trypanosomatid 

endosymbiont. 

R_ENC’ is correlated to minimal generation time 

Minimal generation time (d) was shown to correlate with selected codon usage bias in 

prokaryotes (Rocha 2004; Vieira-Silva and Rocha 2010; Thiele et al. 2011). Here we revisited 

this result by exploring if R_ENC’ also correlates with the minimal generation time. We found 

that R_ENC’ shows a moderate but statistically significant correlation, even when considering 

the phylogenetic structure of the data (PGLS’ r = 0.32 p-value = 1.9e-6) (Figure 3A).  

In addition to R_ENC’, we also studied the correlation between (d) and other metrics used to 

estimate selected codon usage bias. These were: tAIrz, ΔtAI ΔENC’, ENCr’, S dos Reis and 

tRNA gene copy number (Table S6). We found that ENCr’ (Figure 3B) and ΔENC’ had the 
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highest correlation with (d) (PGLS’ r = 0.4, p-value = 6.8e-10; and PGLS’ r = 0.4, p-value = 

1.2e-9, respectively, while the S dos Reis has a value of PGLS’ r = 0.048, p-value = 1.38e-3. This 

is in agreement with Vieira-Silva and Rocha (2010) who reported this by using conventional 

Spearman correlation. These results confirm previous observations indicating that selected codon 

usage bias is correlated to minimal generation time. This correlation is stronger when selected 

codon bias is measured with indexes that use ribosomal protein-coding genes as the reference to 

estimate selected codon usage bias, like ENCr’ and ΔENC’.  

Ribosomal protein-coding genes often show signals of translational selection when R_ENC’ 

indicates genome-wide selected codon usage bias 

Ribosomal protein-coding genes tend to be highly expressed and their codon usage usually 

shows selected codon usage bias. Because of this, they are used by several metrics as gold 

standards to measure the effects of selection on codon usage. We first asked how often ribosomal 

protein-coding genes show selected codon usage bias when R_ENC’ indicates genome-wide 

selected codon usage bias. This can be done by measuring the frequency with which ribosomal 

protein-coding genes have a codon usage that is highly adapted to the tRNA gene pool (show 

large tAI values) and using a few different synonymous codons for each amino acid (low Nc’ 

values). A paradigmatic example is that of Escherichia coli where selection has clearly shaped 

the codon usage of ribosomal protein-coding genes and a few others like the gene coding for the 

chaperon GroEL (Figure 4A). There are other unusual cases where ribosomal protein-coding 

genes show the opposite effect, appearing towards the bottom right of the graph, such as in 

Nitrosomonas europaea and Syntrophus aciditrophicus (Kolmogorov Smirnov Nc’ lower tail p-

value < 0.05; tAI upper tail p-value < 0.05) (Figure 4B). When selection has not optimized codon 
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usage bias of ribosomal protein-coding genes these tend to appear scattered around the graph. 

This is the case of Buchnera aphidicola genomes (Figure 4C). We found that among the set of 

210 genomes, 147 had their ribosomal protein-coding genes in the upper left quadrant 

(Kolmogorov Smirnov Nc’ upper tail p-value < 0.05; tAI lower tail p-value < 0.05, 

Supplementary Table S7).  

We also tested for the above association by using logistic regression. The logistic regression 

showed a moderate association between having the ribosomal protein-coding genes in the upper 

left quadrant and a strong R_ENC’ (Mc Fadden’s R squared = 0.12, Supplementary Figure S2). 

In addition, we also found a statistically significant association by using a Pearson correlation 

between translational selection (ENC’r) and R_ENC’ (r2 = 0.58, p-value < 2.2e-16). And the 

same result by using GroEL protein-coding genes and R_ENC’ (r2 = 0.43 , p-value < 2.2e-16). 

These results show that in general terms, ribosomal protein-coding genes show selected codon 

usage bias when R_ENC’ indicates selected codon usage bias at the genome level.  

Gammaproteobacteria and Firmicutes convergently evolved similar GO terms with selected 

codon usage bias 

We then asked which functional terms were enriched in genes showing selected codon usage 

bias. For this, we considered a term to be enriched if a statistically significant portion of its genes 

mapped to the upper left quadrant defined by the tAI versus Nc’ plot. Not surprisingly, 

translation (GO:0006412) was the term enriched in most genomes (Figure 5). This term is 

followed by others that are functionally related to translation (like tRNA aminoacylation or gene 

expression) or by terms related to ATP metabolism. This is not unexpected, since terms related 

to translation are crucial for fast-growing prokaryotes (Karlin 2001; Klumpp 2013).  



18 

Interestingly, we found that in general, Gammaproteobacteria and Firmicutes had more enriched 

terms than the rest of the taxa, many of which are shared (Figure 5). We interpret the above 

pattern as an adaptive convergence due to natural selection. Since the same GO terms exists in 

other phyla but show less enrichment (orange, yellow or gray colors in Figure 5), the alternative 

explanation (divergence from common ancestry followed by secondary losses of enrichment) 

seems less likely. 

In fact, a heatmap analysis of the matrix shown in Figure 5 shows that several species of 

Gammaproteobacteria and Firmicutes cluster together in three different but related branches in 

the dendrogram, thus supporting our interpretation (Figure S4). Of course, not all species from 

Gammaproteobacteria and Firmicutes showing GO terms enriched in genes showing selected 

codon usage bias, cluster together. Note that the clade containing Escherichia coli, Shewanella 

oneidensis MR-1, Salmonella enterica and Yersinia pestis cluster with the clades at the bottom of 

the figure.  

On the side of the GO terms, there is a clear cluster formed by GO:0006412 translation, 

GO:0046034 ATP metabolic process, GO:0006520 cellular amino acid metabolic process, 

GO:0010467 gene expression, GO:0006418 tRNA aminoacylation for protein translation, 

GO:0006096 glycolytic process, GO:0046031 ADP metabolic processes. These terms tend to be 

enriched together and tend to be present in the three clusters described above. However, this 

association should be interpreted carefully since genes can have more than one GO term, 

including sharing the ones mentioned above. For instance, in E. coli there are 150 genes 

annotated with both GO:0006412 translation and GO:0010467 gene expression; 28 sharing 
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translation and GO: 0006520 cellular amino acid metabolic process; and 26 with translation as 

well as GO:0006418 tRNA aminoacylation for protein translation. 

It is also interesting to see that there is another set of procaryotes clustering together. This 

includes those species not showing GO terms enriched in genes showing selected codon usage 

bias. Species within this cluster includes epibionts like Nanoarchaeum equitans Kin4-M, 

ensosymbionts like Buchnera aphidicola and Wigglesworthia glossinidia, parasites such as 

Mycoplasma genitalium, as well as free living bacteria like Prochlorococcus marinus among 

many others. 

We also found anecdotal associations between enriched GO terms and the lifestyle of organisms. 

For instance, photosynthesis and methanogenesis were enriched in cyanobacteria and 

methanogenic archaea respectively (Figure 5). And in agreement with previous studies 

(Martínez-Cano et al. 2015), endosymbiotic bacteria like Candidatus Blochmannia floridanus, 

Buchnera aphidicola, Wigglesworthia glossinidia, showed a general lack of gene terms enriched 

for selected codon usage bias. 

Selected codon usage bias tends to evolve first in ribosomal protein-coding genes and then in 

other processes 

One of the patterns shown in Figure 5 is that the translation GO:0006412 term is almost always 

enriched in genes showing selected codon usage bias whenever other GO terms are enriched. 

Examples of these other GO terms include those related to obtaining energy (glycolytic process 

GO:0006096; tricarboxylic acid cycle GO:0006099; citrate metabolic process GO:0006101; and 

ATP metabolic process GO:0046034), as well as niche-specific processes like methanogenesis 

GO:0015948 in methanogenic archaea and photosynthesis GO:0015979 in cyanobacteria. This 
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suggests that selected codon usage bias evolved first in genes coding for the translation 

machinery and subsequently in genes involved in other cellular processes. 

To test the above hypothesis, we inferred when selected codon usage bias evolved along the 

phylogenetic tree for diverse GO terms. For this we defined two kinds of events: “T” and “G”. 

The “T” event was defined to occur when the translation GO term (GO:0006412) appeared as 

significantly enriched in the two metrics (Nc’ and tAI, FDR < 0.05); and the “G” event was 

defined to occur when any GO term other than translation, appeared as significantly enriched in 

the same two metrics as before (see Methods). By this, we ended up with two vectors, one for the 

“T” event and the other for the “G” event. We then inferred by maximum likelihood and 

parsimony when in the phylogeny these events evolved. In general, we found that “T” events are 

more widespread than “G” events. This implies that translation evolved selected codon usage 

bias earlier than other GO terms (“G” events) (Figure 6). The strong phylogenetic signal of 

selected codon usage bias (Pagel’s λ = 0.99, p-value < 0.001) supports the above analysis. More 

interestingly, we found that other GO terms (represented by “G” events) appear to have evolved 

independently in different lineages. This is particularly conspicuous for Gammaproteobacteria 

and Firmicutes. 

In addition, we compared the R_ENC’ values, between genomes showing enrichment in the 

translation GO term and those not showing enrichment in this term (Supplementary Figure S3A). 

The Wilcoxon test showed us the distributions are not the same (p-value 6.21e-13) and the 

logistic regression showed a considerable association (Mc Fadden’s R squared = 0.34) 

(Supplementary Figure S3B). This suggests that in genomes where the selected codon bias is 

intense, the efficiency of the translation machinery is improved.  
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GO terms associated with short generation times 

Microorganisms showing short generation times typically exhibit upregulation of proteins 

involved in translation, gene expression, and protein synthesis (Scott et al. 2010; Molenaar et al. 

2009; Peebo et al. 2015; Zavřel et al. 2019; Mori et al. 2017). As shown above, the GO term of 

“Translation” is enriched in genes showing codon usage bias in organisms showing short 

generation times. We, therefore, asked if there are significant differences in the distribution of 

minimal generation times between microorganisms showing enrichment of selected codon usage 

bias in the “Translation” and in other GO terms. 

GO Terms related to translation, protein folding, gene expression, and processes related to 

tricarboxylic acid and photosynthesis show significant differences (Supplementary File S3 and 

Table S3). Minimal generation times tend to be short in organisms having these enriched terms 

except in the case of photosynthesis where the opposite occurs (p-value < 0.01). This suggests 

that in some species, terms other than “Translation” contribute to fast cell division. 

Using tRNA expression data 

As mentioned above, the metrics we used only measure approximately the selected codon usage 

bias because the abundance of cytoplasmic tRNA is estimated from tRNA gene copy number. To 

overcome this, Wei used tpm (transcripts per million) from RNA-seq experiments instead of 

tRNA gene copy number in seven organisms (Wei et al. 2019). We used their data to attempt a 

better estimation of selected codon usage bias for these organisms. On the whole, our analysis 

showed similar results between R_ENC’ estimated from tAI or tAI’. Enrichment of GO terms 

showed similar patterns using tAI and tAI’ (Figure 7). Yet there were some exceptions: 

Synechocystis and L. interrogans showed enrichment in translation related GO terms that were 

not previously identified using tAI. 
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Discussion 

Here we present R_ENC’, which is an improvement to the original S index developed by dos 

Reis (2004). Our index is less biased by G+C content than S. Similar to other measures of 

selected codon usage bias, R_ENC’ correlates with minimal generation time and with selected 

codon usage bias of ribosomal protein-coding genes. 

We used R_ENC’ to explore the frequency of selected codon usage in 1800 complete genomes 

from diverse Archaea and Bacteria. We found that genomes from four phyla/subphyla: 

Gammaproteobacteria, Firmicutes, Actinobacteria, and Betaproteobacteria showed stronger 

selected codon usage bias than the rest of the lineages. Nonetheless, it is important to consider 

ascertainment bias, since there are not enough representative genomes from many other 

phylogenetic lineages to discard that this same effect might be present elsewhere. In addition, we 

found that several species within Gammaproteobacteria and Firmicutes show a similar set of GO 

terms enriched in genes under selected codon usage bias, indicating convergent evolution.  

Conditions for the evolution of translational efficiency 

It has been argued that highly adapted codons are selected because they improve the efficiency 

and the accuracy of translation (Plotkin and Kudla 2010). Some authors suggest that improving 

the efficiency of translation is more relevant than improving its accuracy, particularly among 

fast-growing bacteria (Ran and Higgs 2012). The correlation between minimal duplication time 

and selected codon usage bias of highly expressed genes coding for ribosomal proteins supports 

this view (Sharp et al. 2010). Accordingly, highly adapted codons contribute to faster ribosome 

recycling which in turn increases cellular fitness (Kudla et al. 2009). As mentioned before, this is 

particularly relevant among fast-growing bacteria. 
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Yet under which environmental conditions will selection favor short generation times and its 

associated trait: translation efficiency? A recent study showed that copiotrophic environments 

are associated with species showing selected codon usage bias as well as other genomic traits 

like abundant tRNA and rRNA genes, larger genomes, and higher G+C content (Okie et al. 

2020). In contrast, organisms growing in oligotrophic environments tend to show the opposite 

features. Accordingly, selection favors codon usage bias (and the other associated genomic traits) 

as an adaptation for growing fast when resources are abundant (at least periodically); and favors 

slow growth and efficient use of resources when resources are constantly scarce. The correlation 

between minimal generation time and codon usage bias as measured by R_ENC’ (and other 

indexes) can be attributed to the opposing effects selection has on genomic traits depending on 

the growth strategy of cells. And the growth strategy of cells are adaptations to the different 

kinds of environments that prokaryotes evolve in.  

Therefore, R_ENC’ (and other measures of selected codon usage bias) can serve as gross 

indicators of the environment on which different lineages of prokaryotes have evolved, an idea 

that was already proposed by Carbone et al. (2004) and explored more recently by Botzman and 

Margalit (2011) and Arella et al. (2021).  

There are several lines of evidence correlating the lifestyle of organisms to selected codon usage 

bias. Initially, Rocha (2004) discovered the correlation between selected codon usage bias of 

highly expressed genes and growth rate. Later on, Sharp (2005) suggested that bacteria living in 

variable environments would tend to show more often selected codon usage in highly expressed 

genes than parasitic bacteria. A more in-depth statistical analysis between environment and 

selected codon usage bias was provided by Botzman and Margalit (2011). These authors showed 
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that variable “environments” favor selected codon usage of highly expressed genes. Other 

statistical analyses also showed a correlation between growth rate and the ability of bacteria to 

survive in different environments (Freilich et al. 2009). This is, fast growers tend to inhabit 

diverse environments while slow growers inhabit more specialized niches. 

Based on the degree of coadaptation between codon usage of highly expressed genes and tRNA 

genes, as well as other features of the genome like the number of rRNA genes and genome size 

(components of the genomic landscape) we should be able to predict, with some degree of 

accuracy, minimal duplication times and the kind of environment on which prokaryotes thrive. 

This is an idea that has been explored for small genomic sequences derived from metagenomic 

samples (Vieira-Silva and Rocha 2010).  The correlation between selected codon usage bias and 

growth rate should inform us about the kind of environment (regarding nutrient availability) on 

which lineages have evolved (Sharp et al. 2010). Because of that, we infer that most lineages of 

Gammaproteobacteria and Firmicutes studied here adapted convergently to growth in 

copiotrophic environments. 

Evolutionary precedence of translation efficiency  

Here we provide phylogenetic evidence indicating that selected codon usage bias tends to evolve 

first in the genes coding for the translation machinery and afterward in genes coding for other 

cellular functions. To our knowledge, this is the first time that such phenomena has been 

reported in the literature. This result is consistent with the hypothesis that the main advantage of 

highly adapted codons is to free the ribosome from highly expressed genes (under rapid growth 

conditions) so they can be used to translate more mRNAs. Theoretically, improving the 
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translation efficiency of genes involved in the translation machinery itself would have a major 

effect on the translation efficiency of any other gene in the genome.   

Concluding Remarks 

Darwinian theory predicts that there should be a correlation between heritable phenotypes and 

environments. However, it is clear that more studies are required to better understand the 

association between genome features (like codon usage bias) and the physiology, lifestyle, and 

environment of prokaryotes (Iriarte et al. 2021). Here we provide another step towards better 

understanding the association between genomic traits and environments. In particular, the 

potential of selected codon usage bias to inform us about life-history traits such as growth rate 

and feeding strategy.  
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Figure and Table captions 

Figure 1. Spearman correlation between G+C content and selected codon usage bias across 

1800 bacterial genomes. (A) S index proposed by dos Reis et al. (2004); (B) R_ENC’, the index 

proposed here. GC/AT% represents the percentage of G+C or A+T, depending which is larger; 

(C) correlation between R_ENC’ and S. Each dot represents a genome. 

https://doi.org/10.1371/journal.pgen.1000808
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Figure 2. Bacterial phyla showing strongest selected codon usage bias. Numbers at the top of 

each boxplot represent the number of genomes per taxa. Stars indicate taxa enriched with 

lineages showing strongest selected codon usage bias (p-value < 0.05, Wilcoxon tests). 

Figure 3. Spearman correlation between codon usage bias and growth rates. (A) R_ENC’ 

versus minimal generation time d(h); and (B) ENC’r versus d(h). 

Figure 4. Correlation between tAI and NC’ showing the evolutionary landscape of selected 

codon usage bias and the position of the ribosomal proteins. Axes are normalized to mean 0 

and standard deviation 1. Coding genes for ribosomal proteins are in red, GroEL proteins in blue 

and the rest of the genes in grey. (A) Escherichia coli str. K-12_substr. MG1655, (B) Syntrophus 

aciditrophicus SB, (C) Buchnera aphidicola str. Bp. 

Figure 5. Phylogenomic tree and heatmap displaying significant GO terms per OTU. From 

left to right: Phylogenomic tree; OTU colors indicate different taxa. d(h), green triangle size is 

proportional to minimal generation time in hours; and purple triangle size is proportional to 

R_ENC’. Heat map: The red color on the heat map indicate GO terms showing significance in 

both metrics (tAI and Nc'); orange indicate that only tAI was significant; yellow where only Nc' 

was significant; gray indicate none was significant; and white indicate that the GO term is 

absent. 

Figure 6. Translation evolved selected codon usage bias earlier than other GO terms. (A) 

Selected codon usage bias of internal nodes was inferred by maximum parsimony. Nodes where 

selected codon usage bias was inferred to be present are shown in red and those were not, in 

gray. Left-side tree: GO term of Translation; and right-side for any other GO term. For clarity, 

pie charts in internal nodes are larger than those of tips; (B) Frequency of selected codon usage 

bias versus root to node distance. The distance is measured in number of nodes to the root and 
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the probability of selected codon usage bias is averaged over all nodes having the same distance 

to the root; (C) Number of internal nodes showing selected codon usage bias (red) and not 

showing in (gray) inferred with maximum parsimony and with the likelihood re-rooting method.  

Figure 7. Comparison between tAI and tAI’. Selected codon usage bias was estimated with tAI 

and tAI’ for five organisms having RNA-seq data. Brown color indicates that both (tAI and tAI’) 

are significant (p-value < 0.05); yellow that only tAI’ is significant; red that only tAI is 

significant; pink none are significant; and grey indicates there are not genes associated to the 

corresponding GO term.   

Supplementary material 

Supplementary figure S1. R_ENC’ resembles S dos Reis in the Genomic Landscape. 

Correlation between (A) the genomic landscape (tRNA copy number and genome size) and S dos 

Reis; (B) the genomic landscape and R_ENC’; (C) Statistics related to the multicollinearity of the 

models. 

Supplementary figure S2. Logistic correlation between codon usage bias detected in 

ribosomal proteins and R_ENC’ per genome. Selected codon usage bias of ribosomal proteins 

were defined as “1”, if ribosomal protein coding genes map to the upper left quadrant. 

Supplementary figure S3. Selected codon usage bias in translation and R_ENC’. (A) Box 

plots of Translation Gene Ontology enriched using different metrics and R_ENC’. (B) Logistic 

correlation between selected codon usage bias translation GO term enrichment and R_ENC’. 

Supplementary figure S4. Heatmap analysis of GO terms showing enrichment in genes with 

selected codon usage bias. The matrix shown in Figure 5 is transformed by the following rules: 

all red colors are transformed to 1 (indicating enrichment in genes showing selected codon usage 
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bias); and all other colors (orange, yellow and brown) are transformed to 0 (indicating lack of 

enrichment in genes showing selected codon usage bias). White colors are treated like NA. The 

heatmap() R function is used to make the heatmap analysis on the transformed matrix.  

Supplementary table S1. RefSeq IDs, codon usage bias metrics, and genomic features (G+C 

content, tRNA copy number, genome size) from 1800 representative prokaryotic genomes. 

FTP, RefSeq IDs; Name, organism name; Taxa, taxonomy; Size, Genome size; GC%, GC 

content; CDS, number of protein coding sequences; link, link to download; S, S dos Reis; S p-

value, p-value of S dos Reis calculated using Montecarlo method; R_ENC', R ENC'; R_ECN' p-

value, p-value of R ECN' calculated using Montecarlo method; mean_tAI, arithmetic mean of 

tAI; mean_dNc,  arithmetic mean of dNc; mean_Nc,  arithmetic mean of Nc; mean_Nc',  

arithmetic mean of Nc’; sd_tAI, standard deviation of tAI; sd_dNc, standard deviation of dNc; 

sd_Nc,  standard deviation of Nc; sd_Nc', standard deviation of Nc’; trnacn, number of tRNAs. 

Supplementary table S2. RefSeq IDs, codon usage bias metrics, and genomic features (G+C 

content, tRNA copy number, genome size), results of gene set enrichment analysis, and 

minimal generation times from 210 genomes obtained from Vieira-Silva, S. & Rocha, E. P. 

work (2010). FTP, RefSeq IDs; Name, organism name; Taxa, taxonomy; Size, Genome size; 

GC%, GC content; CDS, number of total protein coding sequences; link, link to download; S, S 

dos Reis; S p-value, p-value of S dos Reis calculated using Montecarlo method; R_ENC', 

R_ENC'; R_ECN' p-value, p-value of R_ECN' calculated using Montecarlo method; mean_tAI, 

arithmetic mean of tAI; mean_dNc, arithmetic mean of dNc; mean_Nc,  arithmetic mean of Nc; 

mean_Nc', arithmetic mean of Nc’; sd_tAI, standard deviation of tAI; sd_dNc, standard deviation 

of dNc; sd_Nc, standard deviation of Nc; sd_Nc', standard deviation of Nc’; ENCr', Nc’ mean of 

ribosomal genes; tAIrz,  tAI mean of ribosomal genes after z normalization; tAIr,  tAI mean of 

ribosomal genes; trnacn, number of tRNAs; list of GO terms: 1 for significant tAI value, 2 for 
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significant Nc’ value, 3 for both significant and 0 for none; timeg, minimal generation time d(h); 

ref, reference of the minimal generation time obtained from Vieira-Silva & Rocha, 2010. 

Supplementary table S3. Wilcoxon signed-rank test results from distributions of minimal 

generation times per GO term. Columns: GO, GO term; Num, total number of organisms with 

the genes associated to the GO term; Num_CUB, number of organisms which have significant 

selected codon usage bias in the GO term; Num_non, number of organisms which don’t have 

significant selected codon usage bias in the GO term; wilcox_greater, p-value of the wilcoxon 

right tail test; wilcox_lower, p-value of the wilcoxon left tail test; FDR_greater, p-value adjusted 

by FDR method of the wilcoxon right tail test; FDR_lower, p-value adjusted by FDR method of 

the wilcoxon left tail test. 

Supplementary table S4. Relative frequencies, dependent and independent relative 

frequencies of the “T” and “G” events. See materials and methods for definition of “T” and 

“G” events. Columns: GO, GO term; Num Org, Total of organisms with the GO term. Observed 

frequencies of the different events: freq(0t), no occurrence of "T" event; freq(1t), occurrence of 

"T" event; freq(0g), no occurrence of "G" event; freq(1g), occurrence of "G" event. Observed 

dependent frequencies of the different events: freq(0t0g), dependent no occurrence of "G" given 

the no occurrence of "T"; freq(0t1g), dependent occurrence of "G" given the no occurrence of 

"T"; freq(1t0g), dependent no occurrence of "G" given the occurrence of "T"; freq(1t1g), 

dependent occurrence of "G" given the occurrence of "T"; freq(0g0t), dependent no occurrence 

of "T" given the no occurrence of "G";  freq(0g1t), dependent occurrence of "T" given the no 

occurrence of "G"; freq(1g0t), dependent no occurrence of "T" given the occurrence of "G"; 

freq(1g1t), dependent occurrence of "T" given the occurrence of "G";  freq(T)*freq(GO), 

estimated frequency if the events are independent; freq(T n GO), estimated frequency if the 

events are dependent. 
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Supplementary table S5. Wilcoxon signed-rank test results from the distributions of R_ENC’ 

per taxa. Columns: Taxa, phylum/subphylum level; p-value; FDR, FDR correction; Bonferroni, 

Bonferroni correction. 

Supplementary table S6. Spearman and PGLS correlation between different codon usage 

bias metrics and growth rates. Columns: ρ2, rho squared of the Spearman correlation; (r2) 

pgls, R2 of the PGLS.  

Supplementary table S7. Comparisons of selected codon usage bias in ribosomal protein 

genes and R_ENC’. Name, name of the organism; total_genes, number of total protein coding 

sequences following the criteria for selected codon usage bias estimation (see materials and 

methods); total_RP_genes, number of total of ribosomal protein genes; ks_greater_RP_ncp, p-

value from the right tail of kolmogorov smirnov test of Nc’; ks_lower_RP_ncp, p-value from the 

left tail of kolmogorov smirnov test of Nc’; ks_greater_RP_tai, p-value from the right tail of 

kolmogorov smirnov test of tAI; ks_lower_RP_tai, p-value from the left tail of kolmogorov 

smirnov test of tAI; R_ENC' p-value from Montecarlo test, R_ENC' significant: * if R_ENC' p-

value from Montecarlo test is < 0.05; RP_genes_upper_left_quadrant significant: * if 

ks_lower_RP_ncp and ks_greater_RP_tai are < 0.05; R_ENC' & RP's CUBs significant: * if 

ks_lower_RP_ncp, ks_greater_RP_tai and R_ENC' p-value from Montecarlo test are < 0.05. 

Supplementary File 1. Correlations between tAI and NC’ showing the evolutionary landscape of 

selected codon usage bias and the position of the ribosomal proteins of the 210 prokaryotic 

genomes. 

Supplementary File 2. GSEA raw results per organism. 

Supplementary File 3. Distributions of minimal generation times between significant and non-

significant GO terms. 
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Supplementary Files 1, 2 and 3 are available at: https://github.com/PacoMax/CUBs_max 

 

https://github.com/PacoMax/CUBs_max

