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GENETIC VARIANCE IN HUMAN DISEASE:

DECODING DIVERSITY TO ADVANCE MODERN MEDICINE

Interpreting protein variant effects with computational predictors

and deep mutational scanning

Benjamin J. Livesey and Joseph A. Marsh*

ABSTRACT

Computational predictors of genetic variant effect have advanced
rapidly in recent years. These programs provide clinical and research
laboratories with a rapid and scalable method to assess the likely
impacts of novel variants. However, it can be difficult to know to what
extent we can trust their results. To benchmark their performance,
predictors are often tested against large datasets of known
pathogenic and benign variants. These benchmarking data may
overlap with the data used to train some supervised predictors, which
leads to data re-use or circularity, resulting in inflated performance
estimates for those predictors. Furthermore, new predictors are
usually found by their authors to be superior to all previous predictors,
which suggests some degree of computational bias in their
benchmarking. Large-scale functional assays known as deep
mutational scans provide one possible solution to this problem,
providing independent datasets of variant effect measurements. In
this Review, we discuss some of the key advances in predictor
methodology, current benchmarking strategies and how data derived
from deep mutational scans can be used to overcome the issue of
data circularity. We also discuss the ability of such functional assays
to directly predict clinical impacts of mutations and how this might
affect the future need for variant effect predictors.

KEY WORDS: Benchmarking, Circularity, Deep mutational scan,
Machine learning, Multiplexed assay of variant effect, Variant effect
predictor

Introduction

Rapid advances in sequencing technology over the past two decades
has resulted in genomic information becoming an integral tool in
both research and clinical fields. This wealth of data has helped
identify thousands of human genetic variants in the population
(Karczewski et al., 2020). A recent whole-exome sequencing study
of the UK biobank cohort (Bycroft et al., 2018) identified a median
of almost 20,000 coding variants per participant (Backman et al.,
2021). However, most genetic variants are benign and unrelated to
any disease. Variant effect predictors (VEPs) are computational
tools that use this information to predict the phenotypic outcome of
genetic variants and help highlight variants that are most likely to
have clinically relevant effects. Where the phenotypic impact of a
variant is uncertain, the variant is classified as a ‘variant of uncertain
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(clinical) significance’ (VUS) (Richards et al., 2015). VUSs
account for a high proportion of identified variants (Balmafa
et al., 2016), an issue that VEPs can potentially help to address.
VEPs provide a quick, free and scalable alternative to time-
consuming and expensive mutagenesis studies required to confirm
the phenotypic effect of a VUS. This is particularly applicable to
rare variants, where the expense of wet-lab experiments may be
difficult to justify. Since the development of Sorting Intolerant From
Tolerant (SIFT) (Ng and Henikoff, 2001), many other VEPs have
been published with varying methodologies.

However, many of these VEPs provide contradictory results
when classifying identical variants (Miller et al., 2019). This
underscores the need for useful and accurate VEP benchmarking
(Box 1, Glossary), which is becoming increasingly important as
state-of-the-art predictors emerge. The authors of VEPs commonly
assess performance against several previously published predictors
using established variant databases. However, data circularity
(Box 1) is an unresolved source of bias for many methods of
benchmarking (Grimm et al., 2015). Comparisons between
predictors often introduce bias by assessing predictor performance
against the same data that were used to train them. Therefore, robust
and unbiased benchmarking by independent groups is essential for
assessing the performances of different VEPs.

One solution to this issue of data circularity is the use of
independent variant effect datasets from deep mutational scanning
(DMS; Box 1) experiments. DMS is a high-throughput technique to
generate functional scores for, potentially, all variants of a protein
(Fowler and Fields, 2014). For the purposes of benchmarking, DMS
is fully independent from most training data. Most of the fitness
scores (Box 1) from a DMS experiment are novel and not present in
any sequencing dataset and, therefore, will not have been used to train
or test previous predictors. Even those mutants that do exist in current
datasets are scored independently of their previous categorisation.

In this Review, we will discuss the progress made in VEP
methodology and assess different benchmarking strategies with an
emphasis on the usage of DMS data and other large functional
assays. We will also discuss the impact DMS may have as a direct
independent measure of variant effects. We focus on VEPs
developed to predict whether mutations are likely to be causing
disease, excluding those that have been developed specifically to
predict the effects of mutations on specific biophysical properties,
such as protein stability (Gerasimavicius et al., 2020) or protein-
protein interactions (Janin et al., 2003; Rodrigues et al., 2019). We
hope that some of the issues we highlight will inform future VEP
benchmarking efforts and the use of functional datasets.

Variant effect predictors

The importance of sequence conservation

Amino acid or nucleotide conservation (Box 1), calculated from
alignment of related sequences, is an important feature for
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Box 1. Glossary

Bagging: A model-construction approach, most commonly used in random
forest algorithms (see Box 2). Bagging creates a large ensemble of models,
each of which only sees a subset of training data and a subset of input
features. Although each model only has a part of the full picture, taken
together they can correct each other’s biases.

Benchmarking: Evaluation by comparison against a standard.
Conservation: When a particular amino acid is present in the same aligned
position across a high proportion of related proteins, it is highly conserved.
Conservation is an important predictive feature for many VEPs. Some
predictors also use conservation at the nucleotide level.

Curated benchmarking datasets: Although large numbers of variants are
available to train predictors, best results are usually obtained from high-
quality datasets of validated variants. For this reason databases, such as
VariBench (http:/structure.omc.lu.se/VariBench/) (Nair and Vihinen, 2013)
exist, which curate the included variants to ensure high quality.

Data circularity: The re-use of data used to train a predictor, in order to
assess the same predictor. Grimm et al. (2015) identified two types of data
circularity that affect the assessment of VEPs.

Decision tree: A model defining a series of rules that can be used to aid in
classification by splitting the samples. Data entries are split until each
‘branch’ of the tree contains sufficiently homogenous data, belonging
primarily to a single class.

Deep mutational scanning (DMS): A high-throughput wet-lab procedure
that produces fitness scores for a high number of mutations of a protein.
DMS is a type of multiplexed assay of variant effect (MAVE; see below).
Protein fitness is linked to cellular growth rate or other quantifiable attributes
and can be assessed by measuring the abundance of each variant through
sequencing counts after growth.

Dirichlet mixture model: A statistical model that can be applied to estimate
the frequency of unobserved amino acids at conserved positions during
multiple sequence alignment.

Fitness scores: The endpoint of DMS is the generation of quantitative
fitness scores for a high proportion of possible variants in a protein. These
scores are often based on the change in sequencing counts of each variant
during the course of an assay, which selects against variants that reduce
fitness.

Gold standard: The currently most-reliable dataset for benchmarking that
best reflects real-world observations.

Holdout data: The most common approach to reduce data circularity in
predictor assessment is to withhold part of a dataset from predictor training.
These unseen data are then used to assess the predictor performance.
Indels: Short insertions or deletions of <1000 nucleotides within the
genome. Indels in protein-coding regions can result in frameshifts.

K-fold cross-validation: A method to assess the performance of a
supervised predictor on its full training data without data circularity. The
dataset is split into K equal-sized subsets, with one of them being used to
test the predictor performance, while all others are used to train the
predictor. This process is repeated by using each data subset to test the

predictor performance, producing predictions for the complete training
dataset.

Meta predictors (ensemble predictors): VEPs that use the outputs of
other prediction algorithms to produce their own estimates of variant
pathogenicity.

Multiple sequence alignment (MSA): A data structure produced by
aligning amino acid positions of related proteins. This is done with the aid of
a substitution matrix that defines the likelihood of certain amino acid
substitutions. MSAs form the basis of all variant effect predictors.
Multiplexed assay of variant effect (MAVE): This term describes any
large-scale experimental procedure that generates fitness scores for
genetic variants. MAVEs that apply to protein-coding regions of the
genome are deep mutational scans.

Naive metric: A naive approach to a problem is one that makes a broad,
probably untrue, assumption to help simplify the problem. One example is
the naive Bayes classifier (Box 2), where all inputs are assumed to be fully
independent from one another, although — in reality — this is rarely the case.
NNK degenerate codons: A nucleotide NNK codon, where N is any
nucleotide and K is guanine or thymine. An NNK codon can encode any
amino acid but only one STOP codon. The encoded amino acids are also
depleted of those comprising many possible codons as compared to
entirely random, i.e. NNN, codons.

Position-specific independent counts (PSIC): An algorithm that reduces
the impact of redundant sequences in position-specific scoring matrices
(see below). PSIC uses a statistical approach to weight-aligned sequences
when generating an alignment profile.

Position-specific scoring matrix (PSSM): A matrix of weights that can be
derived from a multiple sequence alignment based on the frequency of each
amino acid or nucleotide at every aligned position. PSSM alignment profiles
are a way to quantify conservation within an alignment and a useful way to
represent alignment features in a machine learning algorithm.
Pseudocounts: Predictors that make direct use of conservation in a
multiple sequence alignment, such as SIFT, are unable to directly
determine the likelihood of a residue appearing at a certain aligned
position if it is never present in the alignment. To overcome this issue, SIFT
makes use of amino acid pseudocounts from a Dirichlet mixture model.
These are theoretical frequencies of amino acids based on substitution
scores in the BLOSUMG62 substitution matrix.

Receiver operating characteristic (ROC): A probability curve that
represents the ability of a classifier to distinguish between binary classes.
The true positive rate is plotted against the false positive rate at varying
thresholds. ROC curves can be summarised by the area under the curve
(AUC), which is 1.0 for a perfect classifier, 0.5 for random guessing and 0.0
for a perfect inverted classifier.

Variant effect predictors (VEPs): Computational tools that use various
different sources of information to predict the phenotypic outcome of genetic
variants and help highlight variants that are most likely to have clinically
relevant effects.

predicting variant pathogenicity. Random mutations are continually
happening across the genomes of all species; those that are
detrimental to organismal fitness are removed from the gene pool,
while those that have no effect are much more likely to be
propagated to the next generation. As species diverge, we observe
that neutral substitutions build up in homologous proteins, such that
sequence similarity reduces with evolutionary time (Kimura, 1983).
Since pathogenic variants result in decreased fitness, these are far
less likely to be present within an alignment of homologous
proteins. Thus, we can assume that substitutions frequently
observed within an alignment of sufficient depth are likely to be
neutral in nature, whereas those absent or rarely observed are much
more likely to be pathogenic.

Sequence conservation is fundamental to every VEP (Table 1).
One of the simplest tools that can be built from an alignment is an
amino acid substitution matrix, such as Blocks SubstitUtion Matrix

(BLOSUM) (https:/www.ncbi.nlm.nih.gov/Class/FieldGuide/
BLOSUMG62.txt) (Henikoff and Henikoff, 1992) or Point
Accepted Mutations (PAM) (Dayhoff, 1972; Jones et al., 1992).
These matrices are calculated directly from alignments and contain
values representing the propensities for different amino acid
substitutions among related sequences. Although they were
originally intended as tools to aid the alignment of protein
sequences, these simple approaches have been shown to have
modest ability to predict pathogenic mutations (Rentzsch et al.,
2019; Shauli et al., 2021). Under some conditions, substitution
matrices can even outperform specialised VEPs (Chan et al., 2007;
Livesey and Marsh, 2020).

Another method for measuring sequence conservation is by
comparing the rate at which each amino acid (or underlying
nucleotide) appears within a column of a multiple sequence
alignment (MSA; Box 1) (Ng and Henikoff, 2001). Specialised
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Table 1. Continued

Feature groups

Other

Reference and links

Function Structure predictors

Sequence

MSA

Type

Methodology

Predictor
MVP

(Qi et al., 2021) Available via dbNSFP https:/sites.google.com/site/

Supervised

Resnet

jpopgen/dbNSFP
(Wu et al., 2021) http://varity.varianteffect.org/

meta-predictor

Supervised*

Gradient boosted trees

VARITY

* Despite using VEPs are predictive features these methods include far fewer than dedicated meta-predictors. Grouping was, therefore, done with supervised predictors.

Feature groups comprise:

MSA: features derived from multiple sequence alignments of related proteins, including conservation metrics.

Sequence: features derived purely from the protein sequence, including predicted secondary structure and amino acid properties.

Function: databases annotations regarding domains, active sites, protein interactions and more.

Structure: features derived from actual or predicted structures, such as accessible surface area and bond angles.

Other predictors: predictive features, such as VEP output.

HMM, hidden Markov model; MSA, multiple sequence alignment; SVM, support vector machine.

nucleotide conservation metrics, such as Genomic Evolutionary
Rate Profiling (GERP++, http:/mendel.stanford.edu/sidowlab/
downloads/gerp/index.html) (Davydov et al., 2010), PhyloP
(http:/compgen.cshl.edu/phast/) (Pollard et al., 2010) and Site-
specific ~ PHylogenetic  analysis ~ (SiPHy, https:/portals.
broadinstitute.org/genome_bio/siphy/index.html) (Garber et al.,
2009) are often integrated into VEPs as measures of conservation.
Such conservation metrics can also be used as standalone pseudo-
predictors and have rivalled the performance of more-complex
VEPs in some studies (Pejaver et al., 2020; Raimondi et al., 2017).
Amino acid conservation is, therefore, a ‘proxy’ metric (Azevedo
etal., 2017), but its utility for predicting pathogenicity is a testament
to how effective the evolutionary process is at removing inefficient
and pathogenic substitutions in nature.

Early computational predictors

Substitution matrices set the groundwork for early VEPs, such as
SIFT (Ng and Henikoff, 2001), which is still frequently used today
for variant effect prediction (Table 1). However, with rapid
advances in computing over the past decades, capability to
execute complex algorithms and process large amounts of data
has increased. Although SIFT has been outperformed in multiple
recent benchmarking studies (Mahmood et al., 2017; Niroula and
Vihinen, 2019; Thusberg et al., 2011), it has the advantages of
rapidly returning results, being easy to interpret and simple to run.

SIFT functions by generating an MSA that is based on the
protein-of-interest. Each column of the alignment is scanned to
determine the frequency of substitutions and the probability that a
specific substitution is tolerated at each position. Substitutions at
residues with high levels of conservation are the most likely to be
pathogenic. This process is similar to the derivation of the
BLOSUM substitution matrices but uses an MSA generated
specifically for the protein-of-interest; this makes the conservation
position-specific to the protein, adding more context to the value
returned. ‘Pseudocounts’ (Box 1), calculated from a Dirichlet
mixture model (Box 1) (Sjolander et al., 1996), are added to the
alignment to help compensate for amino acids not observed at
certain positions. Prediction quality is dependent on the depth of the
alignment and can vary significantly within and between proteins.
SIFT is often taken as a point of comparison for modern predictors,
which is a tribute to its popularity (Pejaver et al., 2020; Raimondi
et al., 2017; Sundaram et al., 2018).

Polymorphism Phenotyping (PolyPhen) is another early VEP
(Ramensky et al., 2002). Unlike SIFT, PolyPhen makes use of a
large amount of non-sequence protein information. PolyPhen
considers protein features that are derived from the amino acid
substitution site, including secondary structure and database-
derived key-site annotations, such as active site and binding sites.
An MSA is used to generate position-specific independent count
(PSIC; Box 1) profiles (Sunyaev et al., 1999). Finally, if the
sequence can be mapped to a known 3D structure, additional
features — such as site-proximity, accessible surface area and
secondary structure — are also incorporated into the prediction. The
original PolyPhen algorithm uses a decision tree (Box 1) to calculate
a score for the mutation of interest. More recently, PolyPhen-2 was
released (Adzhubei et al., 2010), a version that uses more features
and replaces the empirically derived classification rules with a
supervised naive Bayes classifier (Box 2, Machine learning
techniques).

Comparisons between SIFT and PolyPhen have found that,
although each method has relatively high sensitivity, their
specificity is low (Niroula and Vihinen, 2019). They are also
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Box 2. Machine learning techniques

Gradient-boosted trees are similar to random forest algorithms in that
they use an ensemble of decision trees to make predictions. Unlike
random forests, trees constructed in gradient boosting are neither
random nor independent but each new tree is constructed in the attempt
to correct the errors of the previous one. The output of every new tree is
added to the output of all previous trees and this process continues until a
pre-determined maximum tree number is reached. Independently, each
tree is a weak learner, performing barely better than random guessing
but, together, they can solve complex problems.

Neural Networks are composed of ‘neurons’ that mimic the way
biological neurons in the human brain communicate. Neurons in each
layer of the network take inputs from the layer above, apply a function and
pass the results to the next layer; a network with many stacked layers is a
‘deep’ neural network. Deep networks are capable of learning more-
complex relationships between the input features but are harder to train.
The network learns by comparing the output to the training labels and
back-propagating the errors. Deep neural networks can learn to
approximate extremely complex non-linear functions in order to
separate classes based on the inputs.

Naive Bayes Classifiers are simple, supervised algorithms that classify
examples on the basis of a vector of features. As a naive method, these
classifiers assume that all their input features are independent in order to
simplify the problem. They are based on the Bayes theorem that is used
to determine the probability of a class label given prior knowledge. Naive
Bayes methods are often fast and effective but performance can degrade
when too many features violate the assumption of independence.
Random Forest (RF) algorithms construct multiple decision trees by
using a process called bagging. Each tree is trained to use a random
selection of the available features and a random subset of the training
data. Owing to the bagging process, each tree within the ensemble is
different and, as independent models, they have a low correlation.
Having multiple decision trees acts as a safeguard against overfitting and
errors made by some of the trees. Classification is performed by majority
vote.

Support Vector Machines (SVMs) are algorithms that separate two
classes by constructing a hyperplane between them. This hyperplane is
a line for 2D data, a plane for 3D data and so on. The hyperplane is
placed so it has the largest possible distance to any instance of training
data of both classes. More classes can be separated by the addition of
further hyperplanes. Data that are not linearly separable can be classified
by SVMs by using a non-linear kernel. Although SVMs have excellent
classification performance, they function best with low-noise non-
overlapping classes.

Variational Autoencoders (VAEs) are a class of unsupervised
generative models. VAEs are composed of two neural networks. One
of which is an encoder that takes the input and compresses it to a
Gaussian distribution in latent space. The distribution is then sampled
and a decoder neural network attempts to reconstruct the original input.
VAEs are ‘generative’ because they can generate novel outputs based
on the training data they have seen.

much better at predicting loss-of-function than gain-of-function
mutations (Flanagan et al., 2010). Both methods frequently appear
inferior to many modern predictors in multiple benchmarking
comparisons (Fig. 1) (Bendl et al., 2016; Ionita-Laza et al., 2016;
Raimondi et al,, 2016); however, they remain quick and
straightforward to use, and their results are easy to interpret.

Machine learning

The predictors summarised in Table 1 represent only a small number
of available VEPs, with machine learning being the basis of most
VEPs developed since PolyPhen in 2002. Machine learning aims to
find patterns in features, such as conservation, secondary structure,
amino acid properties and more, then use these to make predictions
about pathogenicity. Compared to empirically calculated scores,

using machine learning to automatically determine feature
contributions allows for the inclusion of more sources of data in
the calculation. Most often VEPs use a form of supervised machine
learning.

Supervised machine learning methods learn by example, by
training on labelled datasets. Databases collating pathogenic
variants, such as ClinVar (https:/www.ncbi.nlm.nih.gov/clinvar/)
(Landrum et al., 2014) and the Human Gene Mutation Database
(HGMD, http:/www.hgmd.cf.ac.uk/) (Stenson et al., 2003), make
ideal sources of pathogenic training examples, whereas gnomAD
(https:/gnomad.broadinstitute.org/) (Karczewski et al., 2020)
provides a useful source of putatively benign variation observed
in the human population. Several datasets exist, created specifically
for the purposes of training and testing supervised VEPs, such as
HumVar (http:/genetics.bwh.harvard.edu/pph2/dokuwiki/
downloads) (Capriotti et al., 2006) and Varibench (http:/structure.
bme.lu.se/VariBench/) (Nair and Vihinen, 2013). These datasets
also inevitably overlap by varying degrees (Mahmood et al., 2017).
We highlight VARITY as an example of a state-of-the-art
supervised predictor (Box 3, State-of-the-art predictors).

Many cutting-edge predictors use not only features calculated
from protein sequences and structures but also the outputs of other
VEPs. These meta-predictors, or ensemble predictors (Box 1),
frequently combine features by using a supervised machine learning
method, such as a random forest (Box 2) or a deep neural network
(Box 2). Examples of these meta-predictors include ClinPred
(Alirezaie et al., 2018), M-CAP (Jagadeesh et al., 2016), REVEL
(Ioannidis et al., 2016) and MutPred2 that is highlighted in Box 3.

Unsupervised learning in VEPs has been slowly increasing in
popularity, starting with the development of Eigen (Ionita-Laza
etal., 2016). In unsupervised learning, the training examples are not
labelled and the method makes its own decisions about how to make
predictions. As the predictor does not see labelled examples during
training, its predictions for specific variants are far less likely to be
biased towards previous experience compared to supervised
methods. Evolutionary Model of Variant Effect (EVE) is an
example of an advanced unsupervised predictor (Box 3), but
unsupervised learning shows even more promise as an avenue for
future research.

Benchmarking the performance of VEPs

The problem of data circularity

Owing to the increasing volume of variants gathered in sequencing
studies, with the majority being benign, identifying a single variant
of concern in a noisy genetic background is extremely challenging,
particularly if VEPs disagree as to the effect of the variant. As the
amount of genetic data we generate keeps increasing, it is more
important than ever to ensure we are using the correct tools for the
job.

Benchmarking is most frequently performed by making
predictions on sets of known pathogenic and benign variants.
Relative performance is then assessed by several methods, most
commonly by classification accuracy or area under the receiver
operating characteristic curve (ROC AUC; Box 1). By far the most
important aspect of benchmarking VEPs is the choice of variant
dataset, which can substantially influence the outcome.

Grimm et al. (2015) described two types of data circularity in
VEP benchmarking that can bias the assessment of predictor
performance. Type 1 circularity primarily affects methods based on
supervised machine learning. A method is susceptible to type 1
circularity if data used to train the model are re-used when assessing
its performance. A model that is presented with data it has seen

5

(%]
S
oA
c
©
<
O
o)
=
3
A
0}
g,
o
=
o)
(%]
©
Q
oA
(@]



https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
http://www.hgmd.cf.ac.uk/
http://www.hgmd.cf.ac.uk/
https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
http://genetics.bwh.harvard.edu/pph2/dokuwiki/downloads
http://genetics.bwh.harvard.edu/pph2/dokuwiki/downloads
http://genetics.bwh.harvard.edu/pph2/dokuwiki/downloads
http://structure.bmc.lu.se/VariBench/
http://structure.bmc.lu.se/VariBench/
http://structure.bmc.lu.se/VariBench/

REVIEW

Disease Models & Mechanisms (2022) 15, dmm049510. doi:10.1242/dmm.049510

VEPs compared

MutationAssessor

PolyPhen-2
Condel
NetDiseaseSNP

CADD
MutationTaster2

MutPred
SNPs&GO3D
PON-P
PROVEAN
Fathmm
SuSPect
PON-P2

MetaSVM
SNAP2
Eigen
REVEL
M-CAP
MPC
DEOGEN2
Envision
Fathmm-XF
PrimateAl
ClinPred
MutPred2

MVP

SNPs&GO

PolyPhen-2

Condel

SNPs&GO3D

PON-P

PROVEAN

Fathmm

NetDiseaseSNP

I Best predictor

CADD

MutationTaster2

SuSPect

PON-P2

MetaSVM

SNAP2

Eigen

>
©
=]
2
wv
x
—
I
£
=
5}
=
[}
[a)

REVEL

l Worst predictor

M-CAP

MPC

DEOGEN2

Envision

Fathmm-XF

PrimateAl

ClinPred

MutPred2

MVP

Fig. 1. Relative VEP performances in self-benchmarking analyses. The VEPs at the left are those that published a benchmark in their method paper. The
VEPs at the top were compared within these benchmarks. Owing to space constraints, we could not include all VEPs compared in each study. We took the
reported performance metrics, such as ROC AUC, directly from each paper. These scores were then used to rank each predictor from best to worst performance in
each benchmark. Where multiple performance metrics were available, we selected a single representative measurement — i.e. ROC AUC when possible —
followed by balanced accuracy and then any other presented metric. In cases where multiple benchmarks were performed, we selected one that- if available —
used data independently of VEP training or, if not, the most-prominent analysis within the paper. ROC AUC, receiver operating characteristic area under the curve.

previously during training often performs better than it would if
unseen data had been used. Whereas supervised machine learning
methods are the most vulnerable to this form of bias, unsupervised
methods are not immune. Such methods are often ‘tweaked’ based
on their performance on a test dataset. This can lead to optimisation
for that dataset and type 1 circularity if these variants are re-used
while benchmarking. Type 2 circularity occurs because proteins
with many variants in databases are often heavily skewed towards
either pathogenic or benign outcomes. This results in deceptively
good predictor performance if different variants from a single
protein are used to train and test a predictor. However, in proteins
that contain balanced numbers of pathogenic and benign variants, it
can result in poor predictions.

Type 1 circularity is often addressed by careful curation of the
variants used to benchmark predictors. However, this may limit the
number of VEPs being compared if the training data of one fully
overlaps the benchmarking dataset. Type 2 circularity is avoided by
ensuring no variants in proteins used to train a predictor are used for
benchmarking comparisons, ensuring that prior knowledge of
variants in that protein is not used (Bromberg and Rost, 2007).

Self-benchmarking

When reading papers describing new computational predictors, one
will tend to encounter an interesting phenomenon: the authors will
almost always find their own method to be better than any others. To
illustrate this, we reviewed publications describing 25 new

predictors (limited to those in Table 1), where their performance
in predicting coding missense variants was assessed (Fig. 1). The
self-benchmarking in these papers almost exclusively finds that the
novel method is superior to its predecessors for general variant
effect prediction. One exception is the unsupervised predictor
Eigen, which underperformed PolyPhen-2 when the authors
assessed the methods on missense variants — although Eigen did
perform best when assessed on missense and nonsense variants
combined (Ionita-Laza et al, 2016). In addition, Envision
performed the worst in its internal benchmark against missense
variants; however, it is primarily intended to predict mutagenesis
data rather than pathogenicity, probably explaining its relative
performance (Gray et al., 2018).

Although most methods perform consistently well within their
own benchmarks, benchmarks from subsequent publications often
disagree markedly regarding the relative performance of earlier
predictors. For example, the authors of Fathmm (Shihab et al., 2013)
find it to be the top-performing method among ten benchmarked
predictors, including MutPred (Li et al., 2009). However,
subsequent comparisons by other groups find Fathmm to
underperform MutPred (Raimondi et al.,, 2017; Yates et al.,
2014). There are also significant differences in performance when
the same author performs multiple benchmarks. For example,
DEOGEN (Raimondi et al., 2016) outperformed five other
methods, including SIFT, MutationAssessor (Reva et al., 2011)
and PolyPhen-2, when compared using the Humsavar 11 (https:/
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Box 3. State-of-the-art predictors

We make note of the following recently developed VEPs for their
innovation in either methodology or choice of training datasets.
Evolutionary Model of Variant Effect (EVE) (Frazeretal., 2021) uses a
methodology similar to that of its predecessor DeepSequence
(Riesselman et al., 2018). Both are unsupervised methods utilising a
variational autoencoder (Box 2) to learn the latent rules that underlie an
MSA. No features other than those of MSA are provided for the method,
and no pathogenic or benign training data are used. In principle, the
latent rules learned by EVE are those that underlie the evolutionary
process responsible for generating the MSA the predictor was trained
with. Variant scores are determined by comparing the probability of these
rules producing the mutant sequence and the probability of them
producing the wild-type sequence.

MutPred2 (Pejaver et al., 2020) uses a large number (1345) of features
that can be categorised on the basis of sequence, substitution, position-
specific scoring matrix (Box 1), conservation, homolog profiles or
property changes. MutPred2 is a supervised, ensemble predictor
composed of 30 separate neural networks that are trained using a
matrix of features. A ‘bagging’ approach (Box 1), similar to how random
forests are trained (Box 2), was used to expose each network to a
random sample of training data. The predictions are the mean of the 30
neural network outputs. Training data have been derived from HGMD,
SwissVar (discontinued) (Mottaz et al., 2010), dbSNP (https:/www.ncbi.
nlm.nih.gov/snp/) (Sherry et al., 1999) and interspecies alignments.
VARITY (Wu et al., 2021) makes use of the supervised gradient-boosted
tree algorithm (Box 2) but innovates primarily in its use of unique training
data. VARITY combines training examples from a large number of
different sources, including functional assays. To compensate for
potential low-quality data, training data are weighted based on specific
metrics related to data quality, such as minor allele frequency within
variant databases and internal quality metrics for functional assays.

www.uniprot.org/docs/humsavar) dataset for benchmarking
(Raimondi et al., 2016). However, when using variants from an
independent blind dataset, DEOGEN underperformed these three
methods (Raimondi et al., 2017).

It is common for supervised machine learning-based VEPs to be
benchmarked using their own training set, where predictions are
generated by K-fold cross-validation (Box 1) to help prevent
circularity (Adzhubei et al., 2010; Capriotti et al., 2013; Hecht et al.,
2015; Pejaver et al.,, 2020). This may explain some of the
performance discrepancies observed if it is the case that VEPs
become optimised for the underlying biases of their training dataset.
Furthermore, large variant datasets will inevitably have some
underlying biases and structure, such as distinct proportions of
variants from proteins with particular biological roles or disease
mechanisms. Supervised predictors could use this information to
over-perform in cross-validation or against holdout data (Box 1)
(Capriotti and Altman, 2011; Carter et al., 2013; Jagadeesh et al.,
2016) compared to tests using independent datasets. To overcome
these issues, alternative benchmarking strategies include curated
benchmarking (Box 1) datasets like Varibench (Feng, 2017; Niroula
et al., 2015; Shihab et al., 2013; Yates et al., 2014) and making
predictions on variants observed in relatively new studies that are
unlikely to be present in any predictor training data (Dong et al.,
2015; Raimondi et al., 2017; Sundaram et al., 2018).

One final issue with many benchmarking studies reported in VEP
method papers is that certain well-known or innovative predictors
are compared far more often than less-impactful VEPs that may still
perform relatively well. SIFT and PolyPhen-2 have been compared
in self-benchmarks of almost every VEP in the last 10 years (Fig. 1).
SIFT, in particular, performs poorly in many of these comparisons
but is still frequently used. In comparison, NetDiseaseSNP

(Johansen et al., 2013) was only benchmarked in its own paper,
so we have much less knowledge of how it compares to other
predictors.

Independent benchmarks

From the above, it is clear that we must refine benchmarking
methods of VEPs to improve their reliability. For this reason,
independent benchmarks of VEPs that reflect realistic use-cases are,
potentially, far more useful comparisons than self-benchmarks. One
of the earliest independent comparisons of VEPs (Thusberg et al.,
2011) investigated nine predictors by using variants drawn from the
Phencode database (http:/phencode.bx.psu.edu/) (Giardine et al.,
2007), locus-specific databases and dbSNP. Although the main
comparison in the paper did not exclude any training data for the
supervised methods, a subsequent, smaller scale comparison that
only used data from the locus-specific databases found that all
methods performed worse on the limited dataset. No single
predictor was superior by all outcome metrics; however,
SNPs&GO (Capriotti et al., 2013) produced the highest accuracy
for both the main study and on the limited dataset.

Most other early independent benchmarking studies focused on a
small number of variants within a single protein or a group of related
proteins. For example, VEPs were compared by using independent
benchmarking in studies of 51 variants in the bilirubin uridine
diphosphate glucuronsyltransferase gene (UGTIAI) (Galehdari
et al., 2013), 74 variants in DNA mismatch repair genes
(Thompson et al., 2013) and 122 RASopathy variants (Walters-
Sen et al., 2015). In the UGTIAI study, SIFT performed best in
terms of classification accuracy, despite being the oldest method.
The DNA mismatch study acknowledged the issue with potential
circularity, particularly in MutPred and PolyPhen-2, which were
trained with variants in the target proteins. Re-training these
predictors without variants in the mismatch repair genes resulted in
degraded performance, particularly for MutPred. Unlike the other
predictors in the study, SIFT allows the user to provide their own
MSA rather than relying on the tool’s native alignment.
Interestingly, this group found that supplying hand-curated
alignments featuring full-length homologues and sufficient
variation at all positions to SIFT markedly improved performance
over its native alignments. This demonstrates that the quality of the
alignment used by VEPs has a significant impact on the predictions
generated. The RASopathy study investigated 15 predictors, finding
that the majority of programs performed below their published level.
This study did not exclude any variants used to train the VEPs;
therefore, even the predictors most strongly influenced by type 1
data circularity still performed poorly on this dataset.

The study by Grimm and colleagues (Grimm et al., 2015)
highlighting the issue with data circularity, also contained
benchmarks that adhere to the principles of minimising circularity
by carefully selecting variants from Varibench, predictSNP (https:/
loschmidt.chemi.muni.cz/predictsnp/) (Bendl et al., 2014) and
SwissVar, which were not used to train any of the assessed VEPs.
Grimm et al. found that, when some of the training data for
predictors are present within the benchmarking set, most supervised
methods performed at their best. Performance degrades when all
training data are excluded from the test. When the issue of type 1
circularity is not a factor, the empirically derived SIFT is
comparable to some supervised machine learning methods, such
as CONDEL (Gonzalez-Pérez and Lopez-Bigas, 2011). The
approach used in this paper was highly effective at eliminating
type 1 circularity by curating variant databases. However, as more
predictors are trained, such datasets will need to be continuously
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refined and predictor training data always made public to allow such
comparisons in the future. Private datasets, such as HGMD, make
these measures difficult to implement.

Modern benchmarking studies often take a similar approach to
Grimm et al. (2015) in curating the assessment data to remove any
VEP training variants and limit the number of VEPs being
compared. A recent study comparing five predictors on clinical
variants (Gunning et al., 2021) used data from ClinVar, HGMD,
Online Mendelian Inheritance in Man (OMIM, https:/www.ncbi.
nlm.nih.gov/omim) and gnomAD, in addition to clinical and
population studies to benchmark the VEPs. Although no training
data were present in the variants used for the assessment, all tools —
including SIFT — performed better on the dataset derived from
existing database entries than on the dataset from newer clinical and
population studies. Since type 1 circularity was not an issue, it is
clear that the predictors are still optimised to better predict variants
in the open dataset. One implication is that pathogenicity thresholds
for VEPs might not be consistent between datasets, necessitating
calibration studies. Such studies would involve testing VEPs against
multiple datasets of variants or even individual proteins to
determine the optimal prediction thresholds of each method in
different contexts. Another recent study focussed on the often-
overlooked ability of VEPs to predict benign variants (Niroula and
Vihinen, 2019). To compare ten different predictors, this study used
common variants from the former EXAC database that is now
available at gnomAD  (https:/gnomad.broadinstitute.org/)
(Karczewski et al., 2017). Training data from the supervised
VEPs were filtered out of the EXAC data; however, the training data
of four predictors — MetaLR, MetaSVM (Dong et al., 2015), M-
CAP and REVEL — fully overlapped with the EXAC data, resulting
in their exclusion from the study. This highlights that such studies
are limited in the number of predictors they can assess while still
accounting for data circularity.

One solution adopted by several groups to resolve the issue of
data circularity is to use a gold standard (Box 1) for assessment,
which is fully independent of any existing training data. This can be
achieved by using datasets derived from experimental assays of
variant effect. The use of independently generated functional data
reduces the need to rely on databases that overlap VEP training data.
Mutagenesis experiments also have the potential to assess the
function of many entirely novel variants. Until recently, however,
such comparisons were only possible on a small scale.

A B

Deep Mutational Scanning

Experimental procedure

DMS is a relatively new fusion of large-scale mutagenesis and high-
throughput sequencing that provides quantitative measurements of
variant fitness, potentially assessing all possible variants in a protein
(Fowler and Fields, 2014). This is a vast improvement over previous
mutagenesis and directed evolution studies that focus on only a
small subset of possible variants. DMS technology has rapidly
improved, culminating in several studies that accurately recapitulate
the effects of clinically validated variants (Findlay et al., 2018;
Mighell et al., 2020).

All DMS studies begin with the generation of a library of mutant
genes, usually accounting for all possible amino acid variants in the
protein of interest (Fig. 2A). One such technique is POPCode
(Weile et al., 2017), allowing replacement of each codon in the gene
by using mutagenic primers with NNK degenerate codons (Box 1).
Alternatives include a variety of techniques, from direct synthesis of
the variant library (Jones et al., 2020) to random mutagenesis by
error-prone PCR (Choudhury et al., 2020).

To assess the fitness of each variant in the library, protein
function has to impact some measurable attribute of the cells
expressing the mutant proteins. The exact mechanism varies greatly
between experiments but, in the simplest case, the fitness of variants
can be linked to cell growth rate (Fig. 2B) (Brenan et al., 2016;
Giacomelli et al., 2018; Weile et al., 2017). Expressing variants that
are unable to perform their function as effectively as the wild type
reduces growth rates. As a final step, the growth rate effects of
each variant can be determined by quantitative sequencing
at different time points throughout the assay (Fig. 2C). Each
variant is assigned a fitness score relative to the wild type and a null
control. DMS experiments ultimately produce a heatmap of
measured variant fitness over the protein or domain assessed at
each position, indicating the areas that are least tolerant of
substitutions (Fig. 2D).

The goal of DMS is to understand how different amino acid
substitutions affect the ability of a protein to function. Where
function of the protein is vital for cell growth or survival, it is simple
to relate the resulting functional scores to disease risk. In proteins
with a less-direct link to disease, protein function might need to be
linked to cell growth rate through an artificial mechanism, such
as placing an essential gene under the control of a yeast two-
hybrid construct to assess protein—protein interaction fitness

C D

Growth rate linked to
fitness in transformed cells

Library of variants
for gene-of-interest

Assessing fitness through
quantitative sequencing

Fitness landscape
for protein-of-interest

Fitness

MEEPQSDPSVEPPLSQETFSD

. ‘ )
0 (null)

F<E<AVNDOTVZErX—IOTMMON>

Variant

Fig. 2. Summary of a typical DMS experiment. (A) A library of variants, often representing every possible amino acid substitution in a protein, is generated and
cloned into expression vectors. (B) The vectors are then introduced to mammalian or yeast cells where the function of the mutant protein is linked to the cell growth
rate or some other measurable attribute. (C) Variant fitness is measured at different time points by quantitative sequencing, and compared to positive and negative
controls to calculate relative fithness values. (D) A fithess map of all possible variants in the protein can be constructed from the relative fitness data.
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(Bandaru et al., 2017; Starita et al., 2015). In these cases, there is no
guarantee that the measured fitness metric will be correlated with
human disease risk.

Using DMS to predict clinical outcomes

Potentially the most-exciting use of DMS is in directly assessing the
clinical impact of novel variants, a feature it shares with VEPs.
Unlike supervised VEPs, however, DMS fitness values are derived
independently of previous data and, thus, are not subject to the
circularity issues that VEPs are vulnerable to. DMS has shown
promise in separating ClinVar pathogenic variants from putatively
benign gnomAD variants, outperforming VEPs for several proteins
(Livesey and Marsh, 2020).

Numerous germline variants in the tumour suppressor BRCA
have been found to pre-dispose women to developing breast cancer.
Despite many sequencing studies, there still remains a large number
of BRCAI VUSs and many novel variants to be observed. A recent
DMS study quantified the effects of nearly 4000 BRCA! variants
(Findlay et al., 2018). The group used a human HAP1 cell line and
its growth rate as a fitness measure, owing to the essentiality of
BRCA1 for growth in this cell line (Blomen et al., 2015). The DMS
results showed extremely high concordance with annotated ClinVar
variants. Furthermore, Findlay et al. provided evidence that, for
some variants where ClinVar and the DMS data diverge, DMS may
provide a more-accurate functional assessment.

PTEN is another gene with numerous cancer-related germline
variants and links to neurodevelopmental disorders. It is a tumour
suppressor gene with a large number of benign variations, making it
an excellent target for DMS studies. One study assessing PTEN
variant fitness used a yeast system, in which PTEN activity rescues
cell growth (Mighell et al., 2018). The authors found that the DMS
data separated pathogenic ClinVar from putatively benign gnomAD
variation with high levels of accuracy and sensitivity. This atlas of
experimentally assessed variants may be useful for identifying
potentially pathogenic mutations, and for distinguishing variants
resulting in cancer from those causing neurodevelopmental
disorders (Mighell et al., 2020).

Overall, these examples show that well-constructed DMS
experiments can accurately identify known pathogenic variants,
and have potential to annotate novel variants and VUS in disease-
related genes. Such experiments — rather than clinical observations —
may even have the potential to become a new ‘gold standard’ for
variant outcome assessment.

Using DMS to assess the performance of VEPs

The Critical Assessment of Genome Interpretation (CAGI) is an
ongoing experiment to assess the state of VEPs and related software
(Andreoletti et al., 2019). In CAGI, software is tested in a series of
variant interpretation challenges, spanning single nucleotide
variants (SNVs), indels (Box 1), different molecular phenotypes,
splicing effects, regulatory elements and more. CAGI assesses
progress in the field by using data held back from publication, so
that methods cannot be trained using these data. The 5th edition of
experiments, i.e. CAGI5 challenge, included challenges derived
from DMS-type experiments that included a yeast complementation
assay with human calmodulin (Zhang et al., 2019), and a
thermodynamic stability assay of PTEN and thiopurine S-
methyltransferase (Matreyek et al., 2018).

Beyond CAGI, several independent groups have also applied data
from DMS-style functional assays to benchmark VEPs. In an attempt
to benchmark 46 VEPs, our lab previously used functional data from
31 DMS datasets from human, yeast, bacterial and viral sources

(Livesey and Marsh, 2020). We calculated a relative rank score for
each predictor based on the Spearman’s correlation between the
continuous scores output by the VEPs and the DMS datasets.
Overall, we found that the unsupervised method DeepSequence
showed the best performance for human and bacterial proteins.
SNAP2 (Hecht et al., 2015), DEOGEN2 (Raimondi et al., 2017),
SuSPect (Yates et al., 2014) and REVEL also displayed relatively
high performance, as well as ease of querying. Although variants
used to train predictors were not removed from the benchmarking
data, they made up only a tiny fraction of the overall DMS dataset.

Another study used three datasets composed of published BRCA /
DMS data, TP53 DMS data and variants in UniProt that originated
from human mutagenesis experiments (UniFun). These three
datasets overlap only very slightly with common training datasets
(Mahmood et al., 2017). Compared to data commonly used for
benchmarking, the BRCAl and UniFun variants were poorly
predicted, whereas accuracy regarding 7P53 data was relatively
high for many methods. Mahmood and colleagues concluded that
the difference in performance between traditional benchmarking
datasets and functionally derived data is probably due to data
circularity, providing an advantage on the former. An interesting
consequence is that the empirical SIFT method produced the best
performance on the UniFun data, outclassing multiple supervised
machine learning methods.

Data from 22 DMS experiments were used to evaluate four VEPs
together with conservation metrics (Reeb et al., 2020). Overall,
Envision most accurately predicted variant deleteriousness
determined by DMS. It was, however, unclear whether this was
owing to genuine benefits of the VEP or bias due to Envision being
trained directly using DMS data. The output of all VEPs tested
correlated slightly with the DMS fitness values; however, all
methods performed better on deleterious SNVs than on beneficial
(gain-of-function) mutations. A naive metric (Box 1) using PSI-
BLAST also performed surprisingly well, outperforming some
VEPs for classification.

DMS is a source of experimentally validated variant effect scores
that are fully independent from existing classifications in databases
most often used to train VEPs. This independence, together with the
presence of large numbers of novel variants, allows for
benchmarking of more predictors than traditional studies with less
risk of data circularity. We can expect the popularity of using such
datasets as a benchmark to increase, as DMS datasets become
available for even more proteins.

Conclusions

VEPs and DMS studies can both be used to identify potentially
pathogenic variants. With DMS technology constantly improving
and sequencing becoming cheaper, the question arises whether we
will need VEPs in the future, if DMS can provide us with direct
measurements of variant effect. The precise definition of “fitness’ in
DMS is very important as a protein’s fitness can often be defined in
multiple ways. The challenge is to measure fitness in a way that
correlates best with clinical outcomes. It is not always obvious how
to achieve this for every protein. Although DMS results reflect the
clinical outcome for many variants, for others the correlation can be
poor (Livesey and Marsh, 2020). In the latter, the assessed fitness
metric probably did not adequately reflect the mechanisms behind
the disease caused by mutations of those proteins. However, DMS is
also possible for proteins without disease association if fitness can
still be assessed in some way. VEP benchmarking performance on
such data is likely to dependent on whether the predictor takes the
protein role and context into account for scoring.
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Owing to their fast generation time and genetic tractability, many
DMS studies are carried out in yeast cells. There is some concern
that, because of evolutionary differences, fitness scores from yeast
cells might not accurately reflect human genetic disease outcomes.
Despite these differences between humans and yeast, it has been
demonstrated that functional complementation assays performed in
yeast systems still manage to accurately predict human disease (Sun
et al., 2016).

However, DMS is resource-intensive and expensive, which can
limit its use as a benchmark. A considerable level of expertise is also
required to devise a suitable fitness assay and troubleshoot
unforeseen issues. It is not currently feasible to perform DMS for
every protein and, even if we could, there is no guarantee that the
measured fitness metric would be applicable to human disease
prediction. Until we have the knowledge and resources to construct
assays to take into account all possible definitions of protein fitness,
there will still be a requirement for VEPs in the future.

New generations of VEPs are constantly expanding their training
data to broaden their experience and, hopefully, produce more
accurate results. Recently, some VEPs that include DMS data as part
of their training sets have been published. Benchmarking such
predictors using DMS data carries the same caveats as
benchmarking other supervised predictors with commonly used
variant databases. For these VEPs, data circularity becomes an issue
once again and, although dataset curation may help prevent
circulatory, optimisation for DMS datasets may give the predictor
an unfair advantage regardless. The two predictors we are aware of
that make use of DMS data in their training sets are Envision and
VARITY. Envision has been found to accurately predict effect
magnitude in DMS datasets (Reeb et al., 2020), although our group
found that Envision produced an average performance by using a
different set of DMS data (Livesey and Marsh, 2020). The ability of
VARITY to predict DMS data has yet to be assessed, although a
study using gene-trait combinations found it to have excellent
predictive performance (Kuang et al., 2021).

The question, therefore, remains whether functional assays can
solve the issue of data circularity if variants used to train the VEPs
are not excluded from the benchmarking dataset. The key is in the
complete independence of DMS-derived datasets from variant
interpretations based on clinical observation. Although there is
usually a strong correlation, the measured variant effects in DMS are
not necessarily identical to those in variant databases. DMS results
are also often non-binary continuous values, which allows for
differentiation between ‘extremely damaging’ and ‘slightly
damaging’ variants, a distinction not found in traditional variant
databases. Furthermore, the correlation between VEP predictions
and measured intra-protein variant effects is likely to help in
identifying those predictors susceptible to type-2 circularity. As
previously outlined, type 2 circularity is caused by VEPs that
associate particular proteins with a pathogenic or benign outcome
and then applying that knowledge to new variants in the same
protein. This effect provides the VEP with an advantage for binary
classification of variants. In order to perform well against DMS
fitness scores, a VEP has to have a strong correlation with the
continuous values — which cannot be obtained solely by using
knowledge of protein—disease associations. Overall DMS data stand
as a potential solution to data circularity, particularly as more
datasets emerge. However, this may soon become complicated by a
new generation of VEPs trained with DMS data.

In this Review, we have described the recent progress made on
computational predictors of variant effect and the issues with
benchmarking these programs. DMS stands as not only a useful

independent source of benchmarking data to limit circularity from
performance estimates but also a, potentially, useful resource for
direct variant classification. Outside of direct variant-effect
prediction, DMS can also be applied to protein structure
prediction (Adkar et al., 2012), residue contact prediction (Sahoo
et al., 2015) and protein engineering (Spencer and Zhang, 2017).

We hope that, in future works, variant effect datasets from DMS-
type studies will be more widely used to assess the performance of
VEPs. This trend should naturally arise as further DMS experiments
are carried out on human proteins and as the evolution of DMS
methodology continues. With such datasets being used, we also
expect to see an increase in the scope of independent benchmarking
studies to include additional predictors. Such advances are likely to
assist the identification of the best predictor methodologies and aid
the production of more-accurate VEPs.
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