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Abstract

Barlow (1985) hypothesized that the co-occurrence of two events A and B is ‘suspicious’ if
P (A,B)� P (A)P (B). We first review classical measures of association for 2× 2 contingency
tables, including Yule’s Y (Yule, 1912), which depends only on the odds ratio λ, and is indepen-
dent of the marginal probabilities of the table. We then discuss the mutual information (MI) and
pointwise mutual information (PMI), which depend on the ratio P (A,B)/P (A)P (B), as mea-
sures of association. We show that, once the effect of the marginals is removed, MI and PMI
behave similarly to Y as functions of λ. The pointwise mutual information is used extensively in
some research communities for flagging suspicious coincidences. We discuss the pros and cons
of using it in this way, bearing in mind the sensitivity of the PMI to the marginals, with increased
scores for sparser events.

Barlow (1985) hypothesized that “the cortex behaves like a gifted detective, noting suspicious
coincidences in its afferent input, and thereby gaining knowledge of the non-random, causally related,
features in its environment”. More specifically, Barlow wrote (p. 40):

The coincident occurrence of two events A and B is ‘suspicious’ if they occur jointly
more than would be expected from the probabilities of their individual occurrence, i.e.
the coincidence A&B is suspicious if P (A&B)� P (A)×P (B).1 Any detective knows
that, for a coincidence to be suspicious, the events themselves must be rare ones, and that
if they are rare enough, even a single occurrence is significant.

Edelman et al. (2002) refer to the principle of suspicious coincidences as where “two candidate
fragments A and B should be combined into a composite object if the probability of their joint ap-
pearance P (A,B) is much higher than P (A)P (B) ...”

The fundamental problem here is to detect if there is a significant association between events A
and B. This can arise in many different contexts, such as:

• an animal detecting that eating a certain plant is associated with subsequent illness;

1In fact in Barlow (1985) the inequality is written� rather than�, but it is clear the latter was intended. The same
paper was also published as Barlow (1987); there the inequality is the correct way round.
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• detecting that a certain drug is associated with a particular adverse drug reaction;

• detecting the association between a visual stimulus that contains an image of the subject’s
grandmother or not, and the response of a putative “grandmother cell”;

• detecting that particular successive words in text are associated more frequently than by chance—
this is called a “collocation”, an example being the bigram “carbon dioxide”;

• a geneticist determining that two genes are in linkage disequilibrium (see e.g., Lewontin 1964);

• detecting that the pattern of two edges in a visual scene making a corner junction occur more
frequently than by chance.

Below we review various measures of association from the literature, notably Yule’s Y (Yule,
1912), which depends solely on the odds ratio and is invariant to the marginal distributions of the two
variables. We then discuss measures of association based on the mutual information and pointwise
mutual information, which make use of the ratio P (A,B)/P (A)P (B), as proposed by Barlow and
others across diverse literatures. Finally we consider the pros and cons of using PMI to flag up
suspicious coincidences, and discuss its estimation from data when (some of) the counts in the table
are low.

2× 2 Contingency Tables
Consider two random variables X and Y that take on values of 0 or 1. The 2 × 2 contingency table
has the form

P =

(
p00 p01
p10 p11

)
, (1)

where, for example, p01 = p(X = 0, Y = 1). We will also say the event x occurs if X = 1, and
similarly for y. We denote the marginals with “dot” notation, so that e.g. p1· = p(X = 1) = p10+p11.

P is defined by 3 degrees of freedom (as the entries sum to 1). Two of these are taken up by
the marginals, leaving one additional degree of freedom. Given a table P we can manipulate the
marginals by multiplying the rows and columns with positive numbers and renormalizing. Such a
transformation is shown, e.g., in Hasenclever and Scholz (2016, eq. 1), viz,

gµ,ν(P ) =
1

Z(µ, ν)

(
µνp00 µp01
νp10 p11

)
, (2)

where Z(µ, ν) = µνp00 + µp01 + νp10 + p11. The odds ratio

λ =
p00p11
p01p10

(3)

can be seen to be invariant to the action of this margin manipulation transformation, and thus defines
the third degree of freedom. An odds ratio of 1 implies that there is no association, and that P is equal
to the product of the marginals.

The “canonical” table with marginals of 1/2 but with the same odds ratio as P is given by

Pcan =

( √
λ

2(1+
√
λ)

1
2(1+

√
λ)

1
2(1+

√
λ)

√
λ

2(1+
√
λ)

)
, (4)

2



as shown by Yule (1912). Like a copula for continuous variables, this allows a separation of the
marginals from the dependence structure between X and Y .

The table P can also be expressed in terms of a deviation from the product of the marginals (see
e.g. Hasenclever and Scholz 2016, p. 24) as

P =

(
p0·p·0 +D p0·p·1 −D
p1·p·0 −D p1·p·1 +D

)
, (5)

where D = p00p11 − p01p10 = p11 − p1·p·1 etc. In genetics D is known as the coefficient of linkage
disequilibrium for two genes.

Estimation from Data: Eq. 1 is given in terms of probabilities such as p01. However, observa-
tional data does not directly provide such probabilities, but counts associated with the corresponding
cells. The maximum likelihood estimator (MLE) for pij is, of course, nij/n, where nij is the count
associated with cell ij, and n is the total number of counts. The MLE has well-known issues when
(some of) the counts are small. Bayesian approaches to address this are discussed below in the section
headed Detecting Associations with Pointwise Mutual Information.

Classical Measures of Association
For two Gaussian continuous random variables, there is a natural measure of their association, the
correlation coefficient. This is independent of the individual (marginal) variances of each variable,
and lies in the interval [−1, 1].

For the 2× 2 table many measures of association have been devised. One such is Yule’s Y (Yule,
1912), where

Y =

√
λ− 1√
λ+ 1

. (6)

Like the correlation coefficient, Y also lies in the range of [−1, 1], with a value of 0 reflecting that
there is no association. Its dependence only on λ means that it is invariant to the marginals in the
table. Y (1/λ) = −Y (λ), so Y is an odd function of log(λ). Edwards (1963) argued that measures of
association must be functions of the odds ratio.

There are a number of desirable properties for a measure of association η between binary vari-
ables. For example Hasenclever and Scholz (2016, p. 22) list:

(a) η is zero on independent tables.

(b) η is a strictly increasing function of the odds-ratio when restricted to tables with fixed margins.

(c) η respects the symmetry group D4, namely (1) η is symmetric in the markers, i.e. invariant to
matrix transposition, and (2) η changes sign when the states of a marker are transposed (row or
column transposition).

(d) The range of the function is restricted to (−1, 1).

As well as Yule’s Y ,2 several other measures of association have been proposed; indeed Tan
et al. (2004) list 21. Other measures of association include Lewontin’s D′ Lewontin (1964), which

2Yule had earlier proposed Q = (λ − 1)/(λ + 1) as a measure of association, but his discussion on p. 592 of Yule
(1912) gives a number of reasons for preferring Y to Q.
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standardizes D from eq. 5 by dividing it by the maximum value it can take on, which depends on the
marginals of the table; and the binary correlation coefficient r which standardizes D by

√
p0·p·0p1·p·1.

For the canonical table, it turns out that D′ = r = Y .

Information Theoretic Measures of Association
Barlow’s definition of a suspicious coincidence suggests consideration of the quantity

i(x, y) = log
p(x, y)

p(x)p(y)
. (7)

Indeed i(x, y) has been proposed in different literatures; for example Church and Hanks (1990) stud-
ied it for word associations in linguistics. i(x, y) is termed the pointwise mutual information (PMI),
e.g. in the statistical natural language processing textbook of Manning and Schütze (1999). In pharma-
covigilance, Bate et al. (1998) call i(x, y) the information component (IC), as it is one component of
the mutual information calculation in a 2×2 table, and it is also studied in DuMouchel (1999). And in
the data mining literature Silverstein et al. (1998) define the interest to be the ratio p(x, y)/(p(x)p(y))
(i.e. without the log).

Note that while Y , D′ and r consider the difference D = p11−p1·p·1 = p(x, y)−p(x)p(y), i(x, y)
considers the log ratio of these terms. Thus i(x, y) considers the ratio of the observed and expected
probabilities for the event (x, y), where the expected model is that of independence.

The mutual information (MI) is defined as

I(X;Y ) =
∑

i,j∈{0,1}

p(X = i, Y = j) log
P (X = i, Y = j)

P (X = i)P (Y = j)
. (8)

We have that I(X;Y ) ≥ 0, with I(X;Y ) = 0 when X and Y are independent.
Both PMI and MI as defined above depend on the marginal probabilities in the table. To see

this, use p(x, y) ≤ p(x) or p(x, y) ≤ p(y), so i(x, y) ≤ min(− log p(x), − log p(y)), i.e. favouring
“sparsity” (low probability). The MI is maximal for a diagonal (or anti-diagonal) table with marginals
of 1/2, the opposite trend to PMI.

There have been various proposals to normalize the PMI and MI to make them fit in the range
[−1, 1] and [0, 1] respectively. For example Bouma (2009) defined the normalized PMI (NPMI) as
in(x, y) = i(x, y)/h(x, y) for p(x, y) > 0, where h(x, y) = − log p(x, y). NPMI ranges from +1
when events x and y only occur together, through 0 when they are independent, to −1 when x and
y occur separately but not together. Similarly there are a number of proposals for normalizing the
mutual information; Bouma (2009) suggests In(X;Y ) = I(X;Y )/H(X, Y ), where H(X, Y ) is the
joint entropy of X and Y . In(X;Y ) (termed the normalized MI or NMI) takes on a value of +1 if X
and Y are perfectly associated, and 0 if they are independent. Alternative normalizations of the MI
by H(X) or H(Y ) have also been proposed, these are termed uncertainty coefficients in Press et al.
(2007, sec. 14.7.4). NMI is not strictly a measure of association as defined above, as it does not take
on negative values, but following the construction in Hasenclever and Scholz (2016, p. 24), one can
e.g. define the signed NMI as sign(D)In(X;Y ).

Given that the canonical table removes the effect of the marginals, it is natural to consider PMI
and MI as a function of λ. Using the canonical table from eq. 4, we obtain

iλ(x, y) = log
2
√
λ

1 +
√
λ
, (9)
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Figure 1: Plots of Y , iλ (PMI) and Iλ (MI) against λ (log scale) for λ ≥ 1.

which takes on a value of 0 for λ = 1 (independence), and tends to a value of log(2) as λ tends to
infinity. For λ < 1 the value of iλ(x, y) becomes negative and diverges to −∞ as λ → 0. However,
by studying the canonical table it would make more sense in this case to consider one of the “anti-
diagonal” cells in Pcan which will have a probability greater than 1/2 as the “event”. In general we
can treat all four cells of the contingency table as the “joint event”, compute the PMI for each, and
return the maximum. For the canonical table with λ < 1 this means that we transform λ → 1/λ and
compute iλ as per eq. 9.

For the MI of the canonical table, we obtain (after some manipulation)

Iλ(X;Y ) =

√
λ

1 +
√
λ
log
√
λ− log(1 +

√
λ) + log 2. (10)

Analysis of Iλ(X;Y ) shows that it is invariant if we transform λ to 1/λ, so a plot of Iλ(X;Y ) against
log(λ) is symmetric around 0, and tends to the value log(2) as λ tends to 0 or infinity.

Plots of Y , iλ and Iλ for λ ≥ 1 in Figure 1 show a similar behaviour, monotonically increasing to
a maximum value as λ → ∞. If we choose logs to base 2, then the maximum value is 1 in all three
cases. As Y is already well-established (since 1912!), it does not seem necessary to promote iλ or Iλ
as alternatives, when considering the canonical table.

Detecting Associations with Pointwise Mutual Information
As we have seen, the raw PMI score is not invariant to the distribution of the marginals. This can be
seen in Table 1, which concerns the association between vaccination and death from smallpox; the
original proportions in panel (a) are based on the Sheffield data in Table I of Yule (1912). In panel
(b) the marginals of the table wrt vaccination have been adjusted to 50/50 (as may have happened if
these data had been collected in a randomized controlled trial), and in panel (c) we have the canonical

5



recover die marginals
vaccinated 0.840 0.043 0.883
unvaccinated 0.059 0.058 0.117
marginals 0.899 0.101

0.476 0.024 0.500
0.252 0.248 0.500
0.728 0.272

0.408 0.092 0.500
0.092 0.408 0.500
0.500 0.500

PMI = 2.300, MI = 0.108 PMI = 0.866, MI = 0.205 PMI = 0.705, MI = 0.310
(a) original table (b) vaccination rate 50% (c) canonical table

Table 1: 2 × 2 contingency tables for the association between vaccination and death from small-
pox. (a) is the original table based on the data in Yule (1912), (b) adjusts the marginals for vacci-
nated/unvaccinated to be 50/50, and (c) is the canonical table where the marginals are both 50/50. In
all three tables, Yule’s Y = 0.630.

table where both marginals are 50/50.3 Notice that the PMI is highest for the original (unbalanced)
table, and decreases as the marginals are balanced. Conversely the MI is lowest in the the original
(unbalanced) table, and increases as the marginals are balanced. Of course Yule’s Y is constant
throughout, by construction.

As another example, consider fixing λ but adjusting the marginal probabilities of events x and y.
For example, for λ = 16, PMI takes on the values of 0.678, 1.642, 2.293, 3.642 and 3.958 (using logs
to base 2) as p(x) = p(y) varies from 0.5, 0.2, 0.1, 0.01 and 0.001. This is particularly problematic
as low counts will give rise to uncertainty in the estimation of the required probabilities (especially of
the joint event). In the context of word associations, Manning and Schütze (1999, sec. 5.4) argue that
PMI “does not capture the intuitive notion of an interesting collocation very well”, and mention work
which multiplies it by p(x, y) as one strategy to compensate for the bias in favour of rare events.

On the other hand, Barlow (1985) suggested that sparsity is important for the detection of suspi-
cious coincidences, i.e. that “the events themselves must be rare ones”. It is true that a low p(y) gives
more “headroom” for the ratio p(y|x)/p(y) to be large. The PMI score is used extensively in pharma-
covigilance, where the aim is to detect associations between drugs taken and adverse drug reactions
(ADRs). In this context, the ratio p(x, y)/p(x)p(y) = p(y|x)/p(y) is termed the relative reporting
ratio (RRR), and compares the relative probability of an adverse drug reaction y given treatment with
drug x, compared to the base rate p(y). Another commonly used measure is the proportional report-
ing ratio (PRR), defined as p(y|x)/p(y|¬x). The US Food and Drug Administration (FDA) white
paper (Duggirala et al., 2018) describes the use of both RRR and PRR for detecting ADRs in routine
surveillance activities.

Above we have described maximum likelihood estimation for the probabilities in the 2× 2 table,
based on counts. However, there are well-known issues with the MLE when (some of) the counts
are small. This naturally suggests a Bayesian approach, and there is a considerable literature on
the Bayesian analysis of contingency tables, as reviewed e.g. in Agresti (2013). There are different
sampling models depending on how the data is assumed to be generated, as described in Agresti
(2013, sec. 2.1.5). If all 4 counts are unrestricted, a natural assumption is that each nij is drawn from
a Poisson distribution with mean µij , which can be given a Gamma prior. Alternatively if n is fixed,
the sampling model is a multinomial, and the conjugate prior is a Dirichlet distribution. If one set
of marginals is fixed, then the data is drawn from two Binomial distributions, each of which can be

3Yule (1912) comments that on the canonical table that “These are, of course, not the actual proportions, but the
proportions that would have resulted if an omnipotent demon of unpleasant character (no relation of Maxwell’s friend)
could have visited Sheffield [...], and raised the fatality rate and the proportion of unvaccinated [...] to 50 per cent without
otherwise altering the facts.”
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given a Beta prior. If both marginal totals are fixed, this corresponds to Fisher’s famous “Lady Tasting
Tea” experiment, and the sampling distribution of any cell in the table follows a hypergeometric
distribution. Section 3.6 of Agresti (2013) covers Bayesian inference for two-way contingency tables,
and Agresti and Min (2005) discuss Bayesian confidence intervals for association parameters, such as
the odds ratio.

DuMouchel (1999) applied an Empirical Bayes approach to consider sampling variability for PMI
(aka RRR) in the context of adverse drug reactions. He assumed that each n11 is a draw from a Pois-
son distribution with unknown mean µ11, and that the object of interest is ρ11 = µ11/E11, where
E11 is the expected count (assumed known) under the assumption that the variables are indepen-
dent. Using a mixture of Gamma distributions prior for ρ11, DuMouchel obtained the posterior mean
E[log(ρ11)|n11], rather than just considering the sample estimate n11/E11. The mixture prior was used
to express the belief that when testing many associations, most will have a PMI of near 0, but there
will be some that have significantly larger values. This method is known as the Multi-Item Gamma
Poisson Shrinker (MGPS). The value of this approach is that Bayesian shrinkage corrects for the high
variability in the RRR sample estimate n11/E11 that results from small counts.

Summary
Motivated by Barlow’s hypothesis about suspicious coincidences, we have reviewed the properties
of 2 × 2 contingency tables for association analysis, with a focus on the odds ratio λ and Yule’s
Y . We have considered the mutual information and pointwise mutual information as measures of
association, along with normalized versions thereof. We have shown that, considered as functions of
λ in the canonical table, MI and PMI behave similarly to Y for λ ≥ 1, increasing monotonically with
λ (and can be made similar for 0 < λ < 1).

As well as Y , the PMI measure i(x, y) = log p(x, y)/(p(x)p(y) can also be used to identify
suspicious coincidences, and it is used in practice, for example, in pharmacovigilance. We have
discussed the pros and cons of using it in this way, bearing in mind the sensitivity of the PMI to the
marginals, with increased scores for sparser events. When some of the counts in the table are low,
Bayesian approaches can be useful for the estimation of PMI from raw counts.
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