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Abstract

We propose a structure-adaptive variant of the state-of-the-art stochastic variance-
reduced gradient algorithm Katyusha for regularized empirical risk minimization.
The proposed method is able to exploit the intrinsic low-dimensional structure
of the solution, such as sparsity or low rank which is enforced by a non-smooth
regularization, to achieve even faster convergence rate. This provable algorithmic
improvement is done by restarting the Katyusha algorithm according to restricted
strong-convexity constants. We demonstrate the effectiveness of our approach via
numerical experiments.

1 Introduction

Many applications in supervised machine learning and signal processing share the same goal, which
is to estimate the minimizer of a population risk via minimizing the empirical risk 1

n

∑n
i=1 fi(ai, x),

where ai, x ∈ Rd, each fi is a convex and smooth function [1]. In supervised machine learning, ai is
often referred to as the training data sample, while in signal/image processing applications it is the
representation of measurements. In practice the number of data samples or measurements is limited,
and from them we attempt to infer x† ∈ Rd which is the unique minimizer of the population risk:

x† = arg min
x

Eaf̄(a, x). (1)

The ultimate goal is to get a vector x? which is a good approximation of x† from the empirical risk.
Since in many interesting applications, the dimension of parameter space d is of the same order or
even larger than the number of data samples n, minimizing the empirical risk alone will introduce
overfitting and hence leads to poor estimation of the true parameter x† [2, 3]. In general, avoiding
overfitting is a key issue in both machine learning and signal processing, and the most common
approach is to add some regularization while minimizing the empirical risk [4, 5, 6]:

x? ∈ arg min
x∈Rd

{
F (x) := f(x) + λg(x)

}
, f(x) :=

1

n

n∑

i=1

fi(x), (2)
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where for the sake of compactness of notation, we denote fi(x) := fi(ai, x). Each fi is assumed to
be convex and have L-Lipschitz continuous gradient, while the regularization term g(x) is assumed
to be a simple convex function and possibly non-smooth.

1.1 Accelerated stochastic variance-reduced optimization

To handle the empirical risk minimization in the “big data” and “big dimension” regimes, stochastic
gradient-based iterative algorithms are most often considered. The most basic one is often referred to
as stochastic gradient descent (SGD) [7, 8], in every iteration of which only one or a few functions fi
are randomly selected, and only their gradients are calculated as an estimation of the full gradient.
However, the convergence rate of SGD is sub-linear even when the loss function F is strongly-convex.

To further accelerate the stochastic gradient descent algorithm, researchers have recently developed
techniques which progressively reduce the variance of stochastic gradient estimators, starting from
SAG [9, 10], SDCA [11], then SVRG [12, 13] and SAGA [14]. Such methods enjoy a linear conver-
gence rate when the cost function F is µ-strongly-convex and each fi has L-Lipschitz continuous
gradients, that is, to achieve an output x̂ which satisfies F (x̂) − F (x?) ≤ δ, the total number of
stochastic gradient evaluations needed is O

(
n + L/µ

)
log 1

δ . Nesterov’s acceleration [15, 16, 17]
has also been successfully applied to construct variance-reduced methods which have an accelerated
linear-convergence rate [18, 19, 20, 21, 22, 23, 24, 25]:

O

(
n+

√
nL

µ

)
log

1

δ
. (3)

It is worth noting that this convergence rate has been shown to be worst-case optimal [21]. However,
all of these algorithms need explicit knowledge of the strong-convexity parameter µ. Very recently,
[26] has shown theoretically that it is impossible for an accelerated incremental gradient method to
achieve this ideal linear rate without the knowledge of µ. Since in general the strong-convexity is
hard to be estimated accurately, researchers propose adaptive restart schemes [27, 28, 29, 30, 25, 31]
for accelerated first-order methods, either by the means of enforcing monotonicity on functional
decay, or by estimating the strong-convexity on the fly.

1.2 Solution’s low-dimensional structure, restricted strong convexity, and fast convergence

In many interesting large-scale optimization problems in machine learning, the solution x? in (2) has
some low-dimensional structure such as sparsity [4], group-sparsity [32], low-rank [33] or piece-wise
smoothness [6], enforced by the non-smooth regularization. It is intuitive that an optimal algorithm
for this type of problem should take into account and exploit such solution’s structure. We believe
that, when being utilized properly, this prior information of the solution will facilitate the convergence
of an iterative algorithm.

One important theoretical cornerstone is the modified restricted strong convexity framework presented
by Agarwal et al. [34]. In the context of statistical estimation with high-dimensional data where
the usual strong-convexity assumption is vacuous, these authors have shown that the proximal
gradient descent method is able to achieve global linear convergence up to a point x which satisfies
‖x− x?‖2 = o(‖x? − x†‖2), the accuracy level of statistical precision. Moreover, the results based
on this restricted strong-convexity framework indicate that the convergence rate of the proximal
gradient become faster when the model complexity of the solution is lower.

Inspired by Agarwal et al. [34], Qu and Xu [35] extend this framework to analyse some variance-
reduced stochastic gradient methods such as proximal SVRG [13]. Most recently, based on the
same framework, researchers proposed a two-stage APCG algorithm [36], an accelerated coordinate
descent method able to exploit the solution’s structure for faster convergence.

1.3 This work

In this paper we extend the theoretical framework for randomized first order methods established
in [36] to design and analyse a structure-adaptive variant of Katyusha [23]. Our proposed method Rest-
Katyusha is a restarted version of the original Katyusha method for non-strongly convex functions,
where the restart period is determined by the modified restricted strong-convexity (RSC). The
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convergence analysis of Rest-Katyusha algorithm is provided, wherein we prove linear convergence
up to a statistical accuracy with an accelerated convergence rate characterized by the RSC property.

Like all other accelerated gradient methods which require the explicit knowledge of strong-convexity
parameter to achieve accelerated linear convergence, the vanilla Rest-Katyusha method also need
to explicitly know the RSC parameter. We therefore propose a practical heuristic (adaptive Rest-
Katyusha) which estimates the RSC parameter on the fly and adaptively tune the restart period, and
we show that this adaptive scheme mimics the convergence behavior of the vanilla Rest-Katyusha.
Finally we validate the effectiveness of our approach via numerical experiments.

2 Restarted Katyusha Algorithm

The Katyusha algorithm [23] listed in Algorithm 1 is an accelerated stochastic variance-reduced gra-
dient method extended from the linear-coupling framework for constructing accelerated methods [37].
Its main loop (denoted as A in Algorithm 1) at iteration s is described as the following:

For k = 0, 1, 2, ...,m

xk+1 = θzk + 1
2 x̂

s + ( 1
2 − θ)yk; → Linear coupling

Ok+1 = Of(x̂s) + Ofi(xk+1)− Ofi(x̂s); → Variance reduced stochastic gradient
zk+1 = arg minz

3θL
2 ‖z − zk‖22 + 〈Ok+1, z〉+ λg(z); → Proximal mirror descent

yk+1 = arg miny
3L
2 ‖y − xk+1‖22 + 〈Ok+1, y〉+ λg(y);→ Proximal gradient descent

The output sequence of A is defined as x̂s+1 = 1
m

∑m
j=1 yj , y

s+1 = ym, zs+1 = zm. It is one of the
state-of-the-art methods for empirical risk minimization and matches the complexity lower-bound
for minimizing smooth-convex finite-sum functions, proven by Lan and Zhou [21]. Most notably, it
is a primal method which directly1 accelerates stochastic variance-reduction methods. To achieve
acceleration in the sense of Nesterov, Katyusha introduces the three-point coupling strategy which
includes a combination of Nesterov’s momentum and a stabilizing negative momentum which cancels
the effect of noisy updates due to stochastic gradients. However, its accelerated linear convergence is
only established when the regularization term g(x) is strongly-convex, and fails to benefit from the
strong convexity from the data-fidelity term [31], or the intrinsic restricted strong-convexity [36].

Algorithm 1 Katyusha (x0,m, S, L)

Initialize: y0 = z0 = x̂0;
for s = 0, . . . , S − 1 do

θ ← 2
s+4 , calculate Of(x̂s),

(x̂s+1, ys+1, zs+1)

= A(x̂s, ys, zs, θ,Of(x̂s),m)

end for
Output: x̂S

Algorithm 2 Rest-Katyusha (x0, µc, S0, β, T, L)

Initialize: m = 2n, S =

⌈
β
√

32 + 24L
mµc

⌉
;

First stage —- warm start:
x1 = Katyusha (x0,m, S0, L)
Second stage —- exploit the restricted strong-
convexity via periodic restart:
for t = 1, ..., T do

xt+1 = Katyusha (xt,m, S, L)
end for

Restart to rescue: it is well-known that if the cost function F (x) is µ-strongly convex, one can
periodically restart the accelerated full gradient method [16], and improve it from a sublinear
convergence rate F (xk)− F ? ≤ 4L‖x0−x?‖22

k2 to a linearly convergent algorithm. For instance if we

set k =
⌈
4
√
L/µ

⌉
, then one can show that the suboptimality can be reduced by 1

4 :

F (xk)− F ? ≤ 4L‖x0 − x?‖22
k2

≤ 4L[F (x0)− F ?]
µk2

≤ 1

4
[F (x0)− F ?]. (4)

Then we can recursively apply this statement (algorithmically speaking, we restart the algorithm every⌈
4
√
L/µ

⌉
iteration), and only k ≥

⌈
4
√

L
µ

⌉
log4

1
δ iterations are needed to make F (xk)− F ? ≤ δ,

1On the other hand, one can indirectly accelerate SVRG/SAGA via Catalyst [38].
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and hence an accelerated linear rate is achieved. The restart scheme has been recently applied to
improve the convergence of the accelerated coordinate descent method [39, 30] and accelerated
variance-reduced dual-averaging method [25] for strongly-convex functions.

Inspired by Nesterov [16] we first propose the Katyusha method with periodic restarts, and meanwhile
demonstrate that when the restart period is appropriately chosen, the proposed method is able to
exploit the restricted strong-convexity property to achieve an accelerated linear convergence, even
when the cost function itself is not strongly-convex. We propose to warm start the algorithm prior to
the periodic restart stage, by running the Katyusha algorithm for a number of epochs, which in theory
should be proportional to the suboptimality of the starting point x0. We present our Rest-Katyusha
method as Algorithm 2.

3 Convergence analysis of Rest-Katyusha

3.1 Generic assumptions

We start by listing out the assumptions we may engage with in our analysis:

A. 1. (Decomposable regularizer) [34] Given a orthogonal subspace pair (M,M⊥) in Rd, g(.) is
decomposable which means:

g(a+ b) = g(a) + g(b),∀a ∈M, b ∈M⊥. (5)

In this paper we focus on cases where the regularizer is decomposable, which includes many popular
regularization which can enforce low-dimensional structure, such as `1 norm, `1,2 norm and nuclear
norm penalty. The subspaceM is named the model subspace, while its orthogonal complementM⊥
is called perturbation subspace. Similar notion of decomposition would extend the scope of this
work to more general gauge functions g(.), such as the so-called analysis priors, e.g., total variation
regularization (for more details see Vaiter et al. [40]).

A. 2. (Restricted strong convexity) [34] The function f(.) satisfies restricted strong convexity with
respect to g(.) with parameters (γ, τ ) if the following inequality holds true:

f(x)− f(x?)− 〈Of(x?), x− x?〉 ≥ γ

2
‖x− x?‖22 − τg2(x− x?), ∀x ∈ Rd. (6)

In [34], γ is referred as the lower curvature parameter, while τ is named the tolerance parameter. It is
clear that if τ = 0, A.2 reduces to usual strong-convexity assumption. While in the high-dimensional
setting, the strong-convexity does not hold, but it has been shown in literature that such milder
assumption of RSC does hold in many situations. This notion of RSC distinguishes from other forms
of weak strong-convexity assumption based on the Polyak-Lojasiewicz inequality [41] for the purpose
of this work, because it encodes the direction-restricting effect of the regularization, and hence has
been shown to have a direct connection with the low-dimensional structure of x?. Next we define a
crucial property for our structure-driven analysis, which is called the subspace compatibility:

Definition 3.1. [34] With predefined g(x), we define the subspace compatibility of a model sub-
spaceM as:

Φ(M) := sup
v∈M\{0}

g(v)

‖v‖2
, (7)

whenM 6= {0}.

The subspace compatibility Φ(M) captures the model complexity of subspaceM. For example if
g(.) = ‖.‖1 andM is a subspace which is on a s-sparse support in Rd, we will have Φ(M) =

√
s.

A. 3. Each fi(.) has L-Lipschitz continuous gradient:

‖Ofi(x)− Ofi(x′)‖2 ≤ L‖x− x′‖2,∀x, x′ ∈ Rd. (8)

This form of smoothness assumption is classic for variance-reduced stochastic gradient methods.
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A. 4. The regularization parameter λ and x† satisfies:

λ ≥ (1 +
1

c
)g∗(Of(x†)), (9)

with constant c ≥ 1.

Assumption A.4 with the choice of c = 1 is the fundamental assumption of the analytical framework
developed by Negahban et al. [3]. We relax the requirement to c ≥ 1 for more general results. It is
seemly a sophisticated and demanding assumption but indeed is reasonable and suits well the purpose
of this work, which is to develop fast algorithms to speedily solve structured problems (which is
always the result of sufficient regularization). Moreover, recall that the goal of finding the solution
x? via optimizing the regularized empirical risk is to get a meaningful approximation of the true
parameter x† which is the unique minimizer of the population risk. Especially in the high dimensional
setting where d > n, the choice of regularization is rather important since there is no good control
over the statistical error ‖x† − x?‖ for an arbitrarily chosen λ. Because of this issue, in this work we
only focus on the “meaningful” regularized ERM problems which are able to provide trustworthy
approximation. Similar to A.4, Negahban et al.[3] has shown that λ ≥ 2g∗(Of(x†)) provides a
sufficient condition to bound the statistical error ‖x? − x†‖22:

Proposition 3.2. [3, Theorem 1, informal] Under A.1, A.2, A.4, with c = 1, if furthermore
the curvature parameter γ, tolerance parameter τ and the subspace compatibility Φ(M) satisfy
τΦ2(M) < γ

64 , then for any optima x?, the following inequality holds:

‖x? − x†‖22 ≤ O
(
λ2

γ2
Φ2(M) +

λ

γ
g(x†M⊥)

)
, (10)

where O(.) hides deterministic constants for the simplicity of notation.

Such a bound reveals desirable properties of the regularized ERM when the range of λ satisfies
assumption A.4. For instance, if x† is the s-sparse ground truth vector of a noisy linear measurement
system y = Ax† + w, where w denotes the zero-mean sub-Gaussian noise (with variance σ2) and
the measurement matrix A satisfies a certain restricted eigenvalue condition [3, 42], and we use a
Lasso estimator x? ∈ arg minx

1
2n‖Ax− y‖22 + λ‖x‖1. In such case, letM be a subspace in Rd on

s-sparse support where x† ∈M and hence g(x†M⊥) = 0, this proposition implies that:

‖x? − x†‖22 ≤ O
(
λ2s

γ2

)
≈ O

(
σ2

γ2

s log d

n

)
, (11)

which implies the optimal convergence of the statistical error in terms of sample size and dimension
for M-estimators. The details of this claim are presented in [3, Corollary 2].

3.2 Main results

Base on the assumption of the restricted strong convexity on f(.) w.r.t g(.), and also with the definition
of subspace compatibility, one can further derive a more expressive form of RSC, which is named
Effective RSC [34] which has a directly link to the structure of solution.

Lemma 3.3. (Effective RSC) [36, Lemma 3.3] Under A.1, A.2 , A.4, while x satisfies F (x)−F (x?) ≤
η for a given value η > 0 and any minimizer x?, with ε := 2Φ(M)‖x† − x?‖2 + 4g(x†M⊥) we have:

F (x)− F ? ≥ µc‖x− x?‖22 − 2τ(1 + c)2v2, (12)

where µc = γ
2 − 8τ(1 + c)2Φ2(M) and v = η

λ + ε.

Here we refer µc as the effective restricted strong convexity parameter, which will provide us a direct
link between the convergence speed of an algorithm and the low-dimensional structure of the solution.
Note that this lemma relaxes the condition on λ in [34, Lemma 11], which is restricted to c = 1. Our
main theorem is presented as the following:

Theorem 3.4. Under A.1 - 4, denote ε := 2Φ(M)‖x† − x?‖2 + 4g(x†M⊥), D(x0, x?) :=

16(F (x0) − F ?) + 6L
n ‖x0 − x?‖22, µc = γ

2 − 8τ(1 + c)2Φ2(M), if we run Rest-Katyusha with
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S0 ≥
⌈(

1 + 2
ρλ

)√
6Lτ(1+c)2D(x0,x?)

8nµc+3L

⌉
, S =

⌈
β
√

32 + 12L
nµc

⌉
with β ≥ 2, then the following

inequality holds:

E[F (xT+1)− F ?] ≤ max

{
ε,

(
1

β2

)T D(x0, x?)

(S0 + 4)2

}
(13)

with probability at least 1− ρ.

Corollary 3.5. Under the same assumptions, parameter choices and notations as Theorem 3.4, the
total number of stochastic gradient evaluations required by Rest-Katyusha to get an δ > ε-accuracy
is:

O

(
n+

√
nL

µc

)
log

1

δ
+O(n)S0. (14)

Proof technique. We extend the proof technique of Agarwal et al. [34] to the proximal gradient
descent and also Qu and Xu [35] for SVRG which are both based on applying induction statements
to roll up the residual term of (12) which is the second term at the RHS. The complete proofs of
Theorem 3.4 and Corollary 3.5 can be found in the supplementary material.

Accelerated linear convergence. Under the RSC assumption, Theorem 3.4 and Corollary 3.5
demonstrate a local accelerated linear convergence rate of Rest-Katyusha up to a statistical accuracy
δ > ε. We derive this result based on extending the framework provided by Agarwal et al. [34],
by which they established fast structure-dependent linear convergence of proximal gradient descent
method up to a statistical accuracy of δ > ε. To the best of our knowledge, this is the first structure-
adaptive convergence result for an accelerated incremental gradient algorithm. Note that, this result
can be trivially extended to a global accelerated linear convergence result (with S0 = S) with the
same setting of Agarwal et al. [34] where a side constraint g(x) ≤ R for some radii R is added to
restrict the early iterations with additional re-projections unto this constraint set2.

Structure-adaptive convergence. The effective RSC µc = γ
2 − 8τ(1 + c)2Φ2(M) links the

convergence speed of Rest-Katyusha with the intrinsic low-dimensional structure of the solution
which is due to the regularization. For instance, if F (x) := 1

2n‖Ax− b‖22 + λ‖x‖1, ‖x?‖0 = s and
(A.4) holds c = 1, then we have µc = γ

2 − 32τs, meanwhile for a wide class of random design
matrices we have τ = O( log d

n ) and γ > 0. More specifically, if the rows of the random design matrix
A are drawn i.i.d. from N (0,Σ) with covariance matrix Σ ∈ Rd×d which has largest singular value
rmax(Σ) and smallest singular value rmin(Σ), then γ ≥ rmin(Σ)

16 and τ ≤ rmax(Σ) 81 log d
n with high

probability as shown by Raskutti et al. [42].

High probability statement. Since our proofs utilize the effective RSC which holds in a neighbor-
hood of x? as demonstrated in Lemma 3.3, we need to bound the functional suboptimality F (xt)−F ?
in the worst case instead of in expectation. Hence inevitably the Markov inequality has to be applied
to provide the convergence statement with high probability (details can be found in the main proof).

Optimizing the choice of β. Theorem 3.4 shows that the complexity of the main loop of Rest-
Katyusha is

⌈
β
√

32 + 12L/(nµc)
⌉

logβ2
1
δ , which suggest a trade-off between the choice of β and

the total computation. With some trival computation one can derive that in theory the best choice of β
is exactly the Euler’s number (≈ 2.7). Numerically, we observe that slightly larger choice of β often
provides better performance in practice (illustrative examples can be found in supplemental material).

4 Adaptive Rest-Katyusha

Motivated by the theory above, we further propose our practical adaptive restart heuristic of Rest-
Katyusha which is able to estimate the effective RSC on the fly. Based on the convergence theory,
we observe that, with the choice of restart period S =

⌈
β
√

32 + 12L/(nµ0)
⌉

with a conservative

2In [34], a side constraint is manually added to the regularized ERM problem, hence in their setting, the
effective restricted strong-convexity is valid globally. They provide global linear convergence result of proximal
gradient descent (with additional re-projection steps) at a cost of additional side-constraints.
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estimate µ0 ≤ µc, then we are always guaranteed to have:

Eξt\ξt−1
[F (xt+1)− F ?] ≤ 1

β2
[F (xt)− F ?], (15)

due to the fact that an underestimation of the RSC will leads to a longer restart period that we
actually need3. The intuition behind our adaptive restart heuristic is: if we overestimate µc, the above
inequality will be violated. Hence an adaptive estimation of µc can be achieved via a convergence
speed check. However the above inequality cannot be evaluated directly in practice since it is in
expectation and demands the knowledge of F ?. In [29, Prop. 4], it has been shown that with the
composite gradient map:

T (x) = arg min
q

L

2
‖x− q‖22 + 〈Of(x), q − x〉+ λg(q), (16)

the value of F (x)− F ? can be lower bounded:

F (x)− F ? ≥ ‖T (x)− x‖22, (17)

and also it can be upper bounded by O(‖T (x)− x‖22) if local quadratic growth is assumed, which
reads:

∃α > 0, r > 0, F (x)− F ? ≥ α‖x− x?‖22,∀x s.t. ‖x− x?‖22 < r. (18)

The details of this result can be found in [29]. Hence in our adaptive restart heuristic we check
the convergence speed via evaluating the composite gradient map at the snapshot points where full
gradients have already been calculated. Because of this, the only main additional computational
overhead of this adaptive restart scheme is the proximal operation of g(.) at the restart points.

Algorithm 3 Adaptive Rest-Katyusha (x0, µ0, S0, β, T, L)

Initialize: Epoch length m = 2n; Initial restart period S =

⌈
β
√

32 + 12L
nµ0

⌉
;

x1 = Katyusha (x0,m, S0, L)
Calculate the composite gradient map:
T (x1) = arg minx

L
2 ‖x− x1‖22 + 〈Of(x1), x− x1〉+ λg(x).

for t = 1, . . . , T do
xt+1 = Katyusha (xt,m, S, L)
—–Track the convergence speed via the composite gradient maps:
T (xt+1) = arg minx

L
2 ‖x− xt+1‖22 + 〈Of(xt+1), x− xt+1〉+ λg(x).

—– Update the estimate of RSC and adaptively tune the restart period
if ‖T (xt+1)− xt+1‖22 ≤ 1

β2 ‖T (xt)− xt‖22
then µ0 ← 2µ0, else µ0 ← µ0/2. S =

⌈
β
√

32 + 12L
nµ0

⌉

end for

The adaptive Rest-Katyusha method is presented in Algorithm 3. We highlight the heuristic estimating
procedure for RSC parameter in the orange lines, which is additional to the original Katyusha
algorithm. The algorithm start with an initial guess µ0 and correspondingly the restart period S,
meanwhile we calculate the composite gradient map T (x1) at x1 and record the value of ‖T (x1)−
x1‖22 which we use as the estimation of F (x1)−F ? (and so on). Then after S outer-loops, we restart
the algorithm and meanwhile and evaluate again the composite gradient map. If ‖T (x2)− x2‖22 ≥
1
β2 ‖T (x1) − x1‖22, then we suspect that the RSC parameter has been overestimated, and hence
we reduce µ0 by a half, otherwise we double the estimation. We also update the restart period by
S =

⌈
β
√

32 + 12L/(nµ0))
⌉

with the modified µ0. The forthcoming iterations follow the same
updating rule as described.

3An inaccurate estimate of the RSC will lead to a compromised convergence rate. Detailed discussion and
analysis of Rest-Katyusha with a rough RSC estimate can be found in the Appendix.
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5 Numerical experiments

In this section we describe our numerical experiments on our proposed algorithm Rest-Katyusha
(Alg.2) and also the adaptive Rest-Katyusha (Alg.3). We focus on the Lasso regression task:

x? ∈ arg min
x∈Rd

{
F (x) :=

1

2n
‖Ax− b‖22 + λ‖x‖1

}
. (19)

To enforce sparsity on regression parameter we use the `1 penalty with various degrees of regulariza-
tion parameters chosen from the set λ ∈ {1× 10p, 2× 10p, 5× 10p, p ∈ Z}. For comparison, the
performance of (proximal) SVRG and the original Katyusha method is also shown in the plots. We
run all the algorithms with their theoretical step sizes for Madelon and REGED dataset, while for
RCV1 dataset we adopt minibatch scheme for all the algorithms and grid-search the step sizes which
optimize these algorithms’ performance.

Table 1: Datasets for the experiments and minibatch size we adopt for the algorithms

DATA SET SIZE (n, d) MINIBATCH REF.
(A) MADELON (2000, 500) 1 [43]
(B) RCV1 (20242, 47236) 80 [43]
(C) REGED (500, 999) 1 [44]

Figure 1: Lasso experiments
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(A) λ = 2× 10−5

‖x?‖0 = 159
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(B) λ = 1× 10−4

‖x?‖0 = 902
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(B) λ = 1× 10−5

‖x?‖0 = 6315
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(C) λ = 2× 10−5

‖x?‖0 = 80
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(C) λ = 1× 10−5

‖x?‖0 = 127
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(C) λ = 5× 10−6

‖x?‖0 = 209
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(C) λ = 2× 10−6

‖x?‖0 = 343
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In all our experiments we set β = 5 and S0 = S for convenience. We first do a grid-search on the
estimate of µc for Rest-Katyusha which provides the best convergence performance, and denote it as
“Rest-Katyusha opt” in the plots. Meanwhile we also run Rest-Katyusha with RSC estimation which
is 20 times larger or smaller than the optimal one, where we denote as “Rest-Katyusha opt*20” and
“Rest-Katyusha opt/20” respectively. At the 5th plot in Figure 1 the curves for Rest-Kat opt, opt*20
and opt/20 are indistinguishable which shows that in these particular experiments their performance
are almost identical. For the adaptive Rest-Katyusha we fix our starting estimate of µc as 10−5

throughout all the experiments.

From these experiments we observe that as our theory has predicted, the Rest-Katyusha achieves
accelerated linear convergence even when there is no explicit strong-convexity in the cost function
(RCV1 and REGED dataset), and the convergence speed has a direct relationship with the sparsity
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of solution. For the lasso experiments while the solution is sparser, the linear convergence speed of
Rest-Katyusha indeed become faster. Meanwhile when we run Rest-Katyusha with an inaccurate
RSC estimate, we still observe a compromised linear convergence, as predicted by our theory. In all
the experiments, we have observe that the adaptive Rest-Katyusha indeed achieves a good estimation
of the RSC parameter and properly adapts the choice of restart period automatically on the fly, hence
its performance is often comparable with the best tuned Rest-Katyusha. As the experimental results
shown in [34, 35, 36], the linear convergence we observe is towards an arbitrary accuracy instead of
a threshold nearby the solution. This conservative aspect of the theory is inherently due to the artifact
of the RSC framework [34] and we include the extension for arbitrary accuracy regime as our future
work.

6 Conclusion

We developed a restart variant of the Katyusha algorithm for regularized empirical risk minimization
tasks, which is provably able to actively exploit the intrinsic low-dimensional structure of the solution
for the acceleration of convergence. Based on the convergence result we further constructed an
adaptive restart heuristic which aimed at estimating the RSC parameter on the fly and adaptively
tune the restart period. The efficiency of this approach is validated through numerical experiments.
In future work, we aim to develop more refined and provably-good adaptive restart schemes for
Rest-Katyusha algorithm to further exploit the solution’s structure for acceleration.
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In this supplementary material we include in section A the proof of our main result which establishes
the structure-adaptive and accelerated linear convergence rate for Rest-Katyusha algorithm. Further,
in section B we also extend our analysis to the case where we underestimate the RSC parameter. We
also provide an additional numerical result for testing the convergence rate of Rest-Katyusha with
different choices of the input parameter β.

A Proof of Theorem 3.4 and Corollary 3.5

We first state the convergence result for Katyusha algorithm for non-strongly convex functions:
Lemma A.1. [1, Theorem 4.1] Under A.3, starting at x0, with epoch length m = 2n, denote
D(x0, x?) := 16(F (x0)− F ?) + 6L

n ‖x0 − x?‖22, the s-th snapshot point x̂s of Katyusha algorithm
satisfies:

E[F (x̂s)]− F ? ≤ D(x0, x?)

(s+ 4)2
. (1)

Now based on the inequality of effective RSC by Lemma 3.3 in the main text we are able to provide
the proof of our main result.

Proof. At each iteration, the algorithm chooses an index i uniformly at random to perform the
calculation of one stochastic variance-reduced gradient. The update sequences yk+1 and zk+1 within
t-th outer-loop of Rest-Katyusha depend on the realization of the following random variable which
we denote as ξtk:

ξt = {itk, itk−1, ..., it1, it0, it−1k , ..., it−10 , ..., i0k, ..., i
0
0}, (2)

and for the randomness within a single outer-loop of Rest-Katyusha we specifically denote ξt\ξt−1
as

ξt\ξt−1 = {itk, itk−1, ..., it1, it0}. (3)

According to Lemma A.1, setting m = 2n, for the first stage t = 0:

Eξ0 [F (x1)]− F ? ≤ ε1 :=
4

n(S0 + 4)2

[
4n
(
F (x0)− F ?

)
+

3L

2
‖x0 − x?‖22

]
.

Preprint. Work in progress.



Then, applying Markov’s inequality, with probability at least 1− ρ
2 we have:

F (x1)− F ? ≤ 2

ρ
ε1. (4)

Then we define three sequences εt, ρt and vt: εt+1 = 1
β2 εt, ρt+1 = 1

β ρt (with ρ1 := ρ), vt = 2εt
λρt

+ε.
Next we use and induction argument to upper bound Eξt−1

F (xt)− F ?.

Induction step 1: We turn to the first iteration of the second stage, note that due to the effective RSC,
we can write:

‖x− x?‖22 ≤
1

µc

[
F (x)− F ? + 2τ(1 + c)2v2

]
, (5)

hence we can have the following:

Eξ1\ξ0 [F (x2)− F ?] ≤ 16

(S + 4)2
[F (x1)− F ?] +

6L

nµc(S + 4)2

[
F (x1)− F ? + 2τ(1 + c)2v21

]

≤
16 + 6L

nµc

(S + 4)2
[F (x1)− F ?] +

12Lτ(1 + c)2

nµc(S + 4)2
v21 ,

and then we take expectation over ξ0 we have:

Eξ1 [F (x2)− F ?] ≤
16 + 6L

nµc

(S + 4)2
Eξ0 [F (x1)− F ?] +

12Lτ(1 + c)2

nµc(S + 4)2
v21

=
16 + 6L

nµc

(S + 4)2
ε1 +

12Lτ(1 + c)2

nµc(S + 4)2

(
2ε1
ρλ

+ ε

)2

≤
16 + 6L

nµc

(S + 4)2
ε1 +

12Lτ(1 + c)2

nµc(S + 4)2

(
2ε1
ρλ

+ ε1

)2

.

then we set:

12Lτ(1 + c)2

nµc

[(
2

ρλ
+ 1

)
ε1

]2
≤
(

16 +
6L

nµc

)
ε1, (6)

equivalently: (
2

ρλ
+ 1

)2

ε1 ≤
8nµc + 3L

6Lτ(1 + c)2
, (7)

and denote D(x0, x?) := 16[F (x0)− F ?] + 6L
n ‖x0 − x?‖22, we have:

ε1 :=
D(x0, x?)

(S0 + 4)2
≤ 8nµc + 3L

6Lτ(1 + c)2( 2
ρλ + 1)2

. (8)

Hence in order to satisfy inequality (6), it is enough to set:

S0 ≥




(
1 +

2

ρλ

)√
6Lτ(1 + c)2D(x0, x?)

8nµc + 3L



. (9)

By this choice of S0, according to inequality (6) we can write:

Eξ1 [F (x2)− F ?] ≤
32 + 12L

nµc

(S + 4)2
ε1, (10)

to get Eξ1 [F (x2)− F ?] ≤ 1
β2 ε1 = ε2, it is enough to set:

S =



β

√
32 +

12L

nµc




(11)
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Induction step 2: For the (t + 1)-th iteration, according to the induction hypothesis, we have
Eξt−1F (xt)− F ? ≤ εt−1

β2 = εt, and hence with probability 1− ρt
2 we have:

Eξt [F (xt+1)− F ?] ≤
16 + 6L

nµc

(S + 4)2
Eξt−1

[F (xt)− F ?] +
12Lτ(1 + c)2

nµc(S + 4)2
v2t

=
16 + 6L

nµc

(S + 4)2
εt +

12Lτ(1 + c)2

nµc(S + 4)2

(
2εt
ρtλ

+ ε

)2

≤
16 + 6L

nµc

(S + 4)2
εt +

12Lτ(1 + c)2

nµc(S + 4)2

(
2εt
ρtλ

+ εt

)2

.

then we set:
12Lτ(1 + c)2

nµc

[(
2

ρtλ
+ 1

)
εt

]2
≤
(

16 +
6L

nµc

)
εt, (12)

equivalently: (
2

ρtλ
+ 1

)2

εt ≤
8nµc + 3L

6Lτ(1 + c)2
, (13)

Now because ρt = 1
β ρt−1, εt = 1

β2 εt−1, we have:
(

2

ρtλ
+ 1

)2

εt =

(
2

ρt−1λ
+

1

β

)2

εt−1 ≤
(

2

ρt−1λ
+ 1

)2

εt−1 ≤ ... ≤
(

2

ρλ
+ 1

)2

ε1. (14)

Hence by the same choice of S0 given by (9), inequality (12) holds and consequently we can have:

Eξt [F (xt+1)− F ?] ≤
32 + 12L

nµc

(S + 4)2
εt, (15)

to get Eξt [F (xt+1)− F ?] ≤ 1
β2 εt = εt+1, it is enough to set:

S =



β

√
32 +

12L

nµc



. (16)

Hence we finish the induction – by the choice of:

S0 ≥




(
1 +

2

ρλ

)√
6Lτ(1 + c)2D(x0, x?)

8nµc + 3L



, S =



β

√
32 +

12L

nµc



, (17)

then we will have:
Eξt [F (xt+1)− F ?] ≤ εt

β2
(18)

where εt+1 = 1
β2 εt and ε1 = D(x0,x?)

(S0+4)2 = 4
n(S0+4)2

[
4n
(
F (x0)− F ?

)
+ 3L

2 ‖x0 − x?‖22
]
, with

probability 1−∑t
i=1

ρi
2 ≥ 1− ρ

2
β
β−1 ≥ 1− ρ (since β ≥ 2). Now we have finished the proof of

Theorem 3.4.

Proof of Corollary 3.5. Finally we make a summary of this result for the proof of Corollary 3.5.
First we write the number of snapshot point calculation we need to achieve Eξt−1

F (xt)− F ? ≤ δ at
the second stage:

Ns =



β

√
32 +

12L

nµc




logβ2

F (x1)− F ?
δ

. (19)

When 2nµc
L ≤ 3

4 , Ns = O

(√
L

2nµc
log F (x1)−F?

δ

)
; when 2nµc

L ≥ 3
4 , Ns = O

(
log F (x1)−F?

δ

)
.

Hence it is enough to run O
(

(1 +
√

L
2nµc

) log F (x1)−F?
δ

)
≥ O

(
max(1,

√
L

2nµc
) log F (x1)−F?

δ

)

3



epochs. Since we set the epoch length m = 2n and hence the number of stochastic gradient Ofi(.)
calculation is of O(n). Therefore with some more straightforward calculation we conclude that the
complexity of the Rest-Katyusha algorithm is:

N ≥ O


n+

√
nL

µc


 log

1
ρ(S0+4)2

[
16(F (x0)− F ?) + 6L

n ‖x0 − x?‖22
]

δ
+O(n)S0. (20)

B Rest-Katyusha with an underestimation of µc

We have already established the convergence result for Rest-Katyusha algorithm when it is restarted at

a frequency S =

⌈
β
√

32 + 12L
nµc

⌉
, but in practice the effective RSC parameter µc is usually unknown

and difficult to estimate accurately. We need to find some practical approaches to estimate µc and
determine whether to restart or not on the fly. To lay down the basics, we now warm up with the
analysis for Rest-Katyusha when only an underestimation of µc is given, to see how the convergence
rate of the algorithm will change.

Algorithm 1 Rest-Katyusha with a rough RSC
estimate (x0, µ0, β, S0, T, L)

Initialize: m = 2n, S =

⌈
β
√

32 + 12L
nµ0

⌉
;

x1 = Katyusha (x0,m, S0, L)
for t = 1, ..., T do

xt+1 = Katyusha (xt,m, S, L)
end for

We present the rough RSC estimate ver-
sion of Rest-Katyusha. The only difference
is that the restart period has changed from⌈
β
√

32 + 12L
nµc

⌉
to
⌈
β
√

32 + 12L
nµ0

⌉
, where µ0

is an rough (under-)estimate of the effective
RSC constant µc and β ≥ 2 is a constant which
controls the robustness of possible overestima-
tion. With this restart period, we are able to
establish accelerated linear convergence result
in the regime where 0 < µ0 <

β2

4 µc. In other
words, with this restart period, as long as µc is
no more than β2/4 times overestimated by µ0,

the Rest-Katyusha is guaranteed to achieve accelerated linear convergence w.r.t. µ0.

Theorem B.1. Under A.1 - 4, denote ε := 2Φ(M)‖x† − x?‖2 + 4g(x†M⊥), D(x0, x?) :=

16(F (x0)−F ?)+ 6L
n ‖x0−x?‖22, µc = γ

2 −8τ(1+ c)2Φ2(M), and 0 < µ0 <
β2

4 µc, with β ≥ 2, if

we run Rest-Katyusha with S0 ≥
⌈(

1 + 2
ρλ

)√
2τ(1 + c)2D(x0, x?)

⌉
, S =

⌈
β
√

32 + 12L
nµ0

⌉
, then

the following inequality holds:

E[F (xT+1)− F ?] ≤ max

{
ε,

(
µ0

µcβ2

)T D(x0, x?)

(S0 + 4)2

}
, (21)

with probability at least 1− ρ.
Corollary B.2. Under the same assumptions, parameter choices and notations as Theorem B.1, the
total number of stochastic gradient evaluation required by Rest-Katyusha to get an δ-accuracy is:

O


n+

√
nL

µ0


 log β2µc

µ0

1

δ
+O(n)S0, (22)

Proof. At each iteration, the algorithm chooses an index i uniformly at random to perform the
calculation of one stochastic variance-reduced gradient. The update sequences yk+1 and zk+1 within
t-th outer-loop of Rest-Katyusha depend on the realization of the following random variable which
we denote as ξtk:

ξt = {itk, itk−1, ..., it1, it0, it−1k , ..., it−10 , ..., i0k, ..., i
0
0}, (23)
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and for the randomness within a single outer-loop of Rest-Katyusha we specifically denote ξt\ξt−1
as

ξt\ξt−1 = {itk, itk−1, ..., it1, it0} (24)

According to Lemma A.1, setting m = 2n, for first stage t = 0:

Eξ0 [F (x1)]− F ? ≤ ε1 :=
4

n(S0 + 4)2

[
4n
(
F (x0)− F ?

)
+

3L

2
‖x0 − x?‖22

]
.

Then with probability at least 1− ρ
2 we have:

F (x1)− F ? ≤ 2

ρ
ε1. (25)

Then we denote α = µ0

µc
and also define three sequences εt, ρt and vt: εt+1 = α

β2 εt, ρt+1 =
√
α
β ρt

(with ρ1 := ρ), vt = 2εt
λρt

+ ε. Next we use and induction argument to upper bound Eξt−1F (xt)−F ?.

Induction step 1: We turn to the first iteration of the second stage, note that due to the effective RSC,
we can write:

‖x− x?‖22 ≤
1

µc

[
F (x)− F ? + 2τ(1 + c)2v2

]
, (26)

hence we can have the following:

Eξ1\ξ0 [F (x2)− F ?] ≤ 16

(S + 4)2
[F (x1)− F ?] +

6L

nµc(S + 4)2

[
F (x1)− F ? + 2τ(1 + c)2v21

]

≤
16 + 6L

nµc

(S + 4)2
[F (x1)− F ?] +

12Lτ(1 + c)2

nµc(S + 4)2
v21 ,

and then we take expectation over ξ0 we have:

Eξ1 [F (x2)− F ?] ≤
16 + 6L

nµc

(S + 4)2
Eξ0 [F (x1)− F ?] +

12Lτ(1 + c)2

nµc(S + 4)2
v21

=
16 + 6L

nµc

(S + 4)2
ε1 +

12Lτ(1 + c)2

nµc(S + 4)2

(
2ε1
ρλ

+ ε

)2

≤
16 + 6L

nµc

(S + 4)2
ε1 +

12Lτ(1 + c)2

nµc(S + 4)2

(
2ε1
ρλ

+ ε1

)2

.

then we set:
12Lτ(1 + c)2

nµc

[(
2

ρλ
+ 1

)
ε1

]2
≤
(

16 +
6L

nµc

)
ε1, (27)

equivalently: (
2

ρλ
+ 1

)2

ε1 ≤
8nµc + 3L

6Lτ(1 + c)2
, (28)

and denote D(x0, x?) := 16[F (x0)− F ?] + 6L
n ‖x0 − x?‖22, we have:

ε1 :=
D(x0, x?)

(S0 + 4)2
≤ 8nµc + 3L

6Lτ(1 + c)2( 2
ρλ + 1)2

. (29)

Hence in order to satisfy inequality (27), it is enough to set:

S0 ≥
⌈(

1 +
2

ρλ

)√
2τ(1 + c)2D(x0, x?)

⌉
≥




(
1 +

2

ρλ

)√
6Lτ(1 + c)2D(x0, x?)

8nµc + 3L



. (30)

By this choice of S0, according to inequality (27) we can write:

Eξ1 [F (x2)− F ?] ≤
32 + 12L

nµc

(S + 4)2
ε1, (31)
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to get Eξ1 [F (x2)− F ?] ≤ α
β2 ε1 = ε2, it is enough to set:

S =



β

√
32 +

12L

nµ0



. (32)

Induction step 2: For the (t + 1)-th iteration, according to the induction hypothesis, we have
Eξt−1

F (xt)− F ? ≤ αεt−1

β2 = εt, and hence with probability 1− ρt
2 we have:

Eξt [F (xt+1)− F ?] ≤
16 + 6L

nµc

(S + 4)2
Eξt−1

[F (xt)− F ?] +
12Lτ(1 + c)2

nµc(S + 4)2
v2t

=
16 + 6L

nµc

(S + 4)2
εt +

12Lτ(1 + c)2

nµc(S + 4)2

(
2εt
ρtλ

+ ε

)2

≤
16 + 6L

nµc

(S + 4)2
εt +

12Lτ(1 + c)2

nµc(S + 4)2

(
2εt
ρtλ

+ εt

)2

.

then we set:
12Lτ(1 + c)2

nµc

[(
2

ρtλ
+ 1

)
εt

]2
≤
(

16 +
6L

nµc

)
εt, (33)

equivalently: (
2

ρtλ
+ 1

)2

εt ≤
8nµc + 3L

6Lτ(1 + c)2
, (34)

Now because ρt =
√
α
β ρt−1, εt = α

β2 εt−1, we have:

(
2

ρtλ
+ 1

)2

εt =

(
2

ρt−1λ
+

√
α

β

)2

εt−1 ≤
(

2

ρt−1λ
+ 1

)2

εt−1 ≤ ... ≤
(

2

ρλ
+ 1

)2

ε1. (35)

Hence by the same choice of S0 given by (30), inequality (33) holds and consequently we can have:

Eξt [F (xt+1)− F ?] ≤
32 + 12L

nµc

(S + 4)2
εt, (36)

to get Eξt [F (xt+1)− F ?] ≤ α
β2 εt = εt+1, it is enough to set:

S =




2

√
32 +

12L

nµc



. (37)

Hence we finish the induction – by the choice of:

S0 ≥
⌈(

1 +
2

ρλ

)√
2τ(1 + c)2D(x0, x?)

⌉
, S =



β

√
32 +

12L

nµ0



, (38)

then we will have:
Eξt [F (xt+1)− F ?] ≤ αεt

β2
(39)

where εt+1 = α
β2 εt and ε1 = D(x0,x?)

(S0+4)2 = 4
n(S0+4)2

[
4n
(
F (x0)− F ?

)
+ 3L

2 ‖x0 − x?‖22
]
, with

probability 1− 1
2

∑t
i=1 ρi ≥ 1− ρ

2
β

β−√α ≥ 1− ρ. Now we have finished the proof of Theorem B.1.

Proof of Corollary B.2. Finally we make a summary of this result for the proof of Corollary B.2.
First we write the number of snapshot point calculation we need to achieve Eξt−1

F (xt)− F ? ≤ δ at
the second stage:

Ns =



β

√
32 +

12L

nµ0




log β2
α

F (x1)− F ?
δ

. (40)
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When 2nµc
L ≤ 3

4 , Ns = O

(√
L

2nµc
log F (x1)−F?

δ

)
; when 2nµc

L ≥ 3
4 , Ns = O

(
log F (x1)−F?

δ

)
.

Hence it is enough to run O
(

(1 +
√

L
2nµc

) log F (x1)−F?
δ

)
≥ O

(
max(1,

√
L

2nµc
) log F (x1)−F?

δ

)

epochs. Since we set the epoch length m = 2n and hence the number of stochastic gradient Ofi(.)
calculation is of O(n). Therefore with some more trivial calculation we conclude that the complexity
of the Rest-Katyusha algorithm is:

N ≥ O


n+

√
nL

µ0


 log β2µc

µ0

1
ρ(S0+4)2

[
16(F (x0)− F ?) + 6L

n ‖x0 − x?‖22
]

δ
+O(n)S0. (41)

C Numerical test for different choices of β

In this section we provide additional experimental result on different choices of β. We choose to use
the REGED dataset in this experiment as a example.

Figure 1: Comparison of different choices of β
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(C)λ = 2× 10−5 Adaptive Rest-Katyusha
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We test the Rest-Katysuha and Adaptive Rest-Katyusha on regularization level λ = 2× 10−5 with 4
different choices of β including the theoretically optimal choice which is approximately 2.7. However
we found out that the choice of β which provides the best practical performance is often slightly
larger in experiments for real datasets. For this specific example, we can see that the best choice for
β is 5 or 10 for both Rest-Katyusha and Adaptive Rest-Katyusha.
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