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Abstract

Vascular calcification is associated with aging, type 2 diabetes, and atherosclerosis, and

increases the risk of cardiovascular morbidity and mortality. It is an active, highly regulated

process that resembles physiological bone formation. It has previously been established

that pharmacological doses of metformin alleviate arterial calcification through adenosine

monophosphate‐activated protein kinase (AMPK)‐activated autophagy, however the

specific pathway remains elusive. In the present study we hypothesized that metformin

protects against arterial calcification through the direct autophagic degradation of runt‐

related transcription factor 2 (Runx2). Calcification was blunted in vascular smooth muscle

cells (VSMCs) by metformin in a dose‐dependent manner (0.5−1.5mM) compared to

control cells (p<0.01). VSMCs cultured under high‐phosphate (Pi) conditions in the

presence of metformin (1mM) showed a significant increase in LC3 puncta following

bafilomycin‐A1 (Baf‐A; 5 nM) treatment compared to control cells (p<0.001). Further-

more, reduced expression of Runx2 was observed in the nuclei of metformin‐treated

calcifying VSMCs (p<0.0001). Evaluation of the functional role of autophagy through

Atg3 knockdown in VSMCs showed aggravated Pi‐induced calcification (p<0.0001),

failure to induce autophagy (punctate LC3) (p<0.001) and increased nuclear Runx2

expression (p<0.0001) in VSMCs cultured under high Pi conditions in the presence of

metformin (1mM). Mechanistic studies employing three‐way coimmunoprecipitation with

Runx2, p62, and LC3 revealed that p62 binds to both LC3 and Runx2 upon metformin

treatment in VSMCs. Furthermore, immunoblotting with LC3 revealed that Runx2

specifically binds with p62 and LC3‐II in metformin‐treated calcified VSMCs. Lastly, we

investigated the importance of the autophagy pathway in vascular calcification in a clinical

setting. Ex vivo clinical analyses of calcified diabetic lower limb artery tissues highlighted a

negative association between Runx2 and LC3 in the vascular calcification process. These

studies suggest that exploitation of metformin and its analogues may represent a novel

therapeutic strategy for clinical intervention through the induction of AMPK/Autophagy

Related 3 (Atg3)‐dependent autophagy and the subsequent p62‐mediated autophagic

degradation of Runx2.
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1 | INTRODUCTION

Vascular calcification is a life‐threatening complication of cardiovas-

cular disease, affecting tissues including arteries, heart valves

and cardiac muscle (Dweck et al., 2012; Margolis et al., 1980;

Schmermund et al., 2000; Wayhs et al., 2002). Arterial calcification is

recognized as an active, tightly regulated process, sharing many

similarities with physiological bone formation (Zhu et al., 2012) and

involves the deposition of hydroxyapatite crystals in arteries. Indeed

vascular smooth muscle cells (VSMCs), the predominant cell type

involved in vascular calcification, can undergo transdifferentiation to

a chondrocytic, osteoblastic, and osteocytic phenotype in a calcified

environment (Shroff & Shanahan, 2007; Zhu et al., 2011). Further-

more, it has been demonstrated that phosphate (Pi) accelerates this

phenotypic trans‐differentiation, evident in the loss of characteristic

smooth muscle markers, and the development of osteogenic factors,

including the master transcription factor runt‐related transcription

factor 2 (Runx2), and its downstream osteogenic targets osterix,

osteocalcin, and bone sialoprotein (Javed et al., 1999; Tyson et al.,

2003). Runx2 is crucial for osteogenesis in the skeleton (Takarada

et al., 2013); however, it is also expressed in a variety of soft tissues

(Jeong et al., 2008). In the vascular system, Runx2 is upregulated at

sites of calcification, and targeted ablation of Runx2 decreases

expression of its osteogenic targets and reduces calcification

(Lin et al., 2015, 2016; Sun et al., 2012).

The biguanide metformin has been used in type 2 diabetes

treatment for more than 60 years, and is currently the most common

treatment for T2D worldwide (Rena & Lang, 2018). Its therapeutic

effects are primarily derived from increasing hepatic adenosine

monophosphate‐activated protein kinase (AMPK) activity, decreasing

gluconeogenesis and lipogenesis (Ghosh et al., 2015). However, there is

growing evidence that the beneficial health benefits of metformin

extend beyond its capacity to modulate glucose metabolism (Campbell

et al., 2017). Metformin has been shown to decrease the incidence of

cardiovascular disease in T2D patients (Johnson et al., 2005), reduce

atherosclerosis in prediabetic patients (Sardu et al., 2019) and is

associated with a lower below‐the knee arterial calcification score

(Mary et al., 2017), suggesting an important protective effect. Recent

studies have also postulated a role for metformin in preventing or

regressing abdominal aortic aneurysm formation (Golledge et al., 2019).

It has also been shown to improve vascular endothelial function (Nafisa

et al., 2018) and inhibit cardiac remodeling (Chen et al., 2018; Sasaki

et al., 2009). These studies suggest that metformin has a cardiovascular

protective effect, however a comprehensive understanding of the

mechanism of action is still lacking.

Studies have recently revealed that metformin exerts direct

beneficial effects on VSMC function through the regulation of vascular

calcification. Administration of metformin markedly decreases athero-

sclerotic calcification and Runx2 expression in ApoE−/− mice, however,

this protective action is attenuated in ApoE−/−/AMPKa1−/− mice

(Cai et al., 2016). In vitro studies in rat aortic smooth muscle cells have

further indicated that metformin inhibits vascular calcification through

the AMPK/endothelial nitric oxide synthase/nitric oxide‐signaling

pathway (Cao et al., 2013). Additionally, metformin has been shown

to alleviate VSMC calcification via AMPK‐activated autophagy, with an

associated decrease in Runx2 expression (Qiu et al., 2021), however, the

specific pathways that link these observations remain elusive.

In the present study, we hypothesized that metformin protects

against arterial calcification through the direct autophagic degradation of

Runx2. We employed clinical analyses in conjunction with in vitro models

of arterial calcification to show for the first time that metformin exerts

protective effects against vascular calcification through the induction of

AMPK/Autophagy Related 3 (Atg3)‐dependent autophagy and the

subsequent p62‐mediated autophagic degradation of Runx2.

2 | MATERIALS AND METHODS

2.1 | Human tissue

Arterial samples were harvested from patients undergoing lower limb

amputation for the complications of peripheral artery disease. Past

medical history for all patients included type 2 diabetes mellitus, in

addition to other cardiovascular risk factors (smoking, hypertension,

hyperlipidaemia). Immediately after amputation of the limb in theater,

2 cm length sections of the crural arteries (anterior tibial, posterior

tibial, and peroneal) were obtained from the discarded specimen, and

placed into paraformaldehyde (PFA) for subsequent processing.

Details (age, sex, and comorbidity status) of the patients are provided

in Supporting Information: Table 1.

2.2 | VSMC isolation, culture, and calcification

Primary aortic VSMCs were isolated from 5‐week‐old mice as described

previously (Zhu et al., 2016). Mice were euthanized by cervical

dislocation. The aorta was then dissected, the adventitia removed, and

the aorta cut open to expose the endothelial layer. Eight aortas were

pooled together and incubated for 10min at 37°C in 1mg/ml trypsin

(Thermo Fisher Scientific) to remove any remaining endothelial cells.

Aortas were then incubated overnight at 37°C in VSMC growth medium

containing α‐MEM (Life Technologies), 10% fetal bovine serum, and 1%

gentamycin (Thermo Fisher Scientific). Tissues were then digested with

425UI/ml collagenase type II (Worthington Biochemical Corporation) for

4 h at 37°C. The resulting cell suspension was centrifuged at 2000g for

5min. VSMC pellets were resuspended in culture medium and cultured

for two passages inT25 tissue culture flasks coated with 10µg/ml laminin

(Sigma) to promote maintenance of the contractile differentiation state.
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VMSCs were seeded in growth medium at a density of

3−5 × 104cells per well in 12‐well plates (Corning Inc.). Calcification

was induced as described previously (Zhu et al., 2016). In brief, cells

were grown to confluence (Day 0) and changed to calcification

medium, which was prepared by supplementing growth medium with

inorganic phosphate (Pi) to a final concentration of 3mM. Cells were

cultured in calcifying media for up to 7 days, and the medium

changed every second/third day. For all the experiments, N = 3 is

representative of 3 independent experiments pooled from 8 aortas.

2.3 | Determination of calcification

Calcium deposition was quantified by HCl leaching, as previously

described (Zhu et al., 2016). Briefly, cells were washed with

phosphate buffered saline (PBS) and incubated for 24 h in 0.6 N

HCl at 4°C. Calcium content was determined calorimetrically by a

stable interaction with O‐Cresolphthalein using a commercially

available kit (Randox Laboratories Ltd) and corrected for total protein

concentration (Bio‐Rad Laboratories Ltd). Calcium deposition was

also evaluated by alizarin red staining (Roberts et al., 2021). Cells

were washed twice with PBS, fixed in 10% neutral buffered formalin

(NBF) for 15min, stained with 2% alizarin red (pH 4.2) for 5 min at

room temperature, and rinsed with distilled water.

2.4 | Transfection assays

VSMCs were transfected with 60 ρmol of mouse Atg3 (Santa Cruz

Biotechnology) or scrambled control siRNA (Santa Cruz Biotechnology)

with siRNA transfection reagent (Santa Cruz Biotechnology), according

to the manufacturer's instructions. The cells were harvested for

experiments up to 48 h posttransfection and subsequently cultured in

calcification medium in the presence of metformin for 72 h.

2.5 | Cell imaging

Cells were seeded on glass cover slips in 24‐well plates at a density of

3 × 106 cells/well. Cells were fixed with 4% PFA at 4°C and washed with

PBS. The fixed cells were permeabilised with 0.1% triton X100 (Sigma)

and blocked with 2% goat before incubating with primary antibodies

LC3 (1:300; rabbit polyclonal; PM036; MBL International) or Runx2

(1:100; Mouse; Sc‐390351; Santa Cruz Biotechnology) overnight at 4°C.

After washing cells were incubated for 1 h in the dark with Alexa

Fluor@488 anti‐rabbit antibody (A11034; Life Technologies) and Alexa

Fluor@647 goat anti mouse antibody (A21236; LifeTechnologies). Cells

were then washed with PBS and stained with Hoechst (1:10,000;

Sigma). Glass coverslips were mounted onto slides with Prolong®Gold

Anti‐Fade Reagent containing DAPI (Life Technologies). Fluorescence

signal was detected under a Zeiss LSM 710 inverted confocal

microscope. ImageJ was used to determine the number of LC3 puncta

in the cytoplasm and Runx2 intensity in the nucleus.

2.6 | Immunofluorescence for tissue sections

Tissues were fixed in 10% NBF for 24 h before being dehydrated,

embedded in paraffin wax, and sectioned (4 μm) using standard

procedures as previously described (Zhu et al., 2016). Sections were

dewaxed in xylene and stained with Von Kossa and alizarin red

(Sigma) to visualize phosphate and calcium deposition, respectively.

For immunofluorescence analysis, sections were demasked with

10mM sodium citrate buffer. Endogenous peroxidase and non-

specific antibody binding were blocked before overnight incubation

with primary antibodies LC3 (1:300; PM036; MBL International),

Runx2 (1:200; Sc‐390351; Santa Cruz Biotechnology), or ATG3

(1:300; ab108251; Abcam) at 4°C. The sections were then incubated

for 1 h in the dark with Alexa Fluor@488 anti‐rabbit antibody

(Life Technologies; A11034) and Alexa Fluor@647 goat anti mouse

antibody (Life Technologies; A21236). Sections were washed in PBS

and stained with Hoescht (1:10,000; Sigma) and then mounted onto

slides with Prolong®Gold Anti‐Fade Reagent (Life Technologies).

Fluorescence signal was detected under a Zeiss LSM 710 inverted

confocal microscope. Control sections were incubated with non-

immune goat IgG (2 μg IgG/ml) in place of the primary antibody.

2.7 | Immunoblotting

Cells were lysed in radioimmunoprecipitation assay buffer supplemented

with Protease Inhibitor Cocktail (Thermo Fisher Scientific) and total

protein concentration determined (Thermo Fisher Scientific). Immuno-

blotting was performed as previously described (Zhu et al., 2016).

Nitrocellulose membranes were probed overnight at 4°C with primary

antibodies (1:1000 dilution in LICOR blocking buffer or 5% milk in

TBST) LC3 (PM036; MBL International), Atg3 (ab108251; Abcam),

Runx2 (ab236639; Abcam), AMPKα (D5A2; Cell Signaling Technology),

Phospho‐AMPKα (Thr172) (40H9; Cell Signaling Technology), osterix

(AF7580; Affinity Biosciences), Osteocalcin (ab93876; Abcam), bone

sialoprotein (DF7738; Affinity Biosciences). Blots were subsequently

incubated in goat anti‐rabbit IRDye 680RD (926‐68071; Thermo

Fisher Scientific) or HRP conjugated goat anti‐rabbit IgG (P0449; Dako)

for 1 h. Blots were then imaged using an Odyssey CLx Infrared Imaging

System (Li‐COR) or developed by the GeneGenome system (Syngene).

Membranes were then washed reprobed for β‐actin expression (1:1000;

4970; Cell SignalingTechnology). For Atg3 studies, β‐actin expression was

determined on a parallel membrane due to molecular weights.

2.8 | Coimmunoprecipitation (co‐IP) studies

Cells were lysed in Lysis buffer (Cell Signaling Technology)

supplemented with Halt™ Protease Inhibitor Cocktail (Thermo Fisher

Scientific) and total protein concentration determined (Thermo Fisher

Scientific). Cell lysates (500 μg) were incubated for 12 h at 4°C either

with 5 µg/ml anti‐Runx2 (ab236639; Abcam), 5 µg/ml anti‐p62

(ab240635; Abcam), or 5 µg/ml anti‐LC3 (PM036; MBL international)
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or 5 µg/ml anti‐rabbit IgG (7074; Cell Signaling Technology).

Subsequently the lysates were incubated with 20 µl Protein G

magnetic agarose beads (73778; Cell Signaling Technology) for

30min at room temperature. Protein bound to the beads was

washed five times with lysis buffer, pelleted using a magnetic rack

and boiled for 8 min in NuPAGE LDS sample buffer with NuPAGE

sample reducing agent (Thermo Fisher Scientific) before analysis by

immunoblotting with Runx2 (ab236639; Abcam), p62 (ab240635;

Abcam), and LC3 (PM036; MBL international) antibodies as described

above.

2.9 | Gold immunolabeling and transmission
electron microscopy

Cells were fixed in 2.5% glutaraldehyde in 0.1M sodium cacodylate

buffer (pH 7.4), then blocked with 5% goat serum (Sigma) for 1 h

before incubating with anti‐Runx2 antibody (1:25; Abcam ab236639)

for 1 h, followed by 10 nm Colloidal Gold Conjugated Goat Anti‐

mouse IgG (H + L) secondary antibody (1:400; Sigma) for 1 h. Samples

were viewed on a JEOL 1400/JEM plus (JEOL) with AMT UltraVUE

camera (AMT) and Gatan OneView camera (Gatan).

2.10 | Statistical analysis

All data are presented as mean ± SEM. Data were analyzed by

unpaired t‐test or one‐way analysis of variance followed by Tukey's

range test, as appropriate. All statistical analysis was performed using

GraphPad prism software. p < 0.05 were considered to be significant,

and p values are represented as: *p < 0.05; **p < 0.01; ***p < 0.001;

****p < 0.0001.

3 | RESULTS

3.1 | Metformin protects against vascular
calcification through autophagic degradation of
Runx2

We initially examined the effects of metformin on the calcification of

VSMCs. Since arterial calcification is highly correlated with elevated

serum Pi levels, VSMCs were cultured in growth medium containing

high (3 mM) Pi as previously described (Zhu et al., 2016). Calcification

was blunted in VSMCs by metformin in a dose‐dependent manner

(0.5−1.5mM) compared to control cells (Figure 1a,b; p < 0.01). 1 mM

metformin was selected for subsequent studies. Next, we investi-

gated if metformin is able to reduce the expression of the osteogenic

markers osterix, osteocalcin, and bone sialoprotein under elevated Pi

treatment. VSMCs cultured under high Pi conditions in the presence

of metformin (1 mM) showed a significant reduction in osterix,

osteocalcin, and bone sialoprotein protein expression compared to

control cells (Figure 1c,d; p < 0.05). We further investigated if

metformin was able to activate AMPK under elevated Pi treatment.

VSMCs cultured under high Pi conditions in the presence of

metformin (1 mM) showed a significant increase in p‐AMPK

compared to control cells (Figure 1e,f; p < 0.05).

We subsequently assessed whether metformin treatment

reduces calcium deposition in VSMCs through altered autophagic

flux. VSMCs cultured under high Pi conditions were treated with

bafilomycin‐A1 (Baf‐A; 5 nM). Combined metformin and Baf‐A

treatment blocked lysosomal function, leading to the build‐up of

LC3‐II (punctate LC3) within autophagosomes and autolysosomes in

the cytoplasm (Figure 2a).

VSMCs cultured under high‐phosphate conditions in the presence

of metformin (1mM) showed a significant increase in LC3 puncta

following Baf‐A treatment compared to control cells (Figure 2a,b,

p < 0.001). Furthermore, reduced expression of Runx2 was observed in

the nuclei of metformin‐treated calcifying VSMCs (Figure 2a,c;

p < 0.0001), suggesting a negative association between LC3 and

Runx2 expression in the nucleus. However, Runx2 expression was

noted in the cytoplasm surrounded by punctate LC3 in the VSMCs

treated with metformin and Baf‐A in combination (Figure 2a,d;

p < 0.0001). Furthermore, the presence of Runx2 inside the double‐

membrane autophagosomes/autolysosomes following metformin

(1mM) treatment was further confirmed by transmission electron

microscopy (Figure 2e,f). We also assessed the levels of p62 (SQSTM‐

1) a marker of autophagic degradation. A reduction in p62 expression

was observed in VSMCs treated with metformin, suggesting increased

autophagic degradation with metformin treatment (Figure 2g,h;

p < 0.01). Together these data suggest that metformin exerts its

protective effects against VSMC calcification by enhancing autophagic

flux, and the subsequent transit of Runx2 via autophagosomes/

autolysosomes for autophagic degradation.

3.2 | Silencing Atg3 leads to increased
accumulation of Runx2 in the nucleus of metformin‐
treated calcifying VSMCs

We next evaluated the functional role of autophagy in the regulation

of Runx2 during vascular calcification through autophagy‐related 3

(Atg3) knockdown in murine VSMCs. Atg3 is an E2 ubiquitin‐

conjugating enzyme which catalyses the conjugation of LC3‐I with

phosphatidylethanolamine to form LC3‐II, a key step in autophago-

some formation (Yamada et al., 2007).

Atg3 knockdown in VSMCs (Figure 3a,b, p < 0.05) failed to induce

autophagy (punctate LC3) following metformin treatment (1 mM;

Figure 3c,d, p < 0.001). Atg3 knockdown in VSMCs also aggravated

Pi‐induced calcification (Figure 3e, p < 0.0001). Furthermore, Atg3

knockdown induced a significant increase in Runx2 expression in

VSMCs cultured under high Pi conditions in the presence of

metformin in the nucleus compared to Scr control cells (Figure 3f,g;

p < 0.0001). Together, these data suggest that nuclear expression of

Runx2 is regulated by autophagy following metformin treatment of

calcifying VSMCs.
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3.3 | Metformin induces p62 mediated
sequestering of Runx2 in the autophagosomes

We next sought to elucidate the mechanism through which the

autophagy pathway inhibits vascular calcification following

metformin treatment. We hypothesized that on AMPK activation

Runx2 is sequestered by autophagosomes via the classical

receptor of autophagy p62 (also known as SQSTM‐1). p62

selectively recognizes autophagic cargo and mediates their

engulfment into autophagosomes by binding small ubiquitin‐like

modifiers (Rogov et al., 2014).

Protein lysates were analyzed from VSMCs cultured with

Baf‐A (5 nM) under control and calcified conditions, in the presence

or absence of metformin (1mM). Three‐way co‐IP with Runx2, p62,

and LC3 revealed that p62 binds to both LC3 and Runx2 upon

metformin treatment in VSMCs (Figure 4a−c). Furthermore,

F IGURE 1 Metformin activates AMPK and calcification in VSMCs. VSMCs were cultured with high phosphate (3mM Pi) and metformin (met)
for 7 days. (a) Calcium content (mg/mg protein) of cells treated with metformin (0.5−1.5 mM), (n = 3). (b) Representative alizarin red images of
cells treated with metformin (1 mM). (c) Representative immunoblots (d) immunoblot quantification showing the effect of metformin (1mM) on
expression of osteogenic markers osterix, osteocalcin, and bone sialoprotein compared with β‐actin (n = 3). (e) Representative immunoblots and
(f) immunoblot quantification showing the effect of metformin (1mM) on the phosphorylation of AMPK compared with total AMPK (n = 4).
AMPK, adenosine monophosphate‐activated protein kinase; VSMCs, vascular smooth muscle cells.
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F IGURE 2 Metformin protects against vascular calcification through autophagic degradation of RUNX2. VSMCs were cultured with high
phosphate (3 mM Pi) and met (1mM) for 7 days. (a) Representative confocal images showing the effect of bafilomycin (Baf‐A; 5 nM) and/or met
(1 mM) treatment on Runx2 and LC3 expression (n = 3; scale bar = 20 μm) with quantification of (b) LC3 puncta (c) nuclear Runx2 and
(d) percentage (%) cells with Runx2 in autolysosomes. Representative transmission electron microscopy images showing (e) reduced Runx2 in
control cells versus, zoomed in to show the Runx2 gold labeling (f) double membraned autophagosomes (blue arrows) and zoomed in square box
are with Runx2 gold labeling (red arrows) in the autophagosomes with metformin (1mM) treatment. (g) Representative immunoblots and
(h) immunoblot quantification showing the effect of metformin (1 mM) on p62 expression compared with β‐actin (n = 3). Runx2, runt‐related
transcription factor 2; VSMCs, vascular smooth muscle cells.
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F IGURE 3 (See caption on next page)
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immunoblotting with LC3 revealed that Runx2 specifically binds with

p62 and LC3‐II (presence of 15 kDa band only) in metformin‐treated

calcified VSMCs, with binding absent in control cells (Figure 4c). We

further investigated if metformin enhances the expression of K63, as

K63 ubiquitination enhances sequestration of autophagic cargo by

linking to p62 (Wurzer et al., 2015). Enhanced expression of K63 was

observed in calcified VSMCs treated with metformin (Figure 4d).

Together these data strongly indicate that metformin enhances

autophagic flux and selectively engulfs Runx2 for degradation in

active autophagosomes marked with LC3‐II via the p62 autophagy

receptor (Figure 4e).

3.4 | Reduced expression of ATG3 and LC3 in
calcified human vascular tissue

To investigate the importance of the autophagy pathway in vascular

calcification in a clinical setting, localization studies were undertaken.

Calcification of lower limb artery tissue was confirmed by alizarin red and

Von Kossa staining (Figure 5a−d). In addition, calcified artery tissues

showed reduced expression of the autophagy markers ATG3 (Figure 5f)

and LC3 (Figure 5h) compared to non‐calcified control samples (Figure 5e

and 5g, respectively). Together these results indicate a reduction in

autophagic flux in human calcified cardiovascular tissue.

F IGURE 3 Atg3 knockdown leads to increased accumulation of Runx2 in the nucleus of VSMCs cultured with metformin. VSMCs were
transfected with either scrambled (siScr) or Atg3 (siAtg3) siRNA. (a) After 96 h, cellular Atg3 content was determined by immunoblotting
(b) quantification of reduction in Atg3 protein compared with scrambled siRNA control (n = 3). The effect of siScr and siAtg3 treatment in the
presence of met (1 mM) and 3mM Pi on (c) LC3 expression (scale bar = 20 μm) with quantification of (d) LC3 puncta (n = 3), (e) calcium deposition
(n = 4) (f) Runx2 expression with Hoechst staining of DNA shown by representative confocal images with (g) quantification of the nuclear staining
intensity of Runx2 (n = 3). Runx2, runt‐related transcription factor 2; VSMCs, vascular smooth muscle cells.

F IGURE 4 Metformin induces p62 mediated sequestering of Runx2 in VSMC autophagosomes. VSMCs were cultured in growth medium or
treated for 7 day with 3mM phosphate (Pi), 1 mM met and/or 5 nM bafilomycin (Baf‐A). (b) Representative immunoblots for Runx2, p62, and
LC3 with (a) Runx2 co‐IP lysate (b) p62 co‐IP lysate (c) LC3 co‐IP lysate and (d) K63 expression. Rabbit IgG was used as a negative control (n = 2).
(e) Proposed LC3‐p62 interaction with Runx2 inside an autophagosome. co‐IP, coimmunoprecipitation; Runx2, runt‐related transcription
factor 2; VSMCs, vascular smooth muscle cells.
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3.5 | Loss of interaction between Runx2 and LC3
in CAVD and diabetic arterial calcification

Finally, to assess whether the targeting of Runx2 by metformin could

be a viable therapeutic strategy, we next performed further clinical

analyses to ascertain whether Runx2 and LC3 are central to the

etiology of diabetic arterial calcification. Immunohistochemical

staining revealed increased expression of RUNX2 in lower limb

artery tissue. In the control tissues, increased expression of LC3 was

seen with low levels of Runx2 expression (Figure 6d). However,

almost no LC3 puncta were seen in calcified artery tissues with high

Runx2 expression (Figure 6h).

In summary, our in vitro investigations establish for the first time

that metformin exerts protective effects against vascular calcification

through the induction of autophagy and the subsequent restoration of

the interaction between Runx2 and LC3 (Figure 7). Our subsequent ex

F IGURE 5 Reduced expression of ATG3 and
LC3 in calcified lower limb artery tissue from type
2 diabetes mellitus patients. Calcification of
human lower limb artery tissue was confirmed by
(a, b) Von Kossa (arrows indicate positive staining)
and (c, d) alizarin red (arrows indicate positive
staining). (e, f) Atg3 and (g, h) LC3 expression
(arrows) was reduced in calcified compared to
control tissues. (i, j) Rabbit IgG control. n = 3,
scale bar = 10µm.
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vivo clinical analyses highlight a negative association between Runx2

and LC3 in the vascular calcification process and suggest that

exploitation of metformin and its analogues may represent a novel

therapeutic strategy for clinical intervention.

4 | DISCUSSION

It is well established that metformin, the most common treatment

for type 2 diabetes, mediates changes in vascular function,

structure and growth (Deng et al., 2020). Furthermore, studies

in VSMCs have reported a beneficial role of metformin in

atherosclerosis by inhibiting the proliferation, calcification, and

inflammation of VSMCs (Deng et al., 2020). Whilst the mecha-

nisms underpinning these novel actions of metformin have yet be

fully elucidated, recent findings suggest that metformin may exert

its cardio‐protective effects via increased autophagic activity

(Qiu et al., 2021; Xie et al., 2011). In the present study, we have

employed an in vitro model of arterial calcification to show for the

first time that metformin alleviates calcification through induction

of p62‐mediated sequestering of the osteogenic transcription

factor Runx2 in autophagosomes.

Autophagy is a multifunctional process involved in numerous

cellular activities (Mizushima et al., 2008) and is essential for cellular

development, differentiation, and survival (Levine & Klionsky, 2004).

Indeed, autophagy has been shown to play an important role in not

only the physiological function of VSMCs but also the etiology of

cardiovascular disease (Deng et al., 2020). Recently autophagy has

been identified as a novel adaptive mechanism that protects against

VSMC calcification by regulating apoptosis and the release of

calcifying matrix vesicles from VSMCs (Dai et al., 2013; Phadwal

et al., 2020). The present study offers further insight into the role of

autophagy in vascular calcification. We confirm and extend data

generated by Qiu et al. (2021) in the rat A7r5 thoracic aorta VSMC

cell line, by employing a more physiologically relevant primary cell

culture model. We demonstrate that metformin alleviates the

calcification of murine aortic VSMCs by promoting autophagic

activity, as indicated by an increased number of autophagosomes,

green fluorescent LC3 puncta and LC3II/I expression in metformin‐

treated VSMCs compared to control cells.

A number of autophagy‐related (Atg) proteins, which are

indispensable for autophagosome formation, have been previously

shown to be associated with vascular calcification including Atg4 (b),

Atg5; Atg7, Atg12, and Atg16 (Peng et al., 2017; Zhou et al., 2021). In

the present study, we reveal for the first time a functional

contribution for Atg3 in the vascular calcification process. Autophagy

inhibition by siRNA knockdown of Atg3 notably aggravated

Pi‐induced calcium deposition in VSMCs. Furthermore, Atg3 knock-

down markedly blunted the anti‐calcification effects of metformin.

Atg3 is one of the key upstream molecules required for autophagy,

and its homologs are common in eukaryotes (Agrotis et al., 2019; Sou

et al., 2008). Additionally, Atg3–/– mice are nonviable, suggesting that

Atg3 is essential for the homeostasis of the organism (Sou et al.,

2008). Atg3 contributes to autophagosome formation by interacting

with Atg7, Atg8, Atg12, and the lipid membrane (Fang et al., 2021).

Atg3 also contributes to phagophore elongation, acting as an E2

ubiquitin‐like conjugating enzyme in the Atg8 conjugation system

(Hervas et al., 2017).

F IGURE 6 Negative association between Runx2 and LC3‐II in calcified lower limb artery tissue from type 2 diabetes mellitus patients. (a, e)
Hoechst staining of DNA (b, f) Runx2 expression was increased whereas (c, g) LC3 expression was reduced in calcified compared to control
tissue (d, h) merged images, (i−l) mouse and rabbit IgG control. n = 3, scale bar = 10 µm. Runx2, runt‐related transcription factor 2.
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In the present study we demonstrate that metformin can activate

AMPK, a critical cellular energy sensor, in primary murine VSMCs

cultured under calcifying conditions, confirming published reports in

osteoblasts (Kanazawa et al., 2018) and the A7r5 VSMC cell line

(Qiu et al., 2021). Our data also support the recent demonstration

that AMPK initiates autophagy indirectly by deactivating mTORC1

following metformin treatment of calcifying A7r5 cells and contribute

to autophagosome maturation and their fusion with lysosomes

(Jang et al., 2018) (Figure 7). Together, these data support a growing

body of evidence highlighting an essential role for AMPK in the

vascular calcification process, through multiple mechanisms including

Runx2 signaling (Cao et al., 2013), triggering autophagy (Kanamori

et al., 2019; Xu et al., 2021), attenuating endoplasmic reticulum stress

(Li et al., 2019), and activating endothelial nitric oxide synthase

(Cao et al., 2013; Eriksson & Nystrom, 2014).

Our in vitro investigations further revealed that metformin

treatment reduces the expression of Runx2, a recognized regulator of

VSMC osteogenic transition and the expression of its downstream

targets osterix, osteocalcin, and bone sialoprotein. Indeed, there is a

substantial body of evidence linking Runx2 upregulation with

vascular calcification in vitro (Takarada et al., 2013), whilst studies

utilizing VSMC‐specific Runx2 deletion using SM22–recombinase

transgenic allele mice have showed that Runx2 expression is required

in VSMCs for arterial calcification in vivo (Lin et al., 2016).

Specifically, the nuclear localization of Runx2 is associated with the

early transformation into osteoblast‐like cells (Sikura et al., 2019).

Metformin has been previously shown to alleviate VSMC calcification

via autophagy, with a simultaneous decrease in Runx2 expression

(Qiu et al., 2021); however, the specific pathways underpinning these

observations have yet to be elucidated. In the present study, we have

employed defined co‐IP studies to reveal for the first time that

metformin directly attenuates Runx2 action in VSMCs via p62, an

autophagosome cargo protein that targets other proteins that bind to

it for selective autophagy. These data progress previous work

reporting an association between autophagy and p62 in VSMC

calcification (Ma et al., 2019). Our in vitro findings are further

supported by clinical analyses, which reveal reduced autophagic flux

and a negative correlation between the expression of LC3 and Runx2

in the diabetic calcified artery tissues.

The metformin dosage used in the current study (1 mM) and in

additional in vitro experiments (0.5 mM) (Cao et al., 2013; Qiu

et al., 2021) can be correlated to the high dosage of metformin

(>1700mg/day) used in human clinical trials. Interestingly, only this high

dosage was able to reduce triglyceride levels and high‐density

lipoprotein function, which may contribute to the anti‐atherosclerotic

effect (Luo et al., 2019). Furthermore, the beneficial effects of

metformin are not limited to T2D patients alone. Recent clinical trials

have shown that metformin can reduce myocardial ischemia in female

patients with angina (Jadhav et al., 2006) and carotid intima‐media

thickness in nondiabetic patients (Meaney et al., 2008). Together with

atorvastatin, metformin can also improve the rate of obesity and

subclinical inflammation (Maruthur et al., 2016).

In conclusion, we have undertaken clinical analyses in conjunc-

tion with in vitro studies to provide fundamental insights into the

role of metformin as a potent inhibitor of vascular calcification. Our

study suggests that metformin protects against vascular calcifica-

tion through the autophagic degradation of Runx2. This data may

have important health ramifications for diabetic patients receiving

metformin, particularly since vascular calcification is a common

pathological phenomenon in diabetes (Zhu et al., 2012). The

previously established cardiovascular benefits of metformin admin-

istration (Deng et al., 2020), in conjunction with the findings from

our laboratory and others together may pave the way for preclinical

and clinical trials for the treatment of vascular calcification with

metformin therapy. We further propose that the mechanism of

Runx2 degradation through the p62 adaptor via metformin may also

be valid outwith diabetic patients and beneficial in the healthy aging

population, as the incidence of vascular calcification increases with

aging (Giallauria et al., 2013) whereas autophagic degradation

declines with age (Kaushik et al., 2021).

F IGURE 7 Schematic representation showing the proposed
mechanism through which metformin reduces vascular calcification
by selective degradation of Runx2 by autophagy. Runx2, runt‐related
transcription factor 2.
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