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Learn2Augment: Learning to Composite Videos
for Data Augmentation in Action Recognition

Shreyank N Gowda1, Marcus Rohrbach2,
Frank Keller1, and Laura Sevilla-Lara1

1 University of Edinburgh
2 Meta AI

Abstract. We address the problem of data augmentation for video ac-
tion recognition. Standard augmentation strategies in video are hand-
designed and sample the space of possible augmented data points either
at random, without knowing which augmented points will be better, or
through heuristics. We propose to learn what makes a “good” video for
action recognition and select only high-quality samples for augmenta-
tion. In particular, we choose video compositing of a foreground and a
background video as the data augmentation process, which results in
diverse and realistic new samples. We learn which pairs of videos to aug-
ment without having to actually composite them. This reduces the space
of possible augmentations, which has two advantages: it saves computa-
tional cost and increases the accuracy of the final trained classifier, as the
augmented pairs are of higher quality than average. We present experi-
mental results on the entire spectrum of training settings: few-shot, semi-
supervised and fully supervised. We observe consistent improvements
across all of them over prior work and baselines on Kinetics, UCF101,
HMDB51, and achieve a new state-of-the-art on settings with limited
data. We see improvements of up to 8.6% in the semi-supervised setting.
Project Page: https://sites.google.com/view/learn2augment/home

Fig. 1. Standard video augmentation techniques generate data using hand-designed
heuristics (left). We propose to learn to select videos for augmentation, based on how
effective they will be for learning to classify (middle). Our approach, Learn2Augment,
improves classification across datasets and settings, including UCF101 (right).
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1 Introduction

Large-scale datasets have played a key role in the progress of research across
AI problems. In computer vision, neural networks have existed for decades, but
one of the enabling factors for the current revolution was the development of
the large ImageNet [8]. In the video domain, manually collecting and annotating
data can be a prohibitively expensive process. In video action recognition, for
example, collecting data requires an immense amount of manual labor, as it
involves finding suitable videos, trimming them and classifying them.

Recent efforts in video focus on relieving the strong dependency of current
methods to the size of labeled datasets. Some of these efforts [33,43] involve in-
creasing the number of data samples through data augmentation. This strategy
aims to create new videos in the training set by performing transformations on
the original annotated videos, where labels are known. This process adds diver-
sity to the training data, while new videos are still realistic and plausible. In the
simplest version of data augmentation in video, new data samples are generated
by flipping the input video horizontally, or by cropping a subsection of the video.
New methods [43,38] propose more sophisticated processes like combining two
videos. VideoMix [38] randomly crops regions of one video and pastes them onto
another. ActorCut [43] goes one step further and uses the bounding box detec-
tions of humans on one video to paste them onto the background of another
video. This increases the diversity of the new videos, and despite the lack of
visual realism of the resulting videos, this strategy helps.

However, as datasets become larger, such data augmentation strategies be-
come computationally expensive. The search space of possible video pairs and
transformations is enormous and difficult to explore. The solution is often to
sample the space randomly, or to manually design augmentation heuristics. Any
exploration process is particularly burdening in the context of video data, where
the augmentation process needs to be repeated in every frame, which may be
orders of magnitude more expensive than for images.

In this paper we address the problem of sampling for data augmentation, and
propose to learn to select pairs of videos. We show that this reduces the search
space of augmented data points by orders of magnitude and improves the final
accuracy of the classifier significantly. We leverage two observations. First, not
all data points are as useful for classification. This idea has been exploited in the
context of frame or clip selection [11,20,16]. Second, we can learn to predict which
data points will be useful without actually generating them. This is essential, as
the space of transformations is huge, and if we needed to create each candidate
augmented video, the process would be prohibitively expensive.

More concretely, we propose a data augmentation method which we call
Learn2Augment. The proposed method contains a “Selector” network, which
predicts a score of how useful a combination of two videos will be, without hav-
ing to actually composite them. The Selector is trained using the accuracy of
the classification as the cue. Since this metric depends on the classifier, it is not
differentiable with respect to the Selector’s parameters. Therefore we optimize
the network using reinforcement learning. Once the Selector network is trained,
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we use it to choose good pairs of videos, composite them, and train a classi-
fication network. In our experiments, for example in the case of the UCF101
dataset, using the Selector reduces the number of augmented videos by 92%
while increasing the classification accuracy.

In the proposed method, each augmented video is created from a pair of
videos using a composition of the segmented foreground of one video, including
actor and objects, onto the background of the other video. This process yields
diverse and realistic new data samples, which we demonstrate is important for
learning. More concretely, results show an improvement of 4.4% over using a
simpler transformation.

The Selector is indeed useful to reduce the number of videos for training the
classifier. However, we also need to reduce the space of possible pairs for training
the Selector network itself. For example, the number of possible pairs of videos
in video datasets can be in the order of millions for small datasets or billions
for large datasets. For this, we leverage the natural correlation between the
occurrence of foreground activities and background scenes [5]. This is, it is more
likely to find someone playing football in a football field than at a restaurant.
Instead of sampling at random the pairs of videos to train the Selector on,
we sample pairs from classes that are semantically similar. In particular, we
use the class names to obtain a semantic embedding, and match each class
to their nearest neighbor in this space. Experiments show that this extremely
simple design choice of Semantic Matching reduces the space of possible pairs of
videos by several orders of magnitude (from quadratic to linear on the number
of videos). This yields better results than choosing pairs at random, which may
result in non-plausible scenarios, or choosing pairs from the same class, which
may not add as much diversity.

In summary, the proposed Learn2Augment contains three core compo-
nents: a Selector that learns to choose good videos to augment, a Semantic
Matching method that improves optimization, and a Video Compositing that
composites video pairs for augmentation. Experimental results show that all
components contribute to the performance of the system in different ways, and
the overall method obtains state-of-the-art in all datasets, and in all settings
that involve limited training data. In addition, in the setting which considers
the full training set, the proposed data augmentation technique improves upon
the baseline on all datasets, including UCF101, HMDB51, and the large-scale
Kinetics-400.

2 Related Work

Data Augmentation for Video Action Recognition. Standard data augmentation
techniques in action recognition include horizontal flip and cropping, where new
videos are created by selecting a box at each frame, and then resizing the result-
ing video to have the same size as the original one. While this strategy helps,
generated videos do not add much diversity to the training set. Recent efforts
such as ActorCut [43] and VideoMix [38] increase the diversity of new video
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Fig. 2. Overview of the proposed Learn2Augment. Given a pair of videos and their
labels, a Selector network gives a score ω of the quality of the potential composited
video. At training time, the Selector is trained with the validation loss of the classifi-
cation network. Once the Selector is trained, pairs of videos are sampled, and only the
promising combinations with high score ω are composited and used for training the
classifier.

samples by cutting and pasting the foreground of one video onto another. This
general technique of combining two data samples has proven to be quite effec-
tive, even in the image domain [37]. However, the resulting videos are not very
realistic, and are used for training regardless of their quality. Zhang et al. [42] go
one step further and synthesize new samples using GANs, and use “self-paced
selection” to train, starting with easy samples and progressively choosing harder
samples. Instead, we propose to create realistic data samples by segmenting,
inpainting and blending the foreground of one video onto the background of an-
other. Crucially, we learn to discard novel video samples that are not expected to
be useful for classification, overall producing a more accurate data augmentation
strategy.

Learning to Augment Data. The idea of learning to augment data has been
used in other computer vision problems. In the image classification domain,
this strategy has been done using the final classification loss as the training
criterion [25], augmenting in feature space [9], and learning data augmentation
policies [6]. As in this paper, in the image domain it has been noted that the
search space for data samples can be large and thus expensive [7].

Other computer vision domains like low level vision, also struggle with data
dependency, as creating ground truth is particularly hard. In optical flow, Aut-
oFlow [33] recently introduced the strategy of learning to generate good training
data for a target dataset.

Semi-supervised Video Action Recognition. Semi-supervised learning (SSL) also
aims to reduce data dependence by learning from large sets of unlabeled samples
and a small set of labeled ones. SSL in images has been widely explored. For
example, some strategies include giving pseudo-labels [1,24] to samples where
the classifier has high confidence, and adding these to the labeled training data.
Other common approaches use consistency regularization [22,23,34]. Approaches
that combine consistency regularization and entropy minimization [13] have
shown to be very effective in tackling the SSL task in images such as MixMatch
[3] and RemixMatch [2].

SSL in videos however, has not been explored as much. One of the early
works used extreme learning machines [17] to perform SSL on videos. Recently,
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Fig. 3. Pipeline for compositing a single frame. The foreground is from the class “soccer
juggling” and the background from the class “soccer penalty”, which are semantic class
neighbors. We can see objects such as ‘person’ and ‘ball’ are detected as objects of
interest.

VideoSSL [18] and Temporal Contrastive Learning (TCL) [30] leverage SSL in
videos. VideoSSL [18] uses pseudo-labels and object cues from unlabeled samples
to guide the learning process. TCL [30] use a two-pathway contrastive learning
model using unlabeled videos at two different speeds with the intuition that
changing video speeds do not change the action being performed.

Data augmentation and SSL are two different families of techniques to re-
lieve the dependence on labeled data, and in this paper we experiment with the
combination of both, showing that they are actually complementary.

Sample Selection. Recent work [16] has shown that not all data samples are
as useful. Selecting a subset of high quality frames or clips at test time shows
better results than using the entire video for action recognition. In this spirit,
SMART [11] uses an attention and relation network to learn scores for each frame
in a video and then select only the high ranked ones for inference. Similarly,
SCSampler [20] uses a lightweight clip sampling model to select the salient clips
in a video and use only those. Unlike the proposed method, these learn to choose
single videos, which are already available, while we learn to choose pairs of videos
to be composited, which are not already combined.

The most relevant work to ours is data valuation in the image domain, using
RL [36], in the image domain where each sample is given a score of how effective
the sample is, and at training time the sample is multiplied by this score. In our
work, instead of learning the effectiveness of the training set, we leverage that
knowledge for augmentation.

3 Learn2Augment

In this section we describe in detail the architecture of the proposed Learn2Augment.
In a nutshell, the goal is to learn to augment novel data points which are re-
alistic and diverse, such that we can train a better classifier with them. For
this, we train a Selector network, which predicts a score of how useful a given
pair of videos is for augmentation. We pick pairs that have a high score to be
augmented. The transformation we use for augmentation is Video Compositing.
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Training the Selector using the entire dataset is infeasible, and sampling pairs of
videos at random will yield unlikely pairs. Thus we sample pairs of videos using
Semantic Matching. Figure 2 shows an overview of the proposed method and in
Sec. 4 we describe how we train our approach.

3.1 Selector

Given two input videos V 1 and V 2, the goal of the Selector is to predict a weight
ω, rating the quality of the potential composited video. Note that the input to
the Selector is two putative videos instead of the composited one. This means
that at test time, we can predict how useful the composited video will be without
having to actually create it.

The architecture of the Selector includes a standard video classification net-
work to extract video features, which is ResNet3D-18 [15] followed by a simple
multi-layer perceptron (MLP) with 3 hidden layers of sizes 2048, 1024 and 512.
Two videos are input to the Selector at a time, and their features and labels are
concatenated and input to the MLP.

Since there is no ground truth of how “good” a video sample is for learning,
we train the Selector using the change in validation loss of the classifier. This
is, we argue that a “good” training sample is one which, if used for training,
improves the validation loss of the classification network. In other words, if we
take one optimization step training the classifier, after updating the weights, the
validation loss will go down. Section 4.1 describes the training process in detail.

At test time, we use the Selector by sampling pairs of videos, choosing those
pairs with high score ω, and input to the Video Compositing module, which we
describe in Sec. 3.3. The resulting video is finally used to augment the training
set for the classification network.

3.2 Semantic Matching (SM)

The number of pairs in the full dataset can be very large, as it grows with the
square of the number of videos. For Kinetics [4], for example, we would encounter
360 billion pairs. Training the classifier using these is clearly infeasible, and thus
we use the Selector. But training the Selector itself with all these samples is
infeasible too. Sampling uniformly is a reasonable solution, but many video pairs
may not be useful for learning. We leverage the observation that all combinations
of actions and backgrounds are not equally likely [5]. This natural correlation
between actions and backgrounds helps to prune unlikely class combinations.

For this, we make the assumption that classes that are semantically similar
are more likely to contain a foreground and a background that are plausible in
the real world, and therefore more realistic for our data augmentation purposes.
Thus, we use the class names to extract a language embedding using sen2vec
[28], and use these embeddings to match each class to its nearest neighbor. We
sample videos V 1 and V 2 from class c1 and its closest neighbor c2 respectively.
This simple decision reduces the number of pairs to grow linearly with the size
of the dataset, and furthermore increases the accuracy significantly with respect
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Fig. 4. Sample frames of rendered videos. While the segmentation contains errors, such
as missing limbs or portions of the object, the action category remains clear.

to sampling video pairs at random. More details on the numerical impact can be
found in Sec. 5.3. Semantic class pairs and additional experiments using intra-
class augmentation can be found in the supplementary material.

3.3 Video Compositing (VC)

The goal of the augmentation process is to composite two videos, to produce
realistic, plausible and diverse new videos, that will improve the classification.
Figure 3 shows the overall pipeline for compositing a single frame.

Given two videos which will be used for foreground V f and background V b,
we use a standard object segmentation network (MaskRCNN [14]) to segment
out people and objects in every frame of both videos. Objects categories in action
datasets are not completely contained in the image dataset COCO [26], which is
used for training MaskRCNN. However, we observe that object detections with
high confidence tend to correspond to actual objects, even if the category is not
correct (boxing bag is often classified as fire hydrant), and therefore are useful to
our purpose. We could also have selected only the humans in the video, as action
categories tend to be focused on humans. However, we find that the presence of
specific objects is highly correlated with action categories (musical instruments in
the classes “playing guitar” or “playing violin”). Therefore removing the original
objects from the background and adding the ones from the foreground is essential
for recognition. See numerical results of the impact of these decisions in the
ablation study of Sec. 5.3.

We remove the segmented objects from the background video and fill in
the holes using image inpainting [27], to obtain a clean background video V ′

b.
Finally, we combine the foreground objects and the background at each frame
by simple composition, as in:

Ṽ
t
= V t

f ⊙M t
f + V ′t

b ⊙ (1−M t
f ), (1)

where Ṽ
t
is the resulting composited frame at time t, V t

f and V ′t
b are frames

of the foreground and background videos respectively, M t
f is the binary mask

with the union of all detected objects, and ⊙ is the element-wise multiplication.
Figure 4 shows sample frames of the resulting videos.

4 Optimization of Learn2Augment

The optimization of the proposed Learn2Augment method has two stages. In
the first stage, we train the Selector network using RL, as described in Sec. 4.1.



8 Shreyank N Gowda et al.

Once the Selector network is trained, in the second stage, we perform data
augmentation to train the classifier. That is, we sample pairs of videos, pass
them through the trained Selector, choose the pairs with high score, create new
videos with these pairs through Video Compositing, and add them to the training
set. We now describe the details of these two training stages.

4.1 Training the Selector

As mentioned before, there is no ground truth to tell us how good an augmented
data sample is. Instead, we use the validation loss of the classification network
to train the Selector network. This function is not differentiable with respect to
the parameters of the Selector. A common solution to dealing with this is to use
RL [36].

Specifically, the state st at time t is the batch of video pairs sampled using
SM. The action at is the subset of these video pairs selected for compositing
and is represented as a vector of values between 0 and 1. The environment is
the classification network and the validation process. This environment is used
to compute a reward R(θ) for choosing a particular action, where θ are the
parameters of the Selector.

We calculate the reward in a single step, as the difference between the loss
in the current batch and the moving average of losses in the previous S steps
(where S = 5) denoted as δ, as in Eq. 2:

R(ϕ) =

 1

|Dval|

|Dval|∑
i=1

Lcls(fϕ(V i), yi)

− δ (2)

where Lcls is the classification cross-entropy loss, fϕ is the classifier network of
parameters ϕ, V i and yi are an input video and its label respectively, Dval is
the validation set and |Dval| is the number of samples in Dval. The objective
function that we want to maximize is the expected value of the reward:

J(θ) = E(R(ϕ)). (3)

To find the optimal policy, we would typically differentiate the objective function
with respect to the parameters θ. However, the reward function is dependent on
the validation loss, calculated with the classifier network, which does not involve
θ. Instead, using REINFORCE [35], we approximate the objective function as:

∇θJ(θ) ≈
1

M

M∑
i=1

Rτ i(ϕ)

(
T−1∑
t=0

∇θ log πθ(a
t
i|sti)

)
, (4)

where, τ i is the ith state-action trajectory under the policy πθ, M is the
number of sample trajectories and T is the number of actions performed in
a trajectory. Note that as we have single-step episodes, we can make several
simplifications as M = 1, as T = 1, and as there is only one trajectory τ i, and
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thus Rτ i(ϕ) is just R(ϕ). With these simplifications and substituting Eq. 3 in
Eq. 4, we obtain:

∇θJ(θ) ≈ R(ϕ)∇θ log πθ(DM |DB), (5)

where DM corresponds to the subset of pairs of samples to composite and DB to
all the pairs of samples in the batch. The Selector is updated by α∇θJ(θ) where
α is the learning rate and δ is updated with the last calculated loss as seen in
Eq 6.

δt =
S − 1

S
δt−1 +

1

|Dval|

|Dval|∑
i=1

(Lcls(fθ(V i), yi)) . (6)

Note that this training process does involve generating the composited videos
for pairs in DM , to input to the classifier and compute the loss. However, cru-
cially, during training this is a small portion (one order of magnitude smaller) of
how many videos would need to be generated if we were to composite all pairs
of videos.

Once the Selector is trained, we use it for actually filtering good pairs. At that
point, given two videos and their labels, the Selector network predicts a policy
π of how likely it is to select the pair. The score ω is the value of π for each
pair. We use a threshold on that score to select the pairs of videos to augment.
In our experiments, we first determine a budget on the number of videos that
we want to augment, and then pick the threshold to select the top-ranked video
pairs. We use these selected pairs of videos as input to Video Compositing, add
them to the training set, and use them to train the classifier.

4.2 Training the Classifier

Similar to previous work which combines multiple samples for augmentation [37,43],
composited/mixed samples should include mixed labels. We adopt the strategy
of Cutmix [37], where the foreground label yf and the background label yb are
combined using a ratio λ, as:

ỹ = λyf + (1− λ)yb, (7)

to obtain the mixed label ỹ. A simple way to choose λ is to use the ratio of the
foreground mask with respect to the overall video. Given the foreground video
V f of dimensions T ×H×W , and mask at each frame Mf , the foreground ratio
would be γ =

∑
Mf/(THW ). Instead of choosing λ to be directly proportional

to the foreground ratio γ, we give slightly more weight to the foreground [43],
as in Eq. 8, where α = 4.

λ = −(γ − 1)α + 1, γ ∈ [0, 1] (8)

We add composited videos Ṽ , and their mixed labels ỹ to the training set, and
train the classifier network using a standard cross-entropy loss, with stochastic
gradient descent.
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The choice of classifier is not tied to our method. In our experiments, we
choose the widely used 3D ResNet-18 architecture, which allows us to compare
directly to other approaches.

5 Experiments

We experiment extensively with Learn2Augment using three data settings, four
datasets, and two splits. We also present ablation studies. In this section we first
describe the details of the experiments and then discuss our results.

5.1 Experimental Details

Datasets. In order to provide comparison to prior work (e.g. [43,30]), we use
standard datasets for evaluation in action recognition, including HMDB51 [21],
UCF101 [32], Kinetics-400 [4], and Kinetics-100, which includes the 100 classes
with the largest amount of samples in Kinetics, as it is used in prior work [18]
and helps us compare directly. For experiments on the effect of pre-training
the Selector, we use Kinetics-400. For the semi-supervised setting, we split the
datasets following the protocol of VideoSSL [18] and ActorCut [43]. For few-shot
we use the standard split [40] and the Truze split [12] which ensures no overlap
of novel classes with Kinetics-400.

Problem Settings. We test the proposed method in three different settings. In
the semi-supervised setting, a portion of the training set is artificially held out,
and the rest of the training data is assumed to be available, but unlabeled.
Tests are performed on different percentages of held out data. In the few-shot
setting, some classes (novel classes) are assumed to have a very small number of
training samples (one to five instances), while other classes have the full number
of samples (seen classes). We effectively change the n-shot learning problem to
a n + k-shot problem where k is the number of augmented samples. Finally, in
the standard full set setting, all training data is available.

Training Settings. We use mini-batch stochastic gradient descent, with momen-
tum of 0.9 and weight decay 0.001. For each video, we use an 8-frame clip, where
the frames are uniformly sampled. We use batch size of 8. For UCF101 and Ki-
netics100 in the SSL setting, we train the model for 400 epochs and for HMDB51,
we train for 500 epochs. The initial learning rate is set to 0.1 and then decayed
using cosine annealing policy. For the SSL setting, we use the data split proposed
in VideoSSL [18]. For the few-shot setting, we use the default hyperparameters
of TRX [29], ARN [40] and C3D-PN [31], respectively. In the fully supervised
setting, we train R(2+1)D for 100 epochs on UCF101, HMDB51 and 50 epochs
on Kinetics-400.

5.2 Architectural Changes for Different Settings

We briefly explain the structural adaptations of our approach for each of the
settings.
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Pairs Video Semantic Accuracy #Videos
Selector Compositing Matching in % (S)

✓ ✓ ✓ 58.9 12K
× ✓ ✓ 55.8 99K
✓ × ✓ 54.5 12K
✓ ✓ × 55.2 (1.2M)
✓ × × 52.9 (1.2M)
× ✓ × 48.6 (10.4M)
× × ✓ 50.8 99K
× × × 45.5 (10.4M)

Table 1. Ablation study to explore the impact of each proposed component. All set-
tings use the same number of samples for training, so that they can be compared fairly.
The # Videos (S) corresponds to the search space in each scenario. As we can see, we
obtain the best accuracy using just 12K instead of the standard scenario which would
have had 10.4M i.e. a reduction of over 1000x.

Semi-supervised Learning. Similar to VideoSSL [18], we first train the classifier
on the available labeled data using the categorical cross-entropy loss. Once this
network is trained, we do a forward pass of the unlabeled examples and assign
pseudo-labels to those samples with high confidence. We use these pseudo-labels
as additional data for augmentation. We also add a knowledge distillation loss
inspired by VideoSSL [18]. Details can be found in the supplementary material.

Few-shot Learning. We only augment the novel classes using Learn2Augment.
We also do not perform label mixing and simply use the foreground label for
the augmented sample. This incorporates our composited samples seamlessly
into the meta-learning framework typically followed. We show results on the
standard split, as on the recently proposed TruZe [12]. TruZe ensures that the
novel classes do not overlap with Kinetics-400.

Fully-supervised Learning. This is the simplest setting, where the Selector is
trained on the full training set, and used for data augmentation to train the
classifier. We explore two scenarios: training the classifier from scratch and using
a model pre-trained on Sports1M [19].

5.3 Ablation Study

Table 1 shows the ablation study of Learn2Augment, which illustrates the im-
pact of each of the proposed elements in the design. The experiment is done
on the UCF101 dataset, using 20% of the data i.e. in a semi-supervised setting.
All three contributions (Selector, Semantic Matching and Video Compositing)
improve accuracy. Crucially, Semantic Matching and the Selector also reduce
greatly the number of possible video combinations, and the overall reduction is
around three orders of magnitude. We see that Learn2Augment obtains a 13.4%
improvement over the baseline. While there are improvements of up to 7.4%
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Method Accuracy

L2A 58.9
L2A w/o Inpaint 57.6
L2A w/o Segmentation 56.8
L2A w/o Objects 55.7
L2A w/o All 54.5

Table 2. Ablation study of compositing components. The version “w/o Inpaint” refers
to pasting the foreground without first filling in the holes of removed objects in the
background. The version “w/o Segmentation” refers to using bounding boxes instead
of object segmentations. “w/o Objects” refers to copying and pasting only the humans
in the scene, leaving the objects.

for each component, the combination of all three gives the best results. Further
analysis can be found in the supplementary material.

The Video Compositing module also has multiple components. In Table 2, we
ablate these components and observe that removing objects is actually essential,
and has the most significant impact, followed by using segmentation instead of
a bounding box, and finally inpainting.

Although the compositing process is more computationally expensive than
previous simpler mixing strategies, it is important to note that 1) the overall
accuracy indeed improves, 2) the actual composition for training the classifier
is done on a small subset of pairs of videos and 3) the Selector can be trained
on a large dataset (e.g.: Kinetics) just once and can be reused for the smaller
datasets without the need of fine-tuning (see Table 3).

Kinetics 100 UCF101 HMDB51
Method Conference 50% 20% 10% 5% 50% 20% 10% 5% 60% 50% 40%

CutMix [37] ICCV19 53.7 46.1 43.2 39.9 46.1 36.5 34.6 25.8 33.9 30.8 27.8
MixUp [41] ICLR18 53.4 45.5 43.0 39.6 45.8 36.1 34.2 25.5 33.7 31.0 27.5
CutOut [10] Arxiv17 52.8 45.1 42.3 38.8 45.2 35.6 33.9 24.6 33.0 30.5 27.1
ST-VideoMix [38] Arxiv21 55.3 46.6 43.9 40.4 46.4 36.4 35.2 25.9 34.8 31.3 28.7

PseudoLabel [24] ICMLW13 59.0 48.0 38.9 27.9 47.5 37.0 24.7 17.6 33.5 32.4 27.3
MeanTeacher [34] Neurips17 59.3 47.1 36.4 27.8 45.8 36.3 25.6 17.5 32.2 30.4 27.2
S4L [39] ICCV19 54.6 51.1 43.3 33.0 47.9 37.7 29.1 22.7 35.6 31.0 29.8
VideoSSL [18] WACV21 65.0 57.7 52.6 47.6 54.3 48.7 42.0 32.4 37.0 36.2 32.7
ActorCut [43] Arxiv21 68.7 61.2 56.8 52.7 59.9 51.7 40.2 27.0 38.9 38.2 32.9
ActorCut+ID [43] Arxiv21 72.2 68.7 63.9 59.1 64.7 57.4 53.0 45.1 40.8 39.5 35.7
TCL [30] ICCV21 70.4 64.7 61.1 58.2 62.1 55.4 52.1 42.8 41.2 40.4 34.8
L2A 75.9 72.1 67.5 63.7 72.1 60.3 56.1 48.0 44.5 43.2 37.9

L2A +Pre-training - - - - 73.3 64.8 60.1 50.9 47.1 46.3 42.1

Table 3. Results on the semi-supervised setting. Results for TCL and ActorCut are
obtained by us running the author’s code. All methods are run with a 3D ResNet-18
backbone for fair comparison. L2A +Pre-training refers to pre-training the selector and
fixing it.
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5.4 Augmenting in the Semi-supervised Setting

In this setting we artificially hold out a portion of the training set, with the goal of
observing the behavior of different methods as the size of the training set changes.
In this setting, we use the remaining part of the dataset by producing pseudo-
labels, similar to VideoSSL [18]. Table 3 shows results in this semi-supervised
setting. The L2A version of the method uses a Selector and a classifier trained
only on the target dataset (in this case UCF101, HMDB51 or Kinetics-100). We
observe that Learn2Augment improves on all settings over all previous methods.

The “L2A +Pre-training” row refers to Learn2Augment where the Selector
has been pre-trained on Kinetics-400, without fine-tuning on the target dataset.
We make two observations: First that pre-training on a large dataset helps, as
the results from the pre-trained model are higher for all datasets and settings.
Second that the Selector trained on Kinetics generalizes quite well to the smaller
datasets without the need for fine-tuning. We do not test on Kinetics-100 with
the pre-trained model, as this would mix training and testing sets.

5.5 Augmenting in the Few-shot Setting

We also explore the impact of the proposed method on the more extreme few-
shot setting, where there are only a few examples per class. This is interesting
because few-shot methods are already designed to address data scarcity.

We compare with the current state of the art in this setting, including CD3-
PN [31], ARN [40] and TRX [29], on the UCF101 and HMDB51 datasets. We
observe that the proposed Learn2Augment method improves upon all existing
approaches, suggesting data augmentation is complementary to few-shot meth-
ods. Table 4 shows the results of the experiments.

UCF101 HMDB51
Method Split 1 2 3 4 5 1 2 3 4 5

C3D-PN [31] S 57.1 66.4 71.7 75.5 78.2 38.1 47.5 50.3 55.6 57.4
C3D-PN + L2A S 60.8 68.9 73.3 76.6 79.1 39.8 48.9 51.5 57.3 58.2

ARN [40] S 66.3 73.1 77.9 80.4 83.1 45.5 50.1 54.2 58.7 60.6
ARN + L2A S 67.7 74.2 79.6 81.1 84.4 47.3 51.7 55.5 60.1 61.8

TRX [29] S 77.5 88.8 92.8 94.7 96.1 50.5 62.7 66.9 73.5 75.6
TRX + L2A S 79.2 89.2 93.2 95.0 96.3 51.9 63.8 68.2 74.4 77.0

C3D-PN [31] T 50.9 61.9 67.5 72.9 75.4 28.8 38.5 43.4 46.7 49.1
C3D-PN + L2A T 52.5 63.8 70.1 75.2 78.2 29.9 40.1 44.5 47.7 50.8

ARN [40] T 61.2 70.7 75.2 78.8 80.2 31.9 42.3 46.5 49.8 53.2
ARN + L2A T 63.9 73.1 77.4 80.4 81.3 33.6 43.7 48.0 51.1 53.8

TRX [29] T 75.2 88.1 91.5 93.1 93.5 33.5 46.7 49.8 57.9 61.5
TRX + L2A T 76.8 88.9 92.7 93.8 94.1 35.0 48.1 51.1 59.2 62.1

Table 4. Results on UCF101 for the Few-Shot Learning setting, with different splits.
Accuracies are reported for 5-way, 1, 2, 3, 4, 5-shot classification. S corresponds to the
split used in [40,29] and T is the TruZe split [12], which avoids overlapping classes with
Kinetics.
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Augmentation Dataset Pretrained Top-1

Standard UCF101 No Pretraining 55.7
ActorCut [43] UCF101 No Pretraining 68.3
L2A UCF101 No Pretraining 73.1

Standard HMDB51 No Pretraining 40.8
ActorCut [43] HMDB51 No Pretraining 44.5
L2A HMDB51 No Pretraining 46.4

Standard UCF101 Sports1M 93.6
L2A UCF101 Sports1M 95.3

Standard HMDB51 Sports1M 66.6
L2A HMDB51 Sports1M 68.4

Standard Kinetics Sports1M 75.4
L2A Kinetics Sports1M 76.3

Table 5. Augmenting standard datasets improves classification even with a model
pre-trained on the largest existing dataset (Sports1M).

5.6 Augmenting the Full Training Set

We finally explore the effect of augmenting the full dataset, both for smaller
datasets, and the large-scale Kinetics. Results can be found on Table 5. Again,
Learn2Augment improves the performance on all datasets even for a pre-trained
model.

6 Why Not Intra-class Augmentation?

One other possibility we explored is intra-class augmentation instead of using
semantic classes. However, when we followed the same procedure on 20% labeled
data of UCF101 we obtain an accuracy of 41.4% in comparison to 58.9% when
using semantically similar classes. Similarly, in Kinetics100 we obtain an accu-
racy of 50.1% and 54.4% using 5% and 10% labeled data respectively. That is
9.4% and 8.9% lower than the results using semantic neighbors. We believe there
to be two main concerns in intra-class augmentation. The first is that Cutmix
[37] has been shown to be an excellent regularization technique. This is aided
by having samples that have soft labels (since they are a ratio of samples from
different classes). However, using intra-class augmentation would force the labels
to be the same as the ground truth class. The second reason is that samples of
a particular class are clips that were part of the same video. This is the case in
both HMDB51 and UCF101 and not so in Kinetics100. If we cut the background
from one sample and paste the foreground onto this, it results in an identical
sample to the original foreground sample. This is because the background is the
same in both cases. All we end up doing then is training the model on multiple
instances of the same data which leads to overfitting and hence a poor accuracy
at test time. However, since the results are much worse for Kinetics100 as well,
we believe that this could be a smaller contributing factor.
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7 Distillation Loss for Semi-Supervised Learning (SSL)

Given frame a from video v, to distill appearance information of objects of
interest, we use the softmax predictions of a ResNet [15] image classifier. This
network is pre-trained on Imagenet and not modified during training. Let the
output of the ResNet be denoted as h(a) ∈ RM where M = 1000 which is
the number of classes in Imagenet. We randomly select a frame from all videos
(labeled, unlabeled and augmented) for training. The classifier model in our
architecture, produces an embedding q(v) ∈ RM which is of the same dimensions
and space of h(a). We train q(v) to match the output of h(a) by using a soft
cross-entropy loss that treats the ResNet outputs as soft labels. This loss Ld

can be seen in Eq. 9. Our final loss function is a combination of Ld and Ls

(categorical cross-entropy loss for video samples). This is done following the
work in VideoSSL [18].

Ld = −
∑

vϵ(X∪Z),aϵv

h(a) log (q(v)) (9)

8 Analysis of Number of Augmented Samples

We see a common pattern when adding augmented samples to the different SSL
settings. This basically refers to increasing the number of augmented samples
in the training set. We see that the accuracy increases initially, reaches a peak
performance and then starts dropping slowly as can be seen in Figure 5. This
makes sense as we don’t expect every mixed example to be helpful for training.
In fact, this helps us to define ωi for the selector. We can see Figure 5 for the
results from 0 augmentations to 5000 for 10% and 20% labeled data on UCF101.
The sweet spot for the 10% labeled data is around 1200 augmentations and for
the 20% labeled data is around 2000 augmentations. Both of which are obtained
using ωi = 0.6. We decide the value of ωi based on these and results and use
the same for HMDB51 and Kinetics100 for all settings. If we increase the value
of ωi we obtain fewer samples and decreasing the value of ωi results in more
number of samples for training. The value of ωi thus determines the number of
augmented samples and also their quality.

9 Other Selector Choices

The design of the selector is a crucial aspect of our model. We want the selector
to be able to learn what makes a good pair of videos for mixing without actually
having to mix every single pair. However, for lower percentages of labeled data,
we can generate all possible samples of semantic classes and convert a state-of-
the art frame selection model (SMART) [11] to do sample importance instead
of frame importance. We also consider a simple baseline of using a discriminator
network to pick only realistic samples. We report the results in Table 6. Another
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Fig. 5. Comparison of performance with increasing number of augmented samples.
Results are for 10% and 20% of labeled data UCF101. We see that the performance
increases initially, reaches a peak and slowly starts dropping.

approach was to randomly pick a certain amount of samples to train the classifier
network.

We not only outperform all alternative approaches, we also do this by saving
on both memory and computation cost. For example, in the 20 percent setting,
SMART sees 99K videos and these 99k videos have to be precomputed and
stored before training SMART. However, the proposed approach only needs 12K
videos and outperforms SMART by up to 1.4%. This analysis is only to show
a comparison to possible alternatives when storing data is feasible. The idea of
trying these alternatives is only feasible in low percentage labeled data of small
datasets like UCF101 and HMDB51. Even 50% labeled data in UCF101, results
in having to mix over 400k videos while large scale datasets like Kinetics400
would lead to millions of mixes being needed making it practically unfeasible.

50% 20% 10% 5%
Method Acc SS Acc SS Acc SS Acc SS

Random 61.9 430K 56.2 99K 51.8 44K 42.3 9.7K
Discriminator 62.8 430K 57.3 99K 52.2 44K 41.1 9.7K
SMART [11] 68.9 430K 58.9 99K 57.8 44K 46.5 9.7K
Proposed 72.1 39K 60.3 12K 56.1 5.2K 48.0 1.2K

Table 6. Comparison of approaches for the use of Selector. All results are reported on
UCF101. ’Acc’ corresponds to accuracy and ’SS’ corresponds to the number of mixed
videos that the Selector looks at. All results are on different percentage of labeled data
in UCF101.
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10 Why Re-train the Classifier Network?

Here, we are talking about the classifier network in our proposed architecture
that the selector learns from (based on the validation loss). Training the Selec-
tor and the Classifier together is also possible. But we decide against this for
2 reasons. First, and the most important reason is that we want to save out
on computational cost needed to generate an augmented sample. We showed
that the selector network looks only at a fraction of samples before it under-
stands what makes a good pair. Hence, we first train the selector by generating
augmented samples taken from random samples of semantically similar classes.
Once the selector is trained, we don’t need to generate the mixed sample for all
possible pairs and only generate the mixed samples for good pairs (the selector
need not have seen these pairs before). We then augment the original dataset
by samples that the selector believes will improve the classifiers performance We
compare the performance of the joint training and re-training of the classifier
network in Table 7. We see that re-training the classifier network always yields
the best performance.

Method 50% 20% 10% 5%

Jointly trained 66.5 57.4 53.1 44.7
Retrained 72.1 60.3 56.1 48.0

Table 7. Comparison of jointly training classifier and re-training it. We see that there
is a consistent large improvement in re-training the classifier.

11 Examples of Selected and Discarded Samples

To understand what made a good sample we visualize a few samples that were
selected by the selector model and a few samples that were discarded. These can
be seen in Figure 6. The samples are displayed as 4 frames for better visualiza-
tion. Based on the small subset of examples seen, we believe that for good pairs
to be selected some of the criteria could be coherent inpainting, similar camera
movement, not too drastic a background change.

We see some samples of discarded examples in Figure 7. Based on the small
subset of examples seen we think possible bad pairs are due to bad video com-
positing (example 2 in Figure 7), varying camera movements (example 3 in
Figure 7) or a drastic change in background (example 1 in Figure 7). These are
however based on the few examples we see.

12 Effect of Semantic Match in generalization ability.

We test the generalization ability of the semantic matching by comparing it
with random matching which would correspond to row 4 of Table 1 in the main
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Fig. 6. Visualizing selected examples. From top to bottom as (foreground, background)
pairs: (flic-flac, cartwheel), (smile, laugh), (playing violin, playing cello), (front crawl,
swimming backstroke). The first two are examples from HMDB51 and the last two
from UCF101.
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Fig. 7. Visualizing discarded examples. From top to bottom as (foreground, back-
ground) pairs: (somersault, diving), (climbing stairs, falling floor), (baby crawling,
walking dog), (hammering, hammer throw).

paper. We observe that the performance does decrease. To strengthen this test,
we tried the same experiment in the FSL setting, which is an extreme case for
generalization. We augment data for two different methods, using the proposed
L2A, using both semantic and random matching of classes. We observe that
even in this setting, which is the most susceptible to overfitting, the semantic
matching outperforms random matching. We will add this to the final version.

Method Class Matching 1-shot 3-shot 5-shot

C3D-PN Random 28.1 42.9 47.7

C3D-PN Semantic 29.9 44.5 50.8

TRX Random 33.5 49.9 60.3

TRX Semantic 35.0 51.1 62.1
Table 8. Results on FSL using the proposed Semantic Matching vs random matching
using the TruZe [12] split.
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13 Limitations and Future Work

The main area of improvement is the time needed for training. Optimizing the
Selector with RL is time-consuming, and so is compositing the initial samples for
training it. Future work could address this by parameterizing the composition
process and learn these parameters instead of compositing the pairs directly. It
could also learn to select particular frames in a video, and avoid the computa-
tional cost of temporal redundancy. Finally, another possible direction is to learn
what samples to discard from the initial dataset itself.

14 Conclusion

While standard data augmentation strategies in action recognition are hand-
crafted, we propose to learn which pairs of videos are good to composite. In
order to do this, our approach leverages three components. We train a Selector
optimized with RL to choose which pairs of videos are good to composite. We
reduce the search space by using samples from semantically similar classes. We
perform a clean segmentation for mixing samples and remove actors as well as
objects from foreground and background samples. With this, we obtain state-
of-the-art results in semi-supervised and few-shot action recognition settings,
and improve in the fully supervised setting. In particular, we see gains of up
to 8.6% and 3.7% in the semi-supervised and few-shot settings. We also see an
improvement of up to 17.4% when compared to standard augmentation in the
fully supervised setting when training from scratch.
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