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A B S T R A C T

Two time-efficient surrogate models are proposed to emulate the nonlinear heat equation in the context
of laser powder bed fusion, the performance of which is compared in accuracy and online execution time.
Fast-computed numerical solvers are critical in implementing the digital twin framework in the additive
manufacturing process addressing one of its main open problems: lack of quality assurance. The first surrogate
model is the reduced Gaussian process emulator. It is a data-driven model equipped with a nonlinear dimension
reduction scheme and manages to predict temperature profiles almost instantly (around 0.036s on average)
with an accuracy of 95% for 99.38% of tests. Another surrogate model is the sketched emulator with local
projection. It projects the accurate but high-dimensional finite element method solution on a low-dimensional
basis and then bypasses the majority of costly computations for the temperature-dependent matrices in the
projected model by randomized sketching. It has higher accuracy (97.78% of tests with relative errors below
1%) while spending comparably more time online (around 42.23s on average). Although compared with
the finite element model both surrogates promote time efficiency with some minor controlled compromise
in accuracy, the reduced Gaussian process emulator enables real-time implementation while the sketched
emulator with local projection offers comparably higher levels of accuracy. A series of numerical experiments
are carried out, which assumes a three-layer printing process with a fixed laser beam trajectory using a small
number of printing control parameters as inputs, namely the laser power, scan speed, and time coordinates.
Both surrogates are also principally feasible in other thermal-driven additive manufacturing to obtain better
quality assurance with techniques like uncertainty management and closed-loop control.
1. Introduction

Laser powder bed fusion (LPBF), as a prevalent additive manu-
facturing (AM) technique in metal fabrication, successively spreads
and selectively melts thin layers of powder to fabricate physical parts
from 3D geometrical designs [1]. Though it is superior in realizing
complex or personalized design resulting in increased application in
fields like aerospace [2], automotive [3], and medical industry [4],
quality assurance has been a persistent problem that makes digital
twins of LPBF that help to approach the ‘‘first-time-right’’ goal receiving
more and more attention [5]. As a thermal-driven AM, the thermal
model of LPBF is a critical step in predicting the part properties such
as microstructure and residual stress [6–8], according to which we
can improve the part quality by designs like process optimization
and closed-loop control [9,10]. Extensive researches with experimental
validation have focused on the numerical solver with finite element
method (FEM) such as the thermal model validated by an experiment
with AlSi10Mg powder and argon atmosphere in [11,12] and the
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nonlinear transient heat equation with phase changes and anisotropic
thermal conductivity validated by the AM benchmark experimental
set AMB2018-02 in [13]. Though the numerical simulators with FEM
are precise, they are computationally expensive due to the high di-
mensionality caused by fine spatial–temporal discretization and the
high nonlinearity caused by temperature-dependent thermal properties
and boundary conditions. The high nonlinearity, however, means that
we need to solve several high-dimensional linear equations to get
the converged temperature result at a single time instant [14]. The
expensive time cost detrimentally hurdles its application both before
and during printing processes, thus a swift but accurate heat transfer
modeling of LPBF becomes a valuable research area.

To address the challenge of time consumption, various approaches
have been proposed. One type of approach is purely data-driven.
In [15], a recurrent neural network was trained to predict thermal
profiles in the directed energy deposition process from different ge-
ometries. However, it required 250000 data points taking extensive
vailable online 5 September 2022
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time and storage in data preparation and training. Another type of
approach focus on model order reduction (MOR) since the thermal
model of LPBF is a large-scale full order model (FOM) with significant
redundancy. MOR can be assorted in three types: structural, data-
driven, and projection-based approaches. Structural approaches refer
to adaptive meshes [12,16,17] and substructure coupling [18,19].
In [16], an adaptive mesh refinement strategy was suggested to re-
fine the mesh around geometric components while having coarser
mesh for other areas. Jensen et al. described the dynamic analysis
with substructures coupling internal dynamic behaviors and fixed-
interface normal modes [18]. The data-driven MOR uses machine
learning algorithms to find and/or predict low-dimensional latent rep-
resentations of high-dimensional training outputs. Nikolopoulos et al.
integrated a convolution autoencoder and a feed-forward neural net-
work as a surrogate of partial differential equations (PDEs) along the
entire time history [20]. The projection-based MOR projects high-
dimensional PDEs into their reduced form where projection bases
are obtained by methods such as moment matching [21], balanced
truncation [22], and principal orthogonal decomposition (POD) [23].
Though the abovementioned attempts could expedite a thermal sim-
ulation, some obstacles remain. Data-driven approaches of exhaustive
mapping generally rely on the representative quality of training data
and normally need a large amount of training data which might be
prohibitively expensive to generate. Projection-based approaches are
challenging in finding proper and effective bases, and require addi-
tional approximations for nonlinear models such as discrete empirical
interpolation method (DEIM) [24]. Nevertheless, a way out of the
expensive time cost in thermal modeling of LPBF is surrogate models.
The so-called surrogate model (SM) also known as emulator makes use
of data generated by a high-fidelity physics-based model (the FEM in
our case) and then swiftly predicts online with given design points,
thereby inexpensively emulating the simulation [25].

Each SM individually balances model accuracy and online execution
time. In this paper, we propose two SMs emulating the FEM with
reasonable but different trade-offs. The first SM, the reduced Gaussian
process (GP) emulator, learns a low-dimensional representation of the
relative distance between temperature profiles which is later extrap-
olated to the prediction of high-dimensional temperature. The second
SM, the sketched emulator with local projection, is a speedy numerical
solver with FEM. It uses the relative distance predictor in the first SM
to intelligently subsample the training temperatures and form effective
local projection bases. The projected model is then sketched to suppress
the time cost due to nonlinearity. Both SMs are time-efficient, but
their run times and prediction accuracy are affected in different ways.
The reduced GP emulator predicts temperatures very fast (0.036 s on
average) with 99.38% of tests having relative errors below 5%, while
the sketched emulator with local projection manages to predict 97.78%
of tests with relative error less than 1% in an average execution time
42.23 s saving more than 82% of time required by FEM (4.23 min
on average). Since both surrogates exhibit very good performance, we
either choose one of them or indeed combine them to tackle problems
requiring large and/or rapid thermal simulations in LPBF.

1.1. Notation and paper organization

We express matrices in capital letters, vectors and continuous func-
tions in small case letter. For a matrix 𝑋, 𝑋𝑖𝑗 is the (𝑖, 𝑗)th element, the
𝑖th column is denoted as 𝑋∗𝑖, and 𝑋𝑖∗ denotes its 𝑖th row. For a vector
𝑥, the 𝑖th entry is denoted by 𝑥𝑖.

In the next section, we describe the nonlinear transient heat equa-
tion model as well as its boundary conditions pertaining to LPBF and
then outline its high-fidelity numerical solution with FEM. The section
afterward illustrates the methods of two proposed SMs. The method
of reduced GP emulator is sequentially depicted as the subsampling
based on relative distance predictions and the approximation of high-
2

dimensional temperatures based on subsampled temperatures. The T
method of the sketched emulator with local projection is depicted
by three subsections which contain local projection using relative-
distance-based subsampling, the approximation of temperature-
dependent matrices with randomized sketching, and the reconstruc-
tion of high-dimensional temperatures after solving the projected and
sketched model. Then, the section of results and discussion follows,
which details the numerical experiments comparing the performance
of the two SMs. The prediction accuracy is compared in temperature
profiles, thermal histories, and melt pool sizes, while the time efficiency
is compared by average execution time. In the end, we have the section
containing conclusions of designed models.

2. Numerical thermal modeling of LPBF

During the LPBF process, as shown in the schematic of Fig. 1, a
high power-density laser beam selectively melts and fuses a thin layer
of powder along a preset scan path. The printed object is then formed
by bonding adjacent tracks and layers as new layers of powder are
successively superimposed. Its thermal modeling entails a heat equation
over a vertically extended domain, the boundary conditions of which
consider a Gaussian heat flux, convection and radiation heat loss, and
a temperature-controlled platform. The powder bed as a multi-layer
spatial domain of heat equation is discretized by adaptive tetrahedron
meshes, which yields a numerical solver with FEM.

2.1. Governing equations

The heat transfer in a 3D computational domain 𝛺 ∈ R3 is governed
by the nonlinear heat equation in Eq. (1). It is nonlinear due to the
dependence of material properties on temperature. Let 𝑢 ∶= 𝑢(𝑥, 𝑡) be
he temperature at spatial coordinate 𝑥 ∶= [𝑥1, 𝑥2, 𝑥3] in a 3D Cartesian
rame, and temporal coordinate 𝑡 ∈ [0, 𝑡𝑓 ]. If 𝜌, 𝑐, and 𝜅⃗ are respectively
he temperature-dependent density, specific heat capacity and thermal
onductivity tensor of the material then the temperature in the domain
s known to satisfy

(𝑥, 𝑡)𝑐(𝑥, 𝑡)
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
− ∇ ⋅ 𝜅⃗(𝑥, 𝑡)∇𝑢(𝑥, 𝑡) = 0, (𝑥, 𝑡) in 𝛺 × [0, 𝑡𝑓 ], (1)

here the temperature dependence of the thermal properties is derived
rom material-specific experimental data. The thermal conductivity 𝜅⃗ is
odeled as an anisotropic tensor field, and the latent heat effect during
solid–liquid phase change is introduced in terms of the model of

pecific heat capacity 𝑐 [13]. Further details of the models of nonlinear
hermal properties are included in Appendix A.

The heat is imparted to the domain by means of a laser beam,
odeled as a moving Gaussian heat source [11]

ℎ(𝑥, 𝑡) =
2𝛼𝑃
𝜋𝛾2

exp
(

−
2‖𝑥 − 𝑥𝑐 (𝑡)‖2

𝛾2
)

, 𝑥 on 𝛤𝑡, (2)

acting on the top surface of the domain 𝛤𝑡. In Eq. (2), 𝛼 is the heat
bsorptivity, 𝑃 is the laser power, and 𝛾 is the effective laser beam
adius, all three assumed invariant in space and time. In the same
quation 𝑥𝑐 is the position of the center of the laser beam at time 𝑡
s it moves with a constant scan speed 𝑣. The laser energy is mainly
bsorbed by the powder resulting in melt pools, while some of it
scapes in the atmosphere as a heat loss 𝑞𝑙 satisfying

𝜅⃗(𝑥, 𝑡)∇𝑢(𝑥, 𝑡) ⋅ 𝑛̂ = 𝑞ℎ(𝑥, 𝑡) − 𝑞𝑙(𝑥, 𝑡), 𝑥 on 𝛤𝑡 ∪ 𝛤𝑠, (3)

here 𝑛̂ is the outward unit normal on the top surface 𝛤𝑡 and side
oundary 𝛤𝑠, while the respective convection and radiation constituents
n 𝑞𝑙 = 𝑞𝑐 + 𝑞𝑟 are

𝑐 (𝑥, 𝑡) = ℎ(𝑢(𝑥, 𝑡) − 𝑢𝑎), 𝑞𝑟(𝑥, 𝑡) = 𝜎𝑠𝜀(𝑢(𝑥, 𝑡)4 − 𝑢4𝑎), 𝑥 on 𝛤𝑡 ∪ 𝛤𝑠, (4)

ith ℎ > 0 is the heat convection coefficient, 𝜎𝑠 is the Stefan–Boltzmann
onstant, 𝜀 is the emissivity, and 𝑢𝑎 the ambient temperature [26,27].

o improve the final object’s quality, such as mechanical properties,
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Fig. 1. The printing process of LPBF and its spatial discretization with FEM.
microstructure and residual stress, a temperature 𝑢𝑏 is applied on the
temperature-controlled bottom surface 𝛤𝑏 hence a Dirichlet boundary
condition

𝑢(𝑥, ⋅) = 𝑢𝑏, 𝑥 on 𝛤𝑏, (5)

is imposed at all times. Finally we assume the initial condition

𝑢(⋅, 0) = 𝑢0, 𝑥 in 𝛺, (6)

so that Eqs. (1)–(6) admit a unique solution 𝑢(𝑥, 𝑡) ∈ 𝛺 × [0, 𝑡𝑓 ].

2.2. Finite element method

To solve the nonlinear equations as Eqs. (1)–(6) using the FEM, we
respectively discretize the domain in space and time in linear tetrahe-
dral elements and a number of time instants {𝑡𝑛 ≐ 𝑛𝛥𝑡}𝑇𝑛=0 for a given
small 𝛥𝑡. The imposed boundary conditions and the temperature 𝑢𝑛−1
yields a model with 𝑑 degrees of freedom (DoF) for the temperature
field 𝑢𝑛 in the form of the nonlinear system

𝐴𝑛(𝑢𝑛)𝑢𝑛 = 𝑏𝑛(𝑢𝑛), 𝑛 = 1, 2,… (7)

where the temperature-dependent system matrix 𝐴𝑛 and right hand
side vector 𝑏𝑛 at time 𝑡𝑛 have dimension 𝑑 which is typically very
large. Details of the construction of these are given in Eqs. (B.1) and
(B.2) in Appendix B.1, the matrices and vectors in which are defined
as the integrals in Table B.1 and are numerically approximated with
Gaussian quadrature rules [28,29] as in Table B.2 in Appendix B. The
nonlinear heat equation as Eq. (7) is solved iteratively using the Picard
algorithm [14] as we outline in Algorithm B.1 of Appendix B.4.

The three most time-consuming parts of the numerical solver with
FEM are the high dimensionality caused by fine spatial and temporal
discretization, the number of Picard iterations required to converge,
and the computation of the FEM integrals involving high-order poly-
nomials using Gaussian quadrature. To address these issues, two time-
efficient SMs are proposed to significantly reduce the online execution
time by exploiting offline data sets to minimize online computations.

3. Time-efficient surrogate models

The prevalent computational complexity associated with the high-
dimensionality and non-linearity of FEM renders it unsuitable for real-
time simulation. To decrease this computational complexity, we pro-
pose two time-efficient SMs: the reduced GP emulator and the sketched
emulator with local projection. The reduced GP emulator first builds a
fast-computed data-driven model of relative distances between temper-
ature profiles and then extrapolates the relative distance predictions
as high-dimensional temperature predictions. In the sketched emulator
with local projection, we propose low-dimensional local projections
and randomized sketching to expedite FEM and form a SM. The lo-
cal projection bases themselves are generated with the help of the
3

relative distance predictor in the reduced GP emulator. Both SMs are
significantly quicker than solving the FEM, and either of them may
be used depending upon the desired trade-off between runtime and
accuracy. Since a part of the reduced GP emulator is used to compute
local projections for the sketched emulator, we begin this section by
presenting the reduced GP emulator.

3.1. Reduced GP emulator

Data-driven approaches are frequently used in SMs where the result
is obtained in near real-time as a direct prediction [20]. What hinders
machine learning algorithms from emulating the thermal modeling in
LPBF is the high dimensionality of thermal fields and the prohibitively
expensive time in generating a large training data set. To address these
challenges, we propose a reduced GP emulator where a subsampling
scheme based on relative distance predictions is designed with Gaussian
process regression (GPR) and nonlinear MOR, and a swift predictor is
designed to extrapolate subsampled training temperatures and distance
predictions to high-dimensional temperatures. The framework of the
reduced GP heat emulator is as Fig. 2 where the module of subsampling
and high-dimensional temperature predictor are respectively elabo-
rated in Sections 3.1.1 and 3.1.2. In addition, the subsampling module
is also used in the module of local projection demonstrated in the
framework of the sketched emulator with local projection as Fig. 3 .

3.1.1. Subsampling
The high-dimensional temperature of a given test input can be pre-

dicted by a linear combination of some training temperatures deemed
as the closest ones to this prediction, in which the weights of the linear
combination are inversely proportional to relative distances between
the temperature prediction and the selected training temperatures. We
thus develop a subsampling scheme to select training temperature snap-
shots based on a relative distance predictor mapping input parameters
to relative distances.

As a data-driven method, its prediction accuracy relies on finding
representative training data set which is generated by the heat simu-
lator with FEM. The training inputs are selected from the controllable
parameters of a LPBF process including laser power, beam size, scan
speed, time, preheating temperature, and so on. In this paper, the inputs
matrix 𝑋 ∈ R𝓁×𝑁 contains 𝑁 training points for a triplet (𝓁 = 3) of
laser power 𝑃 , scan speed 𝑣, and time 𝑡. For each 𝑋∗𝑖 ≐ [𝑃𝑖, 𝑣𝑖, 𝑡𝑖]𝑇 , one
can readily run the heat simulator with FEM as Eq. (7) by tuning the
appropriate boundary conditions for times 𝑡 = 𝑡1,… , 𝑡𝑖 until we obtain
𝑢(𝑋∗𝑖). Repeating the process for 𝑁 ≫ 3 sampling points produces a
corresponding temperature snapshots matrix 𝑈 ∈ R𝑑×𝑁 where 𝑈∗𝑖 =
𝑢(𝑋∗𝑖) and 𝑁 is typically chosen to be smaller than 𝑑. To make the
learned parameters in GPR scale-invariant, we normalize the input
quantities in the rows of 𝑋 to be in the [0, 1] range

𝑋̃𝑖∗ =
𝑋𝑖∗ − min(𝑋𝑖∗) , for 𝑖 = 1,… ,𝓁. (8)
max(𝑋𝑖∗) − min(𝑋𝑖∗)
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Fig. 2. The framework of the reduced GP emulator predicting high-dimensional temperatures with three control inputs (laser power, scan speed and time) via linear combinations
of subsampled training temperatures.
𝑚

𝑢

As for the feature engineering of the training output, we approximate
the pair-wise distances of temperatures in 𝑈 with nonlinear dimen-
sionality reduction [30]. The relative distance between 𝑈∗𝑖 and 𝑈∗𝑗
for 𝑖, 𝑗 = 1,… , 𝑁 , denoted as 𝑄𝑖𝑗 in the pair-wise distance matrix
𝑄 ∈ R𝑁×𝑁 , is the shortest distance between the 𝑖th and 𝑗th node of
a weighted 𝑔-neighborhood graph. The construction of this weighted
graph and the computation of its shortest path distance are further
detailed in appendix C. We then find a reduced representation of 𝑄
by a rank 𝑟 truncation of its singular value decomposition (SVD) which
is

𝑄 = 𝐸𝛬𝑉 𝑇 ≈ 𝐸𝑟𝑍, (9)

where 𝑍 = 𝛬𝑟𝑉 𝑇
𝑟 is the 𝑟 × 𝑁 reduced representation after featuring.

Here, 𝐸 ∈ R𝑁×𝑁 , 𝑉 ∈ R𝑁×𝑁 , and 𝛬 ∈ R𝑁×𝑁 are respectively the
left, right singular vectors, and the diagonal matrix of singular values.
𝐸𝑟 = [𝐸∗1,… , 𝐸∗𝑟] ∈ R𝑁×𝑟, 𝑉𝑟 = [𝑉∗1,… , 𝑉∗𝑟] ∈ R𝑁×𝑟, and the diagonal
matrix 𝛬𝑟 ∈ R𝑟×𝑟 respectively contain the left, right singular vectors,
and singular values corresponding to the 𝑟 largest singular values in
𝛬. To guarantee the accuracy of reduction, the value of 𝑟 is chosen to
satisfy (

∑𝑟
𝑖=1 𝛬𝑖𝑖)∕(

∑𝑁
𝑖=1 𝛬𝑖𝑖) > 99%. After normalization and featuring,

the resulting training data set is {𝑋̃∗𝑖, 𝑍∗𝑖}𝑁𝑖=1 which represents a map-
ping from 𝓁-dimensional normalized inputs to 𝑟-dimensional reduced
outputs with 𝑟 ≪ 𝑁 .

As the preprocessed training inputs 𝑋̃ and outputs 𝑍 are passed
to the GPR module, 𝑟 GPs are respectively trained to fit {𝑋̃, 𝑍𝑖∗}𝑟𝑖=1.
GP is promising in providing accurate predictions with corresponding
variance using less lengthy training comparing with some other ma-
chine learning algorithms like neural networks. The multiple inputs and
single output regression between 𝑋̃ ∈ R𝓁×𝑁 and 𝑌𝑖∗ = 𝑍𝑖∗−

1
𝑁𝑍𝑖∗𝟏𝟏𝑇 ∈

R1×𝑁 for 𝑖 = 1,… , 𝑟 is a discrete GP with zero mean and positive
definite covariance matrix 𝛴(𝑖) ∈ R𝑁×𝑁 , which is

𝑌𝑖∗ ≈ (0, 𝛴(𝑖)), (10)

where the covariance matrix 𝛴(𝑖)(𝛩∗𝑖) arises from the discretization of
a covariance function (kernel) 𝑘(𝑥, 𝑥′; 𝜃(𝑖)) with hyper-parameters 𝜃(𝑖).
More specifically,

𝛴(𝑖) = 𝛴̄(𝑖) + 𝜀2𝑖 𝐼, (11)

where
𝛴̄(𝑖)
𝑝𝑞 ≈ 𝑘(𝑋̃∗𝑝, 𝑋̃∗𝑞 ; 𝜃(𝑖))

≐ 𝜃(𝑖)0 exp
(

−1
2

𝓁
∑

𝑗=1

(𝑋̃𝑗𝑝 − 𝑋̃𝑗𝑞)2

𝜃(𝑖)𝑗

)

, for 𝑝, 𝑞 = 1,… , 𝑁,
(12)

outlining the smoothness of GP as a squared exponential function of
𝑋̃ [31]. The strictly positive hyper-parameters 𝛩∗𝑖 = [𝜃(𝑖)0 , 𝜃(𝑖)1 ,… , 𝜃(𝑖)𝓁 ,
𝜀𝑖]𝑇 ∈ R𝓁+2 is optimally found by the maximum likelihood estimation.
We hereafter respectively denote the 𝑖th column of the strictly positive
matrix 𝛩̂ ∈ R(𝓁+2)×𝑟 and the covariance matrix 𝛴̂(𝑖) as the trained
hyper-parameters and the trained covariance matrix of the 𝑖th GP for
𝑖 = 1,… , 𝑟. For a given test input 𝑥 ∈ R𝓁 that is not in the training
4

data set, we first normalized it as 𝑥̃. Then, the prediction of its reduced
representation 𝑧̂ ∈ R𝑟 and the corresponding variances Var(𝑧̂) are

𝑧̂𝑖 = 𝐵𝑇
∗𝑖𝑆∗𝑖 +

1
𝑁

𝑍𝑖∗𝟏,

Var(𝑧̂𝑖) = 𝛩̂1𝑖 − 𝐵𝑇
∗𝑖(𝛴̂

(𝑖))−1𝐵∗𝑖, for 𝑖 = 1,… , 𝑟,
(13)

where the matrix 𝐵 ∈ R𝑁×𝑟 and the matrix 𝑆 ∈ R𝑁×𝑟 are respectively

𝐵∗𝑖 = [𝑘(𝑋̃∗1, 𝑥̃; 𝜃̂(𝑖)),… , 𝑘(𝑋̃∗𝑁 , 𝑥̃; 𝜃̂(𝑖))]𝑇 ,

𝑆∗𝑖 = (𝛴̂(𝑖))−1𝑌 𝑇
𝑖∗ , for 𝑖 = 1,… , 𝑟.

(14)

It is worth noting that only the matrix 𝐵 is necessary to be com-
puted online as it depends on the normalized test input 𝑥̃, while
the more computationally expensive matrix 𝑆 can be pre-computed
offline. Therefore, the prediction of 𝑧̂ as Eq. (13) can be implemented
instantaneously. We then reconstruct the full relative distance 𝑚̂ ∈ R𝑁

as

̂ = 𝐸𝑟𝑧̂, (15)

where 𝐸𝑟 is the 𝑟-dimensional orthonormal bases in Eq. (9), and 𝑚̂𝑖 is
the relative distance prediction between the temperature 𝑢(𝑥) and the
𝑖th training temperature 𝑈∗𝑖. In other words, the smaller 𝑚̂𝑖 is the closer
the training temperature 𝑈∗𝑖 might be. We thereby could select a subset
of training temperatures that are deemed to be more similar to the final
temperature prediction 𝑢(𝑥).

3.1.2. High-dimensional temperature prediction
According to the prediction of relative distances 𝑚̂, we select 𝑟̄

closest training data in 𝑈 as 𝑈̄ ∈ R𝑑×𝑟̄ where 𝑟̄ is normally se-
lected as a comparably small value (like 10 or 20). To extrapolate the
high-dimensional temperature we compute the weights 𝑤 ∈ R𝑟̄ of 𝑈̄ as

𝑤𝑖 ∝
1
𝑚̂𝑗

, such that
𝑟̄
∑

𝑖=1
𝑤𝑖 = 1, (16)

where the 𝑖th column 𝑈̄∗𝑖 weighted by 𝑤𝑖 is selected from the 𝑗th col-
umn in the original matrix of training temperatures 𝑈 , and eventually
the temperature prediction of the test input 𝑥 is

̂(𝑥) = 𝑈̄𝑤. (17)

3.2. Sketched emulator with local projection

While the reduced GP emulator is entirely data-driven, the sketched
emulator with local projection preserves the structure of the original
heat simulator with FEM as Eq. (7) but expedites it by local projection
and randomized sketching. Local projection targets at addressing the
issue of high dimensionality with the help of subsampling described in
Section 3.1.1. Randomized sketching, on the other hand, bypasses the
majority of burdensome computation caused by high nonlinearity. The
framework of the sketched emulator with local projection is as Fig. 3
where the module of local projection, randomized sketching and the
high-dimensional temperature predictor are respectively explained in
Sections 3.2.1, 3.2.2, and 3.2.3.
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Fig. 3. The framework of the sketched emulator with local projection where high-dimensional temperatures of given test inputs (laser power, scan speed, and time) are reconstructed
by the projected results produced from the emulator with subsampling-based local projection and randomized sketching.
3.2.1. Local projection
Recall the numerical solver with FEM as in Section 2.2 where the

temperature at 𝑡𝑛 = 𝑛𝛥𝑡 time instance is denoted as 𝑢𝑛 ∈ R𝑑 on
the discrete spatial domain with 𝑑 DoF. Instead of directly computing
Eq. (7), we can assume 𝑢𝑛 ≈ 𝛹𝑛𝑟𝑛 for a low-dimensional vector 𝑟𝑛 ∈ R𝑟

and project the FEM equations to the subspace spanned by the columns
of 𝛹𝑛 to yield

𝛹𝑇
𝑛 𝐴𝑛𝛹𝑛𝑟𝑛 = 𝛹𝑇

𝑛 𝑏𝑛, (18)

where the projection basis 𝛹𝑛 ∈ R𝑑×𝑟 is orthonormal with 𝑟 ≪ 𝑑. The
basis 𝛹𝑛 should span a space containing the final temperature result
𝑢𝑛 with as less dimension 𝑟 as possible. In the reduced GP emulator,
we select a subset of training temperatures and weight them according
to the relative distance prediction. It indicates that the selected subset
forms a basis of the final temperature prediction. Therefore, we de-
velop a similar subsampling scheme to generate local projection bases.
Given a test input 𝑥𝑛 = [𝑃 , 𝑣, 𝑡𝑛]𝑇 , we predict its relative distance 𝑚̂
following Eqs. (13)–(15). Then, temperature snapshots in the training
temperature matrix 𝑈 corresponding to the 𝑟 smallest values in 𝑚̂ are
selected to form a subset 𝑈̃ ∈ R𝑑×𝑟. The local projection basis 𝛹𝑛 is
the left singular vectors in the compact SVD of 𝑈̃ . We hereafter use
boldface to represent matrices and vectors after local projection such
as 𝐀𝐧 ∶= 𝛹𝑇

𝑛 𝐴𝑛𝛹𝑛 ∈ R𝑟×𝑟 and 𝐛𝐧 ∶= 𝛹𝑇
𝑛 𝑏𝑛 ∈ R𝑟. The discretized heat

equation after local projection is rewritten as

𝐀𝐧𝑟𝑛 = 𝐛𝐧. (19)

One advantage of local projection is that it does not suffer from the
curse of dimensionality as the number of inputs increases and/or each
input has a larger range of interest. Both will cause a larger training
data set (larger 𝑁) yielding more resource cost in training and storage,
but once we get the relative distance predictor the dimension after pro-
jection 𝑟 remains small so the online execution time does not increase.
However, the construction of local bases needs to be implemented
online since in subsampling we use the values of test inputs which
are not known offline, while the construction of global basis with POD
method [23] can be finished offline since it constructs the global basis
as the left singular vectors of the compact SVD of all temperature
snapshots available thus independent from test inputs. In other words,
local projection sacrifices the online time cost required to generate local
project bases to further reduce the projected dimension from 𝑁 to 𝑟
with 𝑟 ≪ 𝑁 .

Nonetheless, the projected model remains time-consuming due to its
high nonlinearity. After local projection, the computation of nonlinear
temperature-dependent functions in both 𝐀 and 𝐛 are not reduced.
The number of nonlinear computations still depends on the original
fine spatial discretization, the order of nonlinearity, and Gaussian
quadrature rules. The difficulty of nonlinearity and its solution with
randomized sketching are further elaborated in the following section.
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3.2.2. Randomized sketching
The nonlinearity of the heat equation comes from temperature-

dependent thermal properties and radiation heat loss, all of which are
modeled as nonlinear functions. As stated in Appendices B.1 and B.2,
the temperature-dependent parts of 𝐴𝑛 and 𝑏𝑛, such as the stiffness
matrix 𝐾𝑛 ∈ R𝑑×𝑑 , the mass matrix 𝑀𝑛 ∈ R𝑑×𝑑 , and the nonlinear part
of radiation heat loss 𝑅𝑛 ∈ R𝑑×𝑑 , need to integrate the corresponding
nonlinear functions over the domain discretized into 𝑑 nodes and 𝑒
tetrahedral elements. For example, the mass matrix 𝑀𝑛 is defined as

𝑀𝑛𝑖𝑗 = ∫𝛺
𝜌(𝑢𝑛)𝑐(𝑢𝑛)𝜙𝑖𝜙𝑗d𝑥, (20)

where 𝜙𝑖 and 𝜙𝑗 are respectively the basis function of the 𝑖th and 𝑗th
node in FEM. The integration in Eq. (20) is approximated by taking
𝑛𝑚 integration points in each element based on Gaussian quadrature
rules [28,29], which is

𝑀𝑛 ≈
𝑛𝑚
∑

𝜏=1
𝑊 (𝜏)𝑇

𝑚 𝐷(𝜏)
𝑚 𝑊 (𝜏)

𝑚 , (21)

where 𝑊 (𝜏)
𝑚 ∈ R𝑒×𝑑 is the matrix of basis functions in FEM evaluated at

the 𝜏th integration point of each element, and 𝐷(𝜏)
𝑚 ∈ R𝑒×𝑒 is a diagonal

matrix containing the product 𝜌(𝑢𝑛)𝑐(𝑢𝑛) evaluated by the temperature
at the 𝜏th integration point of each element. Further details of inte-
gral definitions and Gaussian quadrature approximations are listed in
Appendices B.2 and B.3. After local projection, the projected mass
matrix 𝐌𝐧 ∈ R𝑟×𝑟 becomes

𝐌𝐧 =
𝑛𝑚
∑

𝜏=1
𝛹𝑇
𝑛 𝑊

(𝜏)𝑇
𝑚 𝐷(𝜏)

𝑚 𝑊 (𝜏)
𝑚 𝛹𝑛 =

𝑛𝑚
∑

𝜏=1
𝐖(𝝉)𝐓

𝐦 𝐷(𝜏)
𝑚 𝐖(𝝉)

𝐦 , (22)

where 𝐖(𝝉)
𝐦 = 𝑊 (𝜏)

𝑚 𝛹𝑛 ∈ R𝑒×𝑟 for 𝜏 = 1,… , 𝑛𝑚 can be pre-computed
since they are not temperature-dependent. The diagonals of 𝐷(𝜏)

𝑚 for
𝜏 = 1,… , 𝑛𝑚, however, have a total of 𝑒 × 𝑛𝑚 values awaiting for non-
linear computation of density and specific heat capacity at integration
points in each Picard iteration. It is time-consuming as finer spatial
discretization will increase 𝑒 and higher order of nonlinearity will
increase 𝑛𝑚. Accordingly, the expensive time cost due to nonlinearity
is not reduced by a local projection which is also true for other
temperature-dependent matrices like 𝐊𝐧 and 𝐑𝐧. It is a major obstacle
in implementing the projected model in real-time. To address this issue,
we introduce randomized sketching based on Bernoulli sampling. Take
the projected mass matrix 𝐌𝐧 as an example, the sum in Eq. (22) can
be rewritten as the sum of 𝑛𝑚𝑒 sparse matrices which is

𝐌𝐧 = 𝑇
𝑚𝑚𝑚 =

𝑛𝑚𝑒
∑

𝑖=1
𝑚𝑖𝑖

𝑇
𝑚𝑖∗

𝑚𝑖∗
, (23)

where the thin matrix 𝑚 ∈ R𝑛𝑚𝑒×𝑟 and the diagonal matrix 𝑚 ∈
R𝑛𝑚𝑒×𝑛𝑚𝑒 are respectively

𝑚 =
⎡

⎢

⎢

⎣

𝐖𝐦
(1)

⋮
𝐖 (𝑛𝑚)

⎤

⎥

⎥

⎦

, and 𝑚 =

⎡

⎢

⎢

⎢

𝐷(1)
𝑚

⋱
(𝑛𝑚)

⎤

⎥

⎥

⎥

. (24)

𝐦

⎣

𝐷𝑚
⎦
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𝑟

𝑢

We then sketch 𝐌𝐧 with only some of these sparse matrices weighted
by a factor. Namely,

𝐌̂𝐧 =
𝑛𝑚𝑒
∑

𝑖=1
𝜉𝑖
𝑚𝑖𝑖

𝜂𝑖
𝑇

𝑚𝑖∗
𝑚𝑖∗

, (25)

where 𝜉𝑖 is a Bernoulli random variable with probability of success
0 ⩽ 𝜂𝑖 ⩽ 1. We only manage to dramatically reduce evaluating 𝑚𝑖𝑖
without much accuracy compromise when many 𝜉𝑖 = 0 and ‖𝐌̂𝐧 −𝐌𝐧‖

is small with a high probability. To fulfill this, we set the probability 𝜂𝑖
according to the thin matrix 𝑚 as Algorithm 1 [32]. The row selection
scheme is accordingly generated as the row selection vector 𝜉𝑖 and the
corresponding weight 1∕𝜂𝑖 for 𝑖 = 1,… , 𝑛𝑚𝑒.

Algorithm 1 The row selection and corresponding probability with
randomized sketching
Input: a thin matrix 𝑚 ∈ R𝑛𝑚𝑒×𝑟, a constant 𝜄.
Output: a row selection vector 𝜉 ∈ R𝑛𝑚𝑒, a probability vector 𝜂 ∈ R𝑛𝑚𝑒.
1: 𝛷 ∈ R𝑛𝑚𝑒×𝑟 is the left singular vectors in the compact SVD of 𝑚.
2: for 𝑖 = 1 to 𝑛𝑚𝑒 do
3: 𝜂𝑖 = min{1, 𝜄‖𝛷𝑖∗‖

2]}.
4: 𝜉𝑖 is generated as a Bernoulli random number with the success

probability 𝜂𝑖.
5: end for

3.2.3. High-dimensional temperature prediction
Similar to the randomized sketching of the projected mass matrix

𝐌𝐧, we can sketch other temperature-dependent matrices in the locally
projected model. The sketched emulator with local projection then
becomes

𝐀̂𝐧 𝑟̂𝑛 = 𝐛̂𝐧. (26)

After solving it with Picard iteration, we obtain an accurate result of
̂𝑛. The prediction of high-dimensional temperature 𝑢̂𝑛 is then recon-
structed by the local projection basis 𝛹𝑛 following

̂𝑛 = 𝛹𝑛 𝑟̂𝑛. (27)

4. Results and discussion

We develop a numerical experiment which is a printing process on a
rectangular parallelepiped AlSi10Mg powder bed evolving from one to
three layers in an argon atmosphere. The FEM-based numerical solver
with fine spatial–temporal discretization, as a high-fidelity (ground-
truth) heat simulation, is employed as a reference model. Its spatial
domain is discretized with adaptive meshing as Fig. 4 to maintain the
complexity to manageable levels as more layers are incorporated. While
the printing area on the top layer keeps fine meshes being tetrahedrons
with length 0.01 mm, the remaining meshes are gradually coarsened
to tetrahedrons with length 0.1 mm. Under this adaptive mesh scheme,
the DoFs in the one to three-layer domain are respectively 𝑑1 = 13860,
𝑑2 = 13650, and 𝑑3 = 14514. The scanning pattern plotted as red
lines in Fig. 4 contains three straight lines scanned back and forth. The
performance analysis is evaluated by model accuracy and online time
cost compared between the reference simulator and the two SMs: the
reduced GP emulator denoted as 1 and the sketched emulator with
local projection denoted as 2. All tests are run in Matlab R2020b on
an Intel Core i5-9400F CPU at 2.90 GHz, 16 GB RAM computer.

4.1. Data generation

The thermal model with FEM following Eqs. (1)–(7) is validated
with published experiments in [11] where LPBF processes with
AlSi10Mg material in argon atmosphere were experimented and sim-
ulated. In [11], the computer-controlled selective laser melting process
6

Fig. 4. The meshing and scanning pattern of the three-layer domain. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 1
Model parameters of the data generator [11,12,33].

Symbol Definition (Unit) Value

𝛼 Absorptivity 0.09
𝜀 Emissivity 0.04
𝛾 Laser spot radius (μm) 35
𝑢𝑎 Ambient temperature (◦C ) 20
𝑢𝑏 Building platform temperature (◦C) 200
ℎ Heat convection coefficient (W∕(m2K)) 10
– The size of one powder layer (mm) 1.54 × 0.7 × 0.1
𝐿 Latent heat of AlSi10Mg (kJ/kg) 423
𝜙𝑝 Powder bed porosity 0.4
𝜎𝑠 Stefan–Boltzmann constant (W∕(m2K4)) 5.67 × 10−8

was conducted by the apparatus consisted of a YLR-500-SM ytterbium
fiber laser and the spherical powder it used was 99.7% purity AlSi10Mg
particles with an average size about 30 μm. Its numerical simulation
was taken by the ANSYS Multiphysics finite element package. With the
parameters in [11], we validate temperatures generated by our thermal
model in terms of highest temperature, maximum temperature gradient
and melt pool size. The detailed comparison is listed as Tables D.1
and D.2 in Appendix D. The data generator is the thermal simulator
with FEM. We hereby specify the model parameters as Table 1 and
the thermal properties of AlSi10Mg and argon in Table A.1 in Ap-
pendix A. Sufficient training and testing data are essential in fulfilling
the performance analysis. As discussed in previous sections the training
input is of the form 𝑋∗𝑗 = [𝑃𝑗 , 𝑣𝑗 , 𝑡𝑗 ]𝑇 for 𝑗 = 1,… , 𝑁 containing laser
power 𝑃 , scan speed 𝑣, and time 𝑡. In the absence of the information on
printing parameter distributions, we apply a uniform grid search in the
admissible range of laser power 𝑃 : 150–300 W with an interval of 15 W,
scan speed 𝑣: 100–400 mm/s with an interval of 30 mm/s, and time
𝑡: the whole printing process with 30 time steps. With this sampling
scheme, we respectively select 11, 11, and 30 different values for laser
power, scan speed and time yielding 3630 (11 × 11 × 30) pairs of data
{𝑋(𝑖)

∗𝑗 , 𝑈
(𝑖)
∗𝑗 }

3630
𝑗=1 to construct the training data set of the 𝑖-layer domain

𝑋(𝑖) ∈ R3×3630 and 𝑈 (𝑖) ∈ R𝑑𝑖×3630 for 𝑖 = 1, 2, 3. The dimensionality of
training temperatures 𝑑𝑖, however, is the number of DoF in the 𝑖-layer
domain. Additionally, 9 simulations with different values of laser power
(160, 220, 280) W and scan speed (115, 235, 355) mm/s are generated as
the reference of tests, which yields 270 pairs of test inputs 𝑋(𝑖)

𝑡 ∈ R3×270

and the corresponding reference temperatures 𝑈 (𝑖)
𝑡 ∈ R𝑑𝑖×270 in the

𝑖-layer domain with DoF 𝑑𝑖 for 𝑖 = 1, 2, 3.

4.2. The performance of reduced GP emulator

4.2.1. Dimension reduction
In the pre-processing of 1, the number of GP is reduced by a nonlin-

ear dimension reduction technique. There are two important values in
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Table 2
The dimension reduction in 1.

Layer Reduced dimension Reduction percentage (%)

1 91 97.49
2 152 95.81
3 234 93.55

Fig. 5. The boxplot of relative errors between FEM and 1.

this method: one is the neighborhood size 𝑔, the value of which should
keep the reachability between vertices in the weighted graph. In our
case, we set 𝑔 = 200. Another one is the target of dimension reduction
𝑟. It takes the minimum value that satisfies (

∑𝑟
𝑖=1 𝛬𝑖𝑖)∕(

∑𝑁
𝑖=1 𝛬𝑖𝑖) >

99% where 𝛬 is the singular value diagonal matrix in Eq. (9). With
the training temperature snapshots 𝑈 (𝑖) for 𝑖 = 1, 2, 3, the reduced
dimension, as in Table 2, are respectively 91, 152, and 234. In com-
parison with the number of training data 𝑁 = 3630, it is a dramatic
reduction respectively cutting down 97.49%, 95.81%, and 93.55% of
GPs required thus less effort in both training and prediction. It is also
observed that the percentage of dimension reduction is decreasing as
more layers are superimposed. One reasonable explanation is that the
temperature and phase information of previous layers are kept, so the
information is less redundant in the domain with more layers. Though
this decreasing trend exists, it is not significant enough to have a
detrimental effect on online time cost.

4.2.2. Prediction accuracy
Given test inputs 𝑋(𝑖)

𝑡 in the 𝑖-layer domain for 𝑖 = 1, 2, 3, we predict
the corresponding temperatures as 𝑈̂𝑡

(𝑖) = 1(𝑋
(𝑖)
𝑡 ). The prediction

accuracy hereafter is evaluated by relative errors. For example, the
relative error of the 𝑗th test in the 𝑖-layer domain is ‖𝑈 (𝑖)

𝑡∗𝑗
−𝑈̂ (𝑖)

𝑡∗𝑗
‖∕‖𝑈 (𝑖)

𝑡∗𝑗
‖.

To evaluate the accuracy of all predictions, we graphically plot the
spread of the relative errors of temperature profiles as the box plots
in Fig. 5 where relative errors of all tests in the 𝑖-layer domain are
plotted as the 𝑖th box. In a box, the 25th percentile (𝑄1), median (𝑄2),
and 75th percentile (𝑄3) are respectively drawn as its bottom, red and
top line. Two whiskers are additionally extended with a distance of
1.5 × (𝑄3 −𝑄1) where 𝑄3 −𝑄1 is also known as the interquartile range
(IQR). Red crosses beyond whiskers represent outliers. We can tell from
Fig. 5 that the majority of temperatures can be accurately predicted.
Specifically, there are respectively around 17.78% and 99.38% of tests
having relative errors below 1% and 5%, while the maximum relative
error is around 6.54%.

Despite the relative error of temperature profiles, we also evaluate
the prediction accuracy of thermal histories and melt pools. Take the
printing process with laser power 280 W and scan speed 235 mm/s
as an example, three positions selected from different scanned lines
and different layers are used to compare the simulated and emu-
lated results. The coordinates of these 3 positions are specified as
𝑠(1) = (0.47, 0.40, 0.10) mm, 𝑠(2) = (0.85, 0.35, 0.20) mm, and 𝑠(3) =
(1.13, 0.30, 0.30) mm, the locations of which are shown as Fig. 6. Ther-
mal histories of 𝑠(𝑖) for 𝑖 = 1, 2, 3 throughout the three-layer printing
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Fig. 6. The selected positions 𝑠(𝑖) for 𝑖 = 1, 2, 3 to compare thermal histories and melt
pools.

are compared with the reference simulator in Fig. 7, the relative errors
of which are respectively 4.49%, 4.51%, and 4.41%. The thermal
history of one position starts from the layer it locates to the end of
printing. In each layer of printing, three peaks are reached as the
laser beam following the scan path of three straight lines approaches.
The highest peak, however, appears when the laser beam passes right
through the selected position yielding melt pools. It is also where
obvious prediction discrepancy occurs while the general trend of curves
is accurately approximated. The temperature distribution around melt
pools at position 𝑠(𝑖) for 𝑖 = 1, 2, 3 are compared as Fig. 8 where the
spatial distribution of relative error are also displayed. Higher relative
errors concentrate around the areas with higher temperature, in which
the maximums of relative errors are respectively 8.82%, 8.04%, and
8.38%. The highest temperature of melt pools at 𝑠(𝑖) for 𝑖 = 1, 2, 3 are
respectively 2252.0 ◦C, 2308.2 ◦C, and 2462.8 ◦C in the FEM simulator,
while with 1 they are respectively emulated as 2390.7 ◦C, 2446.4 ◦C,
and 2590.3 ◦C with relative error 6.16%, 5.99%, and 5.18%. Based
on the comparison of the temperature colormaps around melt pools,
it is indicated that the shape of melt pools is generally emulated. In
specific, we compare the size of melt pools as Table 3 where the length,
width, and depth of melt pool are respectively the maximum span of the
melted area in 𝑥1, 𝑥2, and 𝑥3 directions. At positions 𝑠(𝑖) for 𝑖 = 1, 2, 3,
the melt pool sizes are respectively predicted with relative error below
4.56%, 6.44%, and 3.10% but none of the emulated sizes is predicted
with high precision (< 1%).

4.2.3. Time cost reduction
With the level of accuracy compromise described above, a dramatic

reduction of online time cost is accomplished since only swift com-
putations are left for online execution. In specific, the comparison of
time cost is listed as Table 4. Though the preparation time of data gen-
eration and training are required offline, the online execution time is
respectively reduced from 3.88 min, 4.21 min, and 4.61 min to 0.024 s,
0.035 s, and 0.049 s on average in the one to three-layer domain. The
dramatic reduction of time cost benefits from three advantages of the
reduced GP emulator. First, the purely data-driven approach skips the
burdensome computation caused by nonlinearity like Picard iteration
and Gaussian quadratures. Second, only a comparably small number of
GPs are required after nonlinear dimension reduction, which cuts the
time cost of offline training and online prediction. Third, the prediction
as Eq. (13) manages to simultaneously predict all GPs by executing the
dot product between matrices instead of computing the univariate GP
individually. While the performance in reducing online execution time
is satisfactory, the compromise of accuracy is evident. Therefore, 1 is
suitable for applications that ask for real-time implementations but are
endurable to some accuracy compromise.
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Fig. 7. The thermal history comparison between FEM and 1.
Table 3
The melt pool size comparison between FEM and 1.

Size 𝑠(1) 𝑠(2) 𝑠(3)

Length Width Depth Length Width Depth Length Width Depth

FEM (μm) 132.78 93.76 66.94 162.58 100.75 80.80 192.14 118.92 93.24
1 (μm) 138.84 96.74 68.97 171.69 103.74 86.00 197.63 122.60 95.86
Relative error (%) 4.56 3.17 3.03 5.60 2.97 6.44 2.86 3.10 2.81
Fig. 8. The melt pool comparison between FEM and 1.
8
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Table 4
The time cost comparison between FEM and 1.

Layer Data generation (day) Training (h) Average execution time

FEM (min) Prediction (s)

1 12.74 16.71 3.88 0.024
2 15.74 27.69 4.21 0.035
3 16.53 40.07 4.61 0.049

Fig. 9. The relative errors between FEM and 2.

4.3. The performance of sketched emulator with local projection

For the performance analysis of the SM 2, we develop temperature
predictions with the same test inputs 𝑋(𝑖)

𝑡 for the convenience of com-
parison. For each pair of test input, specifically 𝑋(𝑖)

𝑡∗𝑗
for 𝑗 = 1,… , 270, a

local projection basis is formed by selecting 30 temperature snapshots
from 𝑈 (𝑖) that are predicted as the closest ones to 𝑈 (𝑖)

𝑡∗𝑗
. After projecting

and sketching, the temperature profiles are predicted as 𝑈̂ (𝑖)
𝑡 = 2(𝑋

(𝑖)
𝑡 )

or 𝑖 = 1, 2, 3.

.3.1. Prediction accuracy
Relative errors between 𝑈 (𝑖)

𝑡 and 𝑈̂ (𝑖)
𝑡 spread as the boxplot in Fig. 9,

rom which we can tell that 2 is very accurate. 97.78% of relative
rrors are less than 1%, and the maximum relative error is 2.09%.
e then use the same example (positions 𝑠(1), 𝑠(2), and 𝑠(3) in the

hermal simulation with laser power 𝑃 = 280 W and scan speed
= 235 mm/s) to show the accuracy of 2 in emulating thermal

istories and melt pools, which are respectively drawn in Figs. 10 and
1. At positions 𝑠(𝑖) for 𝑖 = 1, 2, 3, the thermal histories are respectively
redicted with relative errors 0.24%, 0.27%, and 0.25%. Throughout
he entire printing process, the temperature curves are finely recovered
ndicating precise predictions of the peak temperature, heating and
ooling rate. The spatial distribution of temperatures around melt pools
t 𝑠(𝑖) for 𝑖 = 1, 2, 3 are delineated in Fig. 11 where relative errors
f temperature prediction are respectively below 1.26%, 0.90%, and
.12%. In comparison with FEM, the highest temperatures estimated as
256.2 ◦C, 2310.0 ◦C, and 2462.9 ◦C with 2 respectively have relative
rrors 0.19%, 0.08%, and 0.006%. Listed in Table 5, with 2 the width
nd depth of 𝑠(1), the width of 𝑠(2), and the width of 𝑠(3) are exactly
mulated while the maximum relative error of other melt pool size
redictions is 0.82%.

.3.2. Time cost reduction
Since the accuracy compromise is small, it is expected that 2 needs

ore running time. While the preparation time of data generation
nd training is the same as 1, the total online execution time, listed
s 41.50 s, 41.67 s, and 43.51 s on average for the one to three
ayers domain in Table 6, is composed of three parts: projection,
ketching, and prediction. It is noted that in the 𝑖-layer domain for
= 1, 2, 3 the average execution time of projection (2.17 s, 2.66 s,
9

nd 2.78 s) and sketching (6.19 s, 6.52 s, and 6.88 s) is much less
than prediction (33.14 s, 32.49 s, and 33.85 s) since projection and
sketching only needs to be computed once with one set of test inputs
while the prediction part includes the Picard iteration taking several
runs to converge. As the number of layers increases, the execution
time of projection, sketching, and prediction slightly increases but
meanwhile the percentage of time cost reduction also increases. It
means that compared with FEM the online running time of 2 is less
sensitive to more elements in the discretized domain. However, the
online execution time is still observed with a significant reduction
respectively saving 82.17%, 83.50%, and 84.27% of time cost in the
one to three layers domain. The promising advantage of 2 is that
it expedites the high-fidelity simulator with a small compromise of
accuracy. 2 manages to make most predictions with relative error less
than 1% using no more than 18% of online running time required by
FEM, thus its performance is encouraging for applications that require
accurate thermal simulations but do not excessively demand real-time
implementations.

4.4. Performance comparison

Two time-efficient SMs: the reduced GP emulator 1 and the
sketched emulator with local projection 2 are compared with the
same training data set {𝑋(𝑖), 𝑈 (𝑖)} and test data set {𝑋(𝑖)

𝑡 , 𝑈 (𝑖)
𝑡 } in the

𝑖-layer domain for 𝑖 = 1, 2, 3. Both SMs aim to reduce the online
computation time while maintaining accuracy. However, they are, by
design, different trade-offs between accuracy and time cost. 1 manages
to predict temperatures very fast (0.024 s, 0.035 s, and 0.049 s on
average for one to three layers) with relatively higher prediction errors
(17.78% and 99.38% of tests have relative errors less than 1% and
5%), while 2 produces very accurate results (97.78% of tests have
relative errors less than 1%) in a comparably longer execution time
(41.50 s, 41.67 s, and 43.51 s on average for one to three layers). In
other words, 1 is biased on time cost reduction while 2 is biased on
prediction accuracy. As a data-driven method with nonlinear dimension
reduction, 1 highly relies on finding representative training data set
to guarantee accuracy. This reliance also exists in 2 since it uses the
same relative distance predictor in 1 to construct local projection
bases. Nonetheless, the generator of local projection bases has less
accuracy requirement in relative distance prediction as all subsampled
temperature snapshots equally contribute to local projection bases,
while in 1 the exact value and order of relative distance prediction
matters since they are used in computing proper weights to extrapolate
the high-dimensional temperature predictions. This difference makes
2 more robust in a different sampling of training data.

We can tell from the analysis above that both SMs have good
performance in the reduction of time cost and the maintenance of
accuracy. The less accurate 1 still suppresses most prediction error
less than 5% while the slower 2 still manages to save more than
82% of time cost. We could select 1 or 2 based on the requirement
of applications. If only a general description of temperature profiles
is enough, 1 is a more effective choice. Wherever precise analysis
is necessary, 2 is preferable when the execution time in dozens of
seconds is acceptable.

5. Conclusions

Together with a nonlinear thermal model of LPBF using FEM, two
time-efficient SMs: the reduced GP emulator and the sketched emulator
with local projection are proposed. To display the performance of two
SMs, a numerical experiment is displayed, which is a three-layer print-
ing process scanning three straight lines back and forth with AlSi10Mg
material and argon atmosphere. One SM is a reduced GP emulator
which first predicts relative distance between temperature profiles
with GPR and nonlinear dimension reduction and then extrapolates
high-dimensional temperature predictions based on this prediction. It
is implemented in real-time (the average execution time is 0.036 s)
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Fig. 10. The thermal history comparison between FEM and 2.
Table 5
The melt pool size comparison between FEM and 2.

Position 𝑠(1) 𝑠(2) 𝑠(3)

Length Width Depth Length Width Depth Length Width Depth

2 (μm) 133.00 93.76 66.94 163.91 100.75 81.13 191.00 118.92 92.76
Relative error (%) 0.16 < 0.01 < 0.01 0.82 < 0.01 0.41 0.59 < 0.01 0.51
Fig. 11. The melt pool comparison between FEM and 2.
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𝜅

Table 6
The online time cost of 2.

Layer Average execution time

Projection (s) Sketching (s) Prediction (s) Total (s) Reduction (%)

1 2.17 6.19 33.14 41.50 82.17
2 2.66 6.52 32.49 41.67 83.50
3 2.78 6.88 33.85 43.51 84.27

while respectively keeping 17.78% and 99.38% of tests with relative
errors below 1% and 5%. Another SM, a sketched emulator with local
projection, is an expedited FEM solver. It first locally projects the FEM
with bases formed by subsampled training data based on the relative
distance prediction and then bypasses most nonlinear computation via
randomized sketching. It is a very accurate SM (97.78% of tests with
relative errors below 1%) while taking a comparably longer time online
(the average execution time is 42.23 s). However, it still significantly
reduces more than 82% of execution time compared with FEM. Despite
the accuracy and time cost of temperature profile predictions, we also
compare thermal histories and melt pools at selected positions. Both
are finely emulated by the sketched emulator with local projection
while being roughly recovered by the reduced GP emulator with visible
deviation. The performance of the two SMs indicates that they are
different trade-offs between accuracy and time cost: the reduced GP
emulator outperforms in online execution time while the sketched em-
ulator with local projection outperforms in model accuracy. In addition,
though the data-driven relative distance predictor is used in both SMs,
the subsampled training data based on relative distance predictions
equally contribute in local bases of the sketched emulator while the
exact values of relative distance predictions are used to weight the
subsampled training data in the reduced GP emulator. This makes the
sketched emulator with local projection less reliant on finding repre-
sentative training data since it is more robust to the prediction error of
relative distances. Overall, it is reasonable to select one SM based on
the demand in precision and time cost for different applications. Both
provide fast computations of temperature profiles, thermal histories,
and melt pool sizes, the values of which are necessary for the models
of microstructure and residual stress yielding the prediction of the
final part’s mechanical properties, deformation, and fatigue life. They,
therefore, take one step further in facilitating the quality assurance of
final parts. Moreover, though these two SMs are proposed for LPBF,
they are essentially applicable for other thermal-driven AM by altering
domain shape, heat source model, and so on. The future work will focus
on how to properly apply these two SMs in the thermal analysis of
LPBF such as defects prediction, uncertainty management, parameter
optimization, and closed-loop controls.
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Appendix A. Nonlinear thermal properties

A.1. Latent heat

The latent heat effect during the phase change between solid and
liquid is characterized in the model of specific heat capacity 𝑐, which
is

𝑐 = 𝑐 + 𝐿
𝜕𝑓𝑝
𝜕𝑢

, (A.1)

where 𝐿 is the specific latent heat of materials. 𝑓𝑝 =
1∕(1 + exp (−𝛽(𝑢 − (𝑢𝑠 + 𝑢𝑙)∕2))) is a temperature-dependent sigmoid
function, in which 𝛽 > 0 is the logistic growth rate controlling
smoothness. 𝑢𝑠 and 𝑢𝑙 are respectively the lower and upper bound of
mushy area [13].

A.2. Anisotropy of thermal conductivity

The anisotropic enhanced thermal conductivity model of thermal
conductivity means that the thermal conductivity in the liquid phase
is proportionally different along with the three mutually perpendicular
directions in 𝑥 ∶= [𝑥1, 𝑥2, 𝑥3]. In details, the elliptic term in Eq. (1)
becomes

∇ ⋅ 𝜅⃗∇𝑢 ∶=
3
∑

𝑖,𝑗=1

𝜕
𝜕𝑥𝑖

[

𝜅̄𝑖𝑗
] 𝜕𝑢
𝜕𝑥𝑗

(A.2)

where 𝜅̄𝑖𝑗 = 0 if 𝑖 ≠ 𝑗, and 𝜅̄11 ∶ 𝜅̄22 ∶ 𝜅̄33 = 𝜆1 ∶ 𝜆2 ∶ 𝜆3. The three-entry
vector 𝜆 ∶= [𝜆1, 𝜆2, 𝜆3]𝑇 scales the anisotropic thermal conductivity in
liquid phase [13].

A.3. Polynomial fitting

The temperature-dependent thermal properties including thermal
conductivity 𝜅̄, density 𝜌, and specific heat capacity 𝑐 are modeled
by fitting experimental data. These thermal properties are modeled as
piecewise polynomial functions in three temperature ranges: 𝑢 ⩽ 𝑢𝑠,
𝑢𝑠 < 𝑢 < 𝑢𝑙, and 𝑢 ⩾ 𝑢𝑙, which respectively indicates the solid phase,
the mushy area, and the liquid phase [11]. The fitted polynomials of
AlSi10Mg and argon are detailed in Table A.1.

A.4. Thermal properties of powder

For the temperature range 𝑢 ⩽ 𝑢𝑠, the materials have two phases
in LPBF: powder and solid. Different from thermal properties of solid
which are fitted polynomials based on experimental data, thermal
properties of powder denoted as 𝜅̄𝑝, 𝜌𝑝 and 𝑐𝑝 in Eq. (A.3) are modeled
according to the porosity of powder bed 𝜙𝑝, the materials, and the inert
gas atmosphere [34,35].

̄𝑝 = (1 − 𝜙𝑝)1.5𝜅̄, 𝜌𝑝 = (1 − 𝜙𝑝)𝜌 + 𝜙𝑝𝜌𝑎, 𝑐𝑝 = (1 − 𝜙𝑝)𝑐 + 𝜙𝑝𝑐𝑎, (A.3)

where the density 𝜌𝑎 and specific heat capacity 𝑐𝑎 of the surrounded
inert gas is similarly modeled as polynomials fitted by experimental
data.

https://doi.org/10.1016/j.addma.2022.103122
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Table A.1
The fitted polynomial functions of thermal properties [11,36–39].

Symbol Definition (Unit) Fitted polynomials

𝜅̄ Thermal conductivity of AlSi10Mg (W/mK)
⎧

⎪

⎨

⎪

⎩

8.36 × 10−8𝑢3 − 1.67 × 10−4𝑢2 + 0.12𝑢 + 144.76, 𝑢 ⩽ 𝑢𝑠
− 1.91𝑢 + 1257.7, 𝑢𝑠 < 𝑢 < 𝑢𝑙
0.0088𝑢 + 78.46, 𝑢 ⩾ 𝑢𝑙

𝜌 Density of AlSi10Mg (kg/m3)
⎧

⎪

⎨

⎪

⎩

− 8.63 × 10−4𝑢2 + 0.17𝑢 + 2634.2, 𝑢 ⩽ 𝑢𝑠
− 0.85𝑢 + 2922.6, 𝑢𝑠 < 𝑢 < 𝑢𝑙
− 0.33𝑢 + 2613.2, 𝑢 ⩾ 𝑢𝑙

𝑐 Specific heat capacity of AlSi10Mg (J/kgK)
⎧

⎪

⎨

⎪

⎩

0.0011𝑢2 + 0.0168𝑢 + 741.16, 𝑢 ⩽ 𝑢𝑠
0.32𝑢 + 924.04, 𝑢𝑠 < 𝑢 < 𝑢𝑙
0.0068𝑢 + 1134.3, 𝑢 ⩾ 𝑢𝑙

𝜌𝑎 Density of argon (kg/m3) 3.54 × 10−13𝑢4 − 1.96 × 10−9𝑢3 + 3.93 × 10−6𝑢2 − 0.0036𝑢 + 1.65
𝑐𝑎 Specific heat capacity of argon (J/kgK) 520
Table B.1
The formulas of matrices in FEM.

Symbol Integral formula (𝑖, 𝑗 = 1,… , 𝑑, 𝑗 = 1,… , 𝑑) Gaussian quadrature approximation

𝐾𝑛 𝐾𝑛𝑖𝑗 = ∫𝛺 𝜅⃗(𝑢𝑛)∇𝜙𝑖 ⋅ ∇𝜙𝑗d𝑥 𝑊 𝑇
𝑘 𝐷𝑘𝑊𝑘

𝑀𝑛 𝑀𝑛𝑖𝑗 = ∫𝛺 𝜌(𝑢𝑛)𝑐(𝑢𝑛)𝜙𝑖𝜙𝑗d𝑥
∑𝑛𝑚

𝜏=1 𝑊
(𝜏)𝑇
𝑚 𝐷(𝜏)

𝑚 𝑊 (𝜏)
𝑚

𝑅𝑛 𝑅𝑛𝑖𝑗 = ∫𝛤𝑡∪𝛤𝑠
𝜎𝜀𝑢3𝑛𝜙𝑖𝜙𝑗d𝑠

∑𝑛𝑟
𝜏=1 𝑊

(𝜏)𝑇
𝑟 𝐷(𝜏)

𝑟 𝑊 (𝜏)
𝑟

𝐶 𝐶𝑖𝑗 = ∫𝛤𝑡∪𝛤𝑠
ℎ𝜙𝑖𝜙𝑗d𝑠

∑𝑛𝑐
𝜏=1 𝑊

(𝜏)𝑇
𝑐 𝐷(𝜏)

𝑐 𝑊 (𝜏)
𝑐

𝑎 𝑎𝑖 = ∫𝛤𝑡∪𝛤𝑠
(ℎ𝑢𝑎 + 𝜎𝜀𝑢4𝑎)𝜙𝑖d𝑠 𝑊 𝑇

𝑎 𝑑𝑎
𝑙 𝑙𝑖 = ∫𝛤𝑡∪𝛤𝑠

𝑞ℎ𝜙𝑖d𝑠
∑𝑛𝑙

𝜏=1 𝑊
(𝜏)𝑇
𝑙 𝑑(𝜏)

𝑙
𝐾̄𝑛 𝐾̄𝑛𝑖𝑗 = ∫𝛺 𝜅⃗(𝑢𝑛)∇𝜙𝑖 ⋅ ∇𝜙𝑗d𝑥 𝑊 𝑇

𝑘 𝐷𝑘𝑊̄𝑘

𝑅̄𝑛 𝑅̄𝑛𝑖𝑗 = ∫𝛤𝑡∪𝛤𝑠
𝜎𝜀𝑢3𝑛𝜙𝑖𝜙𝑗d𝑠

∑𝑛𝑟
𝜏=1 𝑊

(𝜏)𝑇
𝑟 𝐷(𝜏)

𝑟 𝑊̄ (𝜏)
𝑟

𝐶̄ 𝐶̄𝑖𝑗 = ∫𝛤𝑡∪𝛤𝑠
ℎ𝜙𝑖𝜙𝑗d𝑠

∑𝑛𝑐
𝜏=1 𝑊

(𝜏)𝑇
𝑐 𝐷(𝜏)

𝑐 𝑊̄ (𝜏)
𝑐
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Appendix B. The details in FEM

B.1. The details of 𝐴𝑛(𝑢𝑛) and 𝑏𝑛(𝑢𝑛) in Eq. (7)

𝐴𝑛(𝑢𝑛) ∈ R𝑑×𝑑 and vector 𝑏𝑛(𝑢𝑛) ∈ R𝑑 for 𝑛 = 1, 2,… are given by

𝑛(𝑢𝑛) = 𝐾𝑛(𝑢𝑛) +
1
𝛥𝑡

𝑀𝑛(𝑢𝑛) + 𝑅𝑛(𝑢𝑛) + 𝐶, (B.1)

𝑏𝑛(𝑢𝑛) =
1
𝛥𝑡

𝑀𝑛(𝑢𝑛)𝑢𝑛−1 + 𝑙𝑛 + 𝑎 − (𝐾̄𝑛(𝑢𝑛) + 𝑅̄𝑛(𝑢𝑛) + 𝐶̄)𝑢̄𝑛, (B.2)

here the matrices and vectors at the time instant 𝑛𝛥𝑡 and (𝑛 − 1)𝛥𝑡
espectively have the subscript 𝑛 and 𝑛 − 1. On the left hand side
f Eq. (7), we have matrices defined on DoF including the stiffness
atrix 𝐾𝑛 ∈ R𝑑×𝑑 , the mass matrix 𝑀𝑛 ∈ R𝑑×𝑑 , the nonlinear part of

adiation heat loss 𝑅𝑛 ∈ R𝑑×𝑑 , and the convection heat loss 𝐶 ∈ R𝑑×𝑑 .
n the right hand side, however, we have terms defined on the DoF and

he terms related to 𝑑 nodes on the boundary 𝛤𝑏 which are subtracted
to balance the 𝑑-dimensional left hand side. In specific, the mass matrix
𝑀𝑛, the previous temperature 𝑢𝑛−1 ∈ R𝑑 , the load vector 𝑙𝑛 ∈ R𝑑 , and
the constant part of heat loss 𝑎 ∈ R𝑑 are defined on DoF. 𝐾̄𝑛 ∈ R𝑑×𝑑 ,
̄𝑛 ∈ R𝑑×𝑑 and 𝐶̄ ∈ R𝑑×𝑑 are the coefficients of 𝑑 constant temperature
odes 𝑢̄𝑛 = 𝑢𝑏𝟏 ∈ R𝑑 .

.2. The formulas of matrices in FEM

The matrices in FEM are defined as the integrals over the domain or
he boundary, the integrands of which are specified in Table B.1 where
𝑖 is the basis function of node 𝑖 in FEM. The Gaussian quadrature
pproximation of these integrals are also listed in Table B.1. 𝑛𝑚, 𝑛𝑟,

and 𝑛𝑐 respectively represent the number of integration points sampled
in each element to approximate the integrals in 𝑀𝑛, 𝑅𝑛, and 𝐶 by

aussian quadrature rules.

.3. The formulas of matrices in Gaussian quadrature approximation

The details of matrices in Gaussian quadrature approximation are
pecified in Table B.2 where 𝑛𝑘 is the number of integration points
ampled in each element to approximate the integrals in 𝐾 by Gaussian
12

𝑛

quadrature rules. |

|

|

𝑉𝑝
|

|

|

is the volume of the 𝑝th tetrahedron element.
|

|

|

𝑆𝑞
|

|

|

is the area of the 𝑞th triangle surface. The spatial coordinates
and weights for the 𝜏th integration points of 𝐾, 𝑀 , 𝑅, 𝐶, 𝑎 and 𝑙 are
respectively denoted as {𝐱(𝜏)𝑘 ∈ R𝑒×3, 𝑤(𝜏)

𝑘 ∈ R𝑒}𝑛𝑘𝜏=1, {𝐱
(𝜏)
𝑚 ∈ R𝑒×3, 𝑤(𝜏)

𝑚 ∈
𝑒}𝑛𝑚𝜏=1, {𝐱(𝜏)𝑟 ∈ R𝑚×3, 𝑤(𝜏)

𝑟 ∈ R𝑚}𝑛𝑟𝜏=1, {𝐱(𝜏)𝑐 ∈ R𝑚×3, 𝑤(𝜏)
𝑐 ∈ R𝑚}𝑛𝑐𝜏=1,

𝐱𝑎 ∈ R𝑚×3, 𝑤𝑎 ∈ R𝑚}, and {𝐱(𝜏)𝑙 ∈ R𝑚×3, 𝑤(𝜏)
𝑙 ∈ R𝑚}𝑛𝑙𝜏=1.

.4. The algorithm for Picard iteration

As stated in Algorithm B.1, the nonlinear heat equation is solved via
icard iterations which takes several iterations of solving 𝑑-dimensional
inear equations to converge to the solution of the original nonlinear
quation with error ‖𝐴𝑛𝑢𝑛−𝑏𝑛‖ below a small tolerance, e.g. 10−5 [14].

Algorithm B.1 The Picard iteration of solving a nonlinear heat
equation
Input: the temperature 𝑢𝑛−1 ∈ R𝑑 , a error tolerance 𝜖𝑝 ∈ R, the

temperature-dependent matrix 𝐴𝑛(𝑢𝑛) ∈ R𝑑×𝑑 and vector 𝑏𝑛(𝑢𝑛) ∈
R𝑑 .

utput: the temperature 𝑢𝑛 ∈ R𝑑 .
1: 𝑘 = 0.
2: 𝑢(0)𝑛 = 𝑢𝑛−1.
3: do
4: 𝑢(𝑘+1)𝑛 = 𝐴𝑛(𝑢

(𝑘)
𝑛 )−1𝑏𝑛(𝑢

(𝑘)
𝑛 ).

5: 𝑒𝑝 = ‖𝐴𝑛(𝑢
(𝑘+1)
𝑛 )𝑢(𝑘+1)𝑛 − 𝑏𝑛(𝑢

(𝑘+1)
𝑛 )‖.

6: 𝑘 = 𝑘 + 1.
7: while 𝑒𝑝 > 𝜖𝑝
8: 𝑢𝑛 = 𝑢(𝑘)𝑛 .

Appendix C. The computation of the relative distance matrix

To get the relative distance matrix 𝑄 ∈ R𝑁×𝑁 , we first construct
a weighted 𝑔-neighborhood graph with 𝑁 vertices representing the 𝑁
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Table B.2
The formulas of matrices in Gaussian quadrature approximation.

Symbol Formula
(𝑗 = 1,… , 𝑑, 𝑗 = 1,… , 𝑑,
𝑝 = 1,… , 𝑒, 𝑞 = 1,… , 𝑚)

Symbol Formula
(𝑗 = 1,… , 𝑑, 𝑗 = 1,… , 𝑑)

𝐷𝑘

⎡

⎢

⎢

⎢

⎣

𝐷𝑘3𝑝,3𝑝
𝐷𝑘3𝑝−1,3𝑝−1
𝐷𝑘3𝑝−2,3𝑝−2

⎤

⎥

⎥

⎥

⎦

= |

|

|

𝑉𝑝
|

|

|

∑𝑛𝑘
𝜏=1 𝑤

(𝜏)
𝑘 𝜅(𝐱(𝜏)𝑘𝑝∗

)1 𝑊 (𝜏)
𝑚 𝑊 (𝜏)

𝑚∗𝑗
= 𝜙𝑗 (𝐱(𝜏)𝑚 )

𝐷(𝜏)
𝑚 𝐷(𝜏)

𝑚𝑝𝑝
= |

|

|

𝑉𝑝
|

|

|

𝑤(𝜏)
𝑚 𝜌(𝐱(𝜏)𝑚𝑝∗

)𝑐(𝐱(𝜏)𝑚𝑝∗
) 𝑊 (𝜏)

𝑟 𝑊 (𝜏)
𝑟∗𝑗

= 𝜙𝑗 (𝐱(𝜏)𝑟 )

𝐷(𝜏)
𝑟 𝐷(𝜏)

𝑟𝑞𝑞
= |

|

|

𝑆𝑞
|

|

|

𝜎𝑠𝜀𝑤(𝜏)
𝑟 𝑢(𝐱(𝜏)𝑟𝑞∗

)3 𝑊̄ (𝜏)
𝑟 𝑊 (𝜏)

𝑟∗𝑗
= 𝜙𝑗 (𝐱(𝜏)𝑟 )

𝐷(𝜏)
𝑐 𝐷(𝜏)

𝑐𝑞𝑞
= |

|

|

𝑆𝑞
|

|

|

𝑤(𝜏)
𝑐 ℎ 𝑊 (𝜏)

𝑐 𝑊 (𝜏)
𝑐∗𝑗

= 𝜙𝑗 (𝐱(𝜏)𝑐 )

𝑑𝑎 𝑑𝑎𝑞 =
|

|

|

𝑆𝑞
|

|

|

𝑤𝑎(ℎ𝑢𝑎 + 𝜎𝑠𝜀𝑢4𝑎) 𝑊̄ (𝜏)
𝑐 𝑊 (𝜏)

𝑐∗𝑗
= 𝜙𝑗 (𝐱(𝜏)𝑐 )

𝑑(𝜏)
𝑙 𝑑(𝜏)

𝑙𝑞
= |

|

|

𝑆𝑞
|

|

|

𝑤(𝜏)
𝑙 𝑞ℎ(𝐱

(𝜏)
𝑙𝑞∗
) 𝑊𝑎 𝑊𝑎∗𝑗 = 𝜙𝑗 (𝐱𝑎)

𝑊𝑘

⎡

⎢

⎢

⎢

⎣

𝑊𝑘(3𝑝−2𝑗)
𝑊𝑘(3𝑝−1𝑗)
𝑊𝑘(3𝑝𝑗)

⎤

⎥

⎥

⎥

⎦

= ∇𝜙𝑗 𝑊 (𝜏)
𝑙 𝑊 (𝜏)

𝑙∗𝑗
= 𝜙𝑗 (𝐱

(𝜏)
𝑙 )

𝑊̄𝑘

⎡

⎢

⎢

⎢

⎣

𝑊𝑘(3𝑝−2,𝑗)
𝑊𝑘(3𝑝−1,𝑗)
𝑊𝑘(3𝑝,𝑗)

⎤

⎥

⎥

⎥

⎦

= ∇𝜙𝑗
Table D.1
The comparison between the thermal model with FEM in this paper and experiment results in [11] where
laser power 150 W and scan speed 200 mm/s.

Type of results Thermal model with FEM Results in [11]

Highest temperature (◦C) 910.66 887
Max temperature gradient (◦C∕μm) 9.41 10.6
Melt pool size (μm) 65.66 × 54.86 × 32.00 64.3 × 55.8 × 33.7
Table D.2
The comparison between the thermal model with FEM in this paper and experiment results in [11] where
laser power 200 W and scan speed 400 mm/s.

Type of results Thermal model with FEM Results in [11]

Highest temperature (◦C) 1060.85 1032
Max temperature gradient (◦C∕μm) 11.46 13.5
Melt pool size (μm) 75.12 × 58.83 × 37.20 73.7 × 48.3 × 35.2
training temperature profiles and with edges weighted as the adjacency
matrix 𝐺 ∈ R𝑁×𝑁 which is given by
𝐺𝑖𝑗

=

{

‖𝑈∗𝑖 − 𝑈∗𝑗‖ if 𝑈∗𝑗 is a neighbor of 𝑈∗𝑖

∞ otherwise,
for 𝑖, 𝑗 = 1,… , 𝑁,

(C.1)

here 𝑈∗𝑗 is a neighbor of 𝑈∗𝑖 if their Euclidean distance belongs to the
𝑔 smallest values in ‖𝑈∗𝑖 −𝑈∗𝑗‖ for 𝑗 = 1,… , 𝑁 . The pair-wise distance
matrix 𝑄 is computed as the shortest path matrix of this graph via the
Floyd–Warshall algorithm [40].

Appendix D. The comparison between the thermal model with
FEM and published experiment results

See Tables D.1 and D.2.
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