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Amyotrophic lateral sclerosis (ALS) is a heterogeneousneurodegenerative syndrome. In up to 20%of cases, a family his-
tory is observed. AlthoughMendeliandisease genevariants are found inapparently sporadicALS, genetic testing is usu-
ally restricted to those with a family history or younger patients with sporadic disease. With the advent of therapies
targeting genetic ALS, it is important that everyone treatable is identified. We therefore sought to determine the prob-
ability of a clinically actionable ALS genetic test result by age of onset, globally, but using the UK as an exemplar.
Blood-derived DNA was sequenced for ALS genes, and the probability of a clinically actionable genetic test result esti-
mated. For a UK subset, age- and sex-specific population incidence rates were used to determine the number of such
results missed by restricting testing by age of onset according to UK’s National Genomic Test Directory criteria.
Therewere 6274 peoplewith sporadicALS, 1551 from theUK. Theproportionwith a clinically actionable genetic test re-
sult rangedbetween0.21 [95%confidence interval (CI) 0.18–0.25] in theyoungestagegroupto0.15 (95%CI0.13–0.17) in the
oldest age group for a full genepanel. For theUK, the equivalent proportionswere 0.23 (95%CI 0.13–0.33) in the youngest
age group to 0.17 (95%CI 0.13–0.21) in the oldest age group. By limiting testing in thosewithout a familyhistory to people
with onset below 40 years, 115 of 117 (98% of all, 95% CI 96%–101%) clinically actionable test results were missed.
There is a significant probability of a clinically actionable genetic test result inpeoplewith apparently sporadicALS at all
ages. Although some countries limit testing by age, doing so results in a significant number of missed pathogenic test
results. Age of onset and family history should not be a barrier to genetic testing in ALS.
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Introduction
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease,
primarily affecting upper and lower motor neurons,1 with a lifetime
risk of 1 in 300 people.2 Themedian survival is 30months from symp-
tomonset,withdeath typically resulting fromneuromuscularrespira-
tory failure. Onset is usually later in life, with themean age of onset in
population studies being 65, consistent with a multistep disease pro-
cess involvingacombinationof sequential geneticandenvironmental
factors.3 There is mounting evidence that for those with an identified
genetic basis to their ALS, effective treatmentmay soon be possible.4,5

In up to 20% of people, a family history of ALS is obtained, usu-
ally inherited as a dominant trait. Genetic and pathological overlap
with some forms of frontotemporal dementia is seen.6 The genetic
cause of about 80% of familial ALS has now been identified,1 with
the four commonest involved genes in the UK being C9orf72,
SOD1, TARDBP and FUS. All of the genes implicated in familial ALS
have also been reported mutated in sporadic ALS,7 and it is now
widely accepted that apparently sporadic ALS may have a genetic
basis.8 To that end, a better distinction may be between primarily
genetic ALS and non-genetic ALS. The Mendelian gene variants
causing ALS are associated with a younger age of onset.9 De novo
mutations in FUS and SOD1 have been found to be an additional
cause of apparently sporadic disease.10,11 As genetic therapies are
now being developed, and because about 15% of people with appar-
ently sporadic ALS carry aMendelian gene variant,12 genetic testing
is likely to become more frequent regardless of family history.

Health resources are limited, and in some countries, testing is lim-
ited by age of onset and family history. For example, the UK National
Genomic Test Directory criteria allow genetic testing only in patients
withapositivefamilyhistoryofALSor inthosewithapparentlysporadic
ALSwith onset below40 years of age.13 In other countries, testing is pri-
marily performedby research laboratories, rather than clinical services,
and there have been calls for more genetic testing availability world-
wide.14 It remains unclear whether genetic testing should be restricted
byageofonsetandfamilyhistory.Wethereforeassessedtheprobability
of a positive genetic test result under various scenarios to provide evi-
dence for how andwhen genetic testing should be performed.

Materials and methods
Study design and participants

People with sporadic ALS contributing to the Project MinE ALS
Sequencing Consortium with relevant data available were

included. Sex, age of onset and ALS phenotype were obtained for
each person.

Gene panels

We performed two analyses in the global dataset, analysing the
four commonest ALS genes, usually tested clinically in an initial
gene panel, and a larger panel, consisting of genes selected for har-
bouring likely large-effect, rare Mendelian ALS gene variants
(Table 1).1 Further detail on the frequencies and gene burden test
results are available on the ProjectMinE databrowser.15 The ana-
lysis was repeated, limited to the UK dataset, with a set of genes
that are part of UK-based genetic testing practice.

For the analysis restricted to UK samples, 26 ALS genes were se-
lected from the Genomics England ‘Amyotrophic lateral sclerosis/

Table 1 Genes tested for global project MinE and UK cohorts

Four-gene
panel

Larger gene
panel

Genes selected from the Genomics
England ALS panel

C9orf72 ANG ALS2a

FUS ATXN2 ANG
SOD1 C21orf2 ANXA11
TARDBP C9orf72 ATXN2

CHCHD10 C9orf72
DAO CHCHD10

DCTN1 DCTN1
FUS ERBB4

HNRNPA1 FIG4
MATR3 FUS
MOBP HNRNPA1
NEK1 MATR3
OPTN NEFH
PFN1 OPTN
SCFD1 PFN1
SOD1 SETX

SQSTM1 SIGMAR1
TAF15 SOD1
TARDBP SPG11
TBK1 SQSTM1
TUB4A TARDBP
UBQLN2 TBK1
VAPB TUB4A
VCP UBQLN2

VAPB
VCP

aGenes for which only pathogenic bi-allelic variants were reported.
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motor neuron disease v1.48’ panel (Table 1).16 As this panel also
contained genes thought to be linked with non-ALS conditions, 13
additional genes in the official panel, not currently widely accepted
to be relevant toALS,were excluded. Furthermore, geneswith com-
monvariants of small effectwere also excluded, as describedbelow.

Whole-genome sequencing, bioinformatics, quality
control and variant prioritisation

All samples usedwere part of Project MinE data freeze 2. Sequencing
data, quality control and the analysis pipeline have been described
previously.17,18 Inbrief, the caseandcontrol sampleswere sequenced
using PCR-free library preparation on the Illumina HiSeq 2000 and
HiSeq×platforms to ∼35×coverage with 100 bp reads and ∼25×
coveragewith 150 bp reads, respectively. Sequencing data alignment
to GRCh37 and variant calling were performed using the Illumina
Isaac pipeline.19 Sites with a genotype quality <10 and variants with
low quality scores (<20 for single nucleotide variants and <30 for in-
dels)were removed. Sampleswith a transition-transversion ratio, to-
tal number of single nucleotide variants, indels and singletons
outside the intervalmean±6 SD from the full distribution of samples
were removed. Variants with missingness >2% across all samples
were excluded. Genetically inferred sex, based on the number of X
andYchromosomes,was compared to the sex reported in thepheno-
typic data. Samples with mismatched sex information and missing
age of onset were removed. The resulting variants were annotated
using theEnsemblvarianteffectpredictor (VEP),20 choosing to restrict
the results to one selected allele per variant. All other VEP options
were kept to default. In order to include in this study variants that
would be reported as a result of genetic testing, we retained rare var-
iants (minor allele frequency <0.001 in both gnomAD version 2.1.1
non-Finnish European data and our 2446 Project MinE control data-
set) in selected ALS-relevant gene sets, with a predicted moderate
and high functional impact on gene function as defined by VEP. In
brief, using consequence terms from the sequence ontology,21 mod-
erate impact variants includedmissense, in-frame insertionsandde-
letions and protein altering variants. High impact variants included
stop lost and gained, start lost, transcript amplification, frameshift,
transcript ablation and splice acceptor and donor variants.

C9orf72 and ATXN2 expansion testing

We used ExpansionHunter to estimate the number of C9orf72
GGGGCC hexanucleotide and ATXN2 CAG trinucleotide repeats in
the sequence data. ExpansionHunter has been previously validated
for the detection of hexanucleotide and trinucleotide repeat expan-
sions in a number of studies, showing a detection accuracy of
>99%.22–24 For the C9orf72 expansion, we considered >30 repeats
to be pathogenic.25 For the ATXN2 expansion, we defined as patho-
genic an intermediate expansion (known to be an ALS risk factor)
with repeat counts of 29–33 inclusive.26

Automatic application of the ACMG guidelines

The classification of the variants into benign, likely benign, variant
of uncertain significance (VUS), likely pathogenic, or pathogenic
variants, according to the American College of Medical Genetics
(ACMG) guidelines,29 was done using InterVar (version 2.2.2).30

The ACMG guidelines are based on 28 criteria (16 for pathogenicity
and 12 for benignity), 18 ofwhich can be evaluated by InterVar auto-
matically. In a real clinical setting, the application of the remaining
10 criteria would require a manual review of all supporting evi-
dence available from literature and public databases for each

individual variant. However, given the large scale of this project,
we approximated this process by using sets of fixed values for the
moderate and high impact variants in our analyses (see
Supplementary Table 1 for each criterion, values selected and their
rationale). InterVarwas then used to classify the variants according
to ACMG guidelines by applying 18 automatically evaluated criteria
with default parameters and using two sets ofmanually predefined
values for the 10 remaining criteria. VUSs were further classified
into ‘high probability of pathogenicity’ if they matched any of the
16 criteria of pathogenicity and did not match any of the 12 criteria
of benignity, and ‘low to medium probability’ otherwise.

Definition of a clinically actionable result

A clinically actionable genetic test result was defined as one report-
ing variantswith a predictedmoderate or high functional impact as
predicted by VEP, not classified as benign or likely benign, and a
VUS of ‘low to medium probability of pathogenicity’, or one report-
ing a pathogenic repeat size in the C9orf72 or ATXN2 genes. In the
gene panels, some genes, such as NEK1 and OPTN, have both het-
erozygous and homozygous risk alleles, and, in these cases, we re-
tained them as reportable when a single heterozygous variant was
identified. For ALS2, only homozygosity has been associated with
ALS, and we therefore report recessive frequencies. To show that
our automated definition of pathogenicity was reasonable, we re-
peated the four-gene analysis usingwidely-accepted database defi-
nitions of pathogenicity: C9orf72 repeat expansion >30; all rare
SOD1 variants, based on the assumption that all such classes are
pathogenic; and, for TARDBP and FUS, all rare variants classified
as being pathogenic or likely pathogenic in the ClinVar database
or present in the ALS online database (ALSoD), having been re-
ported in at least one publication and ≥2 patients.27,28

Statistical analysis

Patients were grouped by age of disease onset: <40, 40–49, 50–59,
60–69 and ≥70 years. The proportionwhowere carriers of a clinical-
ly actionable variant was estimated for each group, along with a
95% confidence interval (CI).

Calculation of incidence rates of ALS for the UK by age of
onset and sex

Weused population-based data fromTheNational MND Register of
England,Wales andNorthern Ireland.31 Incidence rates of ALSwere
calculated for males and females grouped by age of onset. The
catchment area of the population was the aggregate catchment
area of 15 specialist UK Motor Neuron Disease Care and Research
Centres covering an area of England with a population of 12.5 mil-
lion people.31,32 People with a date of diagnosis of ALS between 1
Jan 2018 and 31 Dec 2019 were included. Direct standardization,
which refers to the weighting of crude incidence rates by a refer-
ence population (in this case, the population structure of the UK
using 2011Office of National Statistics census data),33 was achieved
by multiplying the crude incidence rate by the number of people in
the standard population for that age and sex group. The 95% confi-
dence intervals of the directly standardized rates were calculated
using the exact method by approximating from a gamma distribu-
tion.34 As the population included people with both apparently
sporadic and familial ALS, and given that 5–20% of people with
ALS report a family history, expected incidence rates of ALS were
multiplied by a factor of 0.875 (halfway between 80 and 95%) to
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estimate incidence rates specific for sporadic ALS. Data were ana-
lysed in R version 4.0.2 with package ‘epitools’.35

Estimation of the number and proportion of cases missed
by limiting genetic testing by age of onset

Given that the UK’s current National Genomic Test Directory cri-
teria use an age of onset of <40 years as the cut-off for ALS genetic
testing in those without a family history, we estimated the number
of people with sporadic ALS that would be missed in the UK each
year by limiting testing to those below the age of 40 years. This
was calculated bymultiplying the age and sex-specific probabilities
of having a clinically actionable genetic test result by the age and
sex-specific incidence rates of ALS for the UK and summing these
quantities across all age groups≥40 years. The proportion ofmissed
clinically actionable tests was calculated by multiplying the esti-
mated number of missed sporadic cases in each age interval ≥40
years by the proportion of ALS patients with a clinically actionable
test in the corresponding age interval. The 95% confidence intervals
were calculated.

Data availability

Individualwhole-genomesequencingdataareavailableandcanbere-
quested through Project MinE (https://www.projectmine.com/
research/data-sharing/). A data access committee controls access to
raw data, ensuring a FAIR data setup (https://www.datafairport.org).

Results
Global Project MinE cohort

Therewere 6274 patientswith sporadicALS. Sampleswere from the
following countries: Belgium (n= 547), France (n= 149), Ireland (n=
465), Israel (n= 104), Italy (n= 61), Netherlands (n= 1673), Portugal
(n= 59), Spain (n= 381), Sweden (n= 194), Switzerland (n= 53),
Turkey (n= 602), UK (n= 1551) and USA (n= 435). ALS was defined
using the Gold Coast criteria,36 with the addition of primary lateral

sclerosis because of the difficulty in reliably distinguishing this
variant from ALS in the first 3 years. Restricting the analysis to
ALS defined by El Escorial criteria definite, probable and laboratory-
supported probable did not alter the findings (Supplementary
Fig. 1). Data for UBQLN2 on chromosome X was available for 73%
of ALS cases. There were 116110 variants identified, of which
1.1% were rare variants of potential functional significance or re-
peat expansions in C9orf72 or ATXN2 (Fig. 1). Based on ACMG cri-
teria, 47% of these were VUS. We defined 78% as clinically
actionable, comprising 28% high probability pathogenic VUS, likely
pathogenic or pathogenic variants, and pathological repeat expan-
sions in C9orf72 and ATXN2.

For people with apparently sporadic ALS, 8% (n = 513) had a
clinically actionable result in the four-gene panel and 20% (n =
1282) in the larger gene panel. The probability of a clinically
actionable result was high in the youngest age category (<40
years age of onset group), with 8% having such an outcome
in the four-gene panel and 21% in the larger gene panel
(Fig. 2A and Supplementary Fig. 1A) but not always maximal
in this age group. Those in the oldest age category (≥70 years
age of onset group) still had a substantial risk, with 3% having
a clinically actionable outcome in the four-gene panel and 15%
in the larger gene panel.

UK cohort

There were 1551 people with sporadic ALS from the UK. Of these,
11% (n=174) had a clinically actionable genetic test result using
the four-gene panel, and 21% (n= 329) for the Genomics England pa-
nel. Data for UBQLN2 was available for 89% of UK ALS cases. The
probability of a clinically actionable genetic test result was high
for the youngest age group (<40 years age of onset) at 11% for the
four-gene panel and 23% for the Genomics England panel
(Fig. 2B and Supplementary Fig. 1B) but again, not always maximal
in this age group. Furthermore, there remained a substantial risk
for those aged ≥70 years at 6% for the four-gene panel and 17%
for the Genomics England panel.

Figure 1 Distribution of identified variants in the Global Project MinE cohort and their classification by ACMG criteria.
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ClinVar and ALSoD corroboration of pathogenicity
definition

Across all age groups, 8% (n= 513)would have a clinically actionable
test using the four-gene panel on our global cohort. Using
the ClinVar and ALSoD method for the same four genes, this is 7%
(n=454), suggesting that our automated definition of pathogenicity
is reasonable.

Number of cases with clinically actionable genetic
results missed per year in the UK

Table 2 contains age and sex-specific incidence rates of ALS, calcu-
lated per 100 000 person-years, as well as the expected number of
new sporadic ALS diagnoses in the UK per year that have been ad-
justed to the UK population structure. Restriction of testing by age
in apparently sporadic ALS results in 56 (31 male, 25 female) of 58
people with clinically actionable results being missed using the
four-gene panel (0.97, 95% CI 0.92–1.01) and 115 (63male, 52 female)
of 117 people beingmissed using the Genomics England panel (0.98,
95% CI 0.96–1.01) each year in the UK, representing 97 to 98% of
clinically actionable sporadic ALS genetic test results being missed
using this policy.

Discussion
Wehave shown that there is a substantial risk of a clinically action-
able genetic test result in ALS, regardless of age of onset and family
history, with 15 to 17% of those with apparently sporadic disease
aged 70 years or over having a clinically actionable result on widely
used ALS gene panels. Using UK guidelines as an example of typical
practice, we estimate that restriction of testing in those without a
family history to people aged 40 years or younger means up to
115 people with a clinically actionable result per year, and 97–98%
of clinically actionable sporadic ALS results will be missed in the
UK. Extrapolating this to other health systems, each year, thou-
sands of people with ALS will remain undetected as having a
clinically actionable genetic test result simply as a result of guide-
lines rather than availability of access.

Until recently, the main clinical benefit of genetic testing in ALS
was for family planning and the possibility of preimplantation gen-
etic diagnosis. Now, however, there are several clinical trials in pro-
gress targeting peoplewith variations in specific genes. A childhood
motor neuron disease, spinal muscular atrophy, can be successful-
ly treatedwith gene therapy, and related approaches in adultmotor
neuron diseases such as ALS have shown promising results in
Phase 2 clinical trials.4 Identifying clinically actionable genetic

Figure 2 Probability of a personwithALS having a clinically actionable genetic test result given their age of onset. (A) Global ProjectMinE cohort. (B) UK
cohort. Error bars denote 95% CI.
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test results in someone with ALS, an otherwise uniformly fatal dis-
ease, is therefore crucial as ameans of opening up new therapeutic
approaches.

Our findings build on previouswork showing that familial ALS is
not the same as genetic ALS, and that the distinction between fa-
milial and sporadic disease is based on an erroneous assumption
that genetic variation does not contribute to sporadic ALS.8

Genotyping of sequential ALS patients regardless of family history
shows that 21% carry a pathogenic variant, with 93% having no
family history of ALS, and 15% meeting the inclusion criteria for a
current ALS gene therapy clinical trial.12 We have extended this
to show the need to sequence people of all ages. The presence of
pathogenic variants in older apparently sporadic ALS patients is
unsurprising ifwe consider that family history in preceding genera-
tionsmay be less apparent when life expectancy was lower, result-
ing in an ascertainment bias. Lifting of age restrictions for genetic
testing is not only important for identifying those affected in older
age groups, but also for pulling out at-risk relatives in future gen-
erations, allowing for them to be identified before they present clin-
ically. This early diagnosis in future generations is likely to be
important as we learn more about when we should intervene
with gene therapies, as the point of first presentation may be too
late. We recommend that we should be following families carrying
known variants carefully, enrolling them in pre-symptomatic stud-
ies, with a view to offering preventative treatment once more is
known about the optimal time point at which we should intervene.

Another consequence of using an arbitrary age limit for offering
genetic testing is that our ability to build a knowledge base of the
relevance of variants of uncertain significance inALSwill be severe-
ly hampered bymissing data, lendingmore support to our view that
testing should be unrestricted by age and family history.

As the number of accepted ALS genes increases and testing pa-
nels increase in size, the percentage of clinically actionable results
will rise, and the number ofmissed resultswill be even greater than
currently. However, expanding the availability of genetic testing
will inevitably need to be carefully balanced with appropriate re-
sources for counselling and for this to be delivered by the most ap-
propriate professional, which may be the clinician in tertiary care
specialist services.

A limitation of this study is in the definition of a clinically ac-
tionable result. Curation of disease-causing genetic variation is
challenging, and, with current technology, only possible for var-
iants with multiple lines of convergent evidence. As a result,
some variants we have defined as clinically actionable may be var-
iants of uncertain significance. Given our study included whole-
genome sequencing samples on a large, international scale, we
curated genetic variants deemed as having the potential to be

pathogenically relevant as efficiently as possible, without going
into detail for each variant. This was based on previously reported
association with ALS, detection in cases, but not in several control
databases, and bioinformatics prediction of whether the mutation
would be likely to have a functional impact on gene function.
However, using ClinVar and ALSoD databases to define pathogen-
icity gave similar probabilities of having a clinically actionable
result when testing the four commonest genes, providing confi-
dence that our methods and results can be generalized. Ideally, de-
termining the clinical significance of each variant would be
preferable, and ongoing efforts, such as the ClinGen Amyotrophic
Lateral Sclerosis Spectrum Disorders Gene Curation Expert Panel,
a National Institutes of Health (NIH)-funded resource dedicated to
building a central resource that defines the clinical relevance of
genes and variants for use in precision medicine and research,
will be essential in the future.37 As new variants are found and cu-
rated, our clinical model will need to be updated. A further limita-
tion of our study is that we may have underestimated the
number of clinically actionable results, owing to occasions where
patients have genetic testing arranged through regular channels,
but later, after testing positive, elect not to participate in further
genetic testing such as part of the Project MinE ALS Sequencing
Consortium and, thus, not being included. In some countries, those
with a known genetic basis for their ALS were actively excluded at
the start of sample collection, because it was thought that there
would be little to gain from further sequencing.

In summary, this large, global study, combining both genetics
and epidemiology, provides robust evidence to recommend that
genetic testing in ALS should not be restricted by age of onset or
family history. Instead, with increasing gene therapies on the hori-
zon and potential for precision medicine, the gold standard should
be to offer genetic testing to all patients with apparently sporadic
ALS, regardless of their age of onset.
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Table 2Age- and sex-specific incidence rates per 100000 person-years in theUK, and age- and sex-specific expected number of new
sporadic ALS diagnoses in the UK per year

Age of onset, years Incidence rates of ALS per 100000
person-years in the UK

Expected number of new sporadic ALS diagnoses per year in the UK

Male Female Male Female Total

<40 0.080 (0.022–0.20) 0.020 (0.0005–0.011) 7.03 (1.92–18.01) 1.78 (0.045–9.91) 8.81 (1.96–27.92)
40–49 0.89 (0.54–1.38) 0.40 (0.18–0.75) 35.74 (21.83–55.19) 16.24 (7.43–30.83) 51.98 (29.25–86.02)
50–59 2.67 (1.98–3.53) 0.80 (0.45–1.32) 89.11 (65.92–117.81) 27.35 (15.31–45.12) 116.46 (81.23–162.92)
60–69 3.19 (2.38–4.20) 2.91 (2.15–3.85) 93.03 (69.27–122.32) 89.05 (65.88–117.73) 182.08 (135.15–240.05)
≥70 3.65 (2.75–4.73) 3.20 (2.48–4.08) 99.90 (75.46–129.73) 118.52 (91.66–150.79) 218.42 (167.13–280.51)

Values are presented as incidence rate (95% CI).
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