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Abstract
Deep speaker embeddings have been shown to encode a wide
variety of attributes relating to a speaker. The aim of this work
is to separate out some of these attributes in the embedding
space, disentangling these sources of speaker variation into sub-
sets of the embedding dimensions. This is achieved modify-
ing the training procedure of a typical speaker embedding net-
work, which is typically only trained to classify speakers. This
work instead adds pairs of attribute specific task heads to oper-
ate on complementary subsets of the speaker embedding dimen-
sions. While specific dimensions are encouraged to encode an
attribute, for example gender, the other dimensions are penal-
ized for containing this information using an adversarial loss.
We show that this method is effective in factorizing out mul-
tiple attributes in the embedding space, successfully disentan-
gling gender, nationality and age. Using the disentangled rep-
resentations, we investigate how much removing this informa-
tion impacts speaker verification and diarization performance,
showing that gender is a significant source of separation in the
deep speaker embedding space, with nationality and age also
contributing to a lesser degree.

1. Introduction
Speaker embeddings are a crucial component in many speaker
recognition pipelines, with extracting speaker discriminative
features being a key step in speaker verification and diariza-
tion. In recent years, obtaining speaker embeddings from the
intermediate layer of a neural network (x-vectors) has become
the leading method for both tasks [1, 2], outperforming the tra-
ditionally successful i-vector technique [3].

There are many properties of speech that convey a speaker’s
identity, including factors related to the physical properties of
the vocal apparatus producing the speech (influenced by factors
such as gender, age or medical conditions), in addition to prop-
erties relating to accent, dialect, native language and sociolect
(social or professional group, which can determine lexicon, syn-
tax, stylistics). Humans, upon hearing a new voice, can intu-
itively infer many of these properties. It is these properties that
are used to distinguish between speakers when speaker classifi-
cation is performed by human experts for criminal cases, a field
of practice known as forensic phonetics and acoustics [4, 5].

What this work aims to explore is whether these speaker
attributes can be disentangled in the embedding space, and if
so, also to determine the contribution that each attribute has on
speaker separability. The definition of disentangled represen-
tations can be somewhat unclear, but generally speaking, dis-
entangled representation learning aims to learn representations
that axis aligns with the underlying generative factors of the
data [6, 7, 8]. The exact criteria that determine what consti-
tutes ‘generative factors of the data’ is under debate [9], but in
the context of speaker representations and the human voice, we

suggest the factors supported by forensic phonetics literature,
like gender, age and accent, are excellent candidates for gen-
erative factors that constitute speaker identity. To be explicit,
this would mean specific dimensions of the speaker embedding
would describe these generative factors in their entirety.

In order to achieve disentangled speaker embeddings in
a supervised fashion, this work proposes an architecture that
adds pairs of attribute specific task heads alongside the standard
speaker classification objective to the standard speaker embed-
ding network. Each pair consists of a predictor and an adver-
sary, which act on complementary dimensions of the embed-
ding, simultaneously encoding attribute information in the cho-
sen dimensions while also removing it from the remaining di-
mensions.

Using these disentangled embeddings, this work also seeks
to understand how information about the gender, age or nation-
ality of a speaker contributes towards the discriminative per-
formance of embeddings in verification and diarization applica-
tions. This is explored by evaluating on the VoxCeleb [10, 11]
dataset, along with US Supreme Court recordings.

2. Related Work
In the work of [12], speaker representations were disentan-
gled into style and speaker factors using an dual pathway auto-
encoder architecture, which used multi-task learning to encour-
age two auto-encoder latent spaces to separate out these two
factors. This work looks at speaker embeddings with a similar
approach, but focuses on speaker-specific sources of variation,
in addition to incorporating adversarial training techniques to
ensure disentanglement.

Both deep speaker embeddings and i-vectors have already
been shown to encode a wide variety of information and meta-
information about speakers and utterances, such as speaking
style and emotion [12, 13], accent and language [14] or speaker
gender, channel and transcription information [15]. Further-
more, in [16], it was shown that explicitly encouraging the
speaker embedding space to capture nationality and age using
multi-task learning could lead to more robust performance on
unseen speakers. While [16] looked at improving embedding
performance by adding auxiliary speaker-attribute tasks, this
work looks to disentangle and probe these attributes by using
similar techniques.

The topic of disentangled speaker representations is also
closely linked with the field of voice privacy [17, 18, 19],
wherein certain attributes are desirable to obscure in speaker
embeddings to protect against malicious attackers. Notably, the
work of [20] used adversarial training to control the gender ele-
ment of an auto-encoder architecture, seeking to be able to con-
trol that element and therefore provide gender-invariant repre-
sentations. A follow up paper [21] utilized normalizing flows to
again obscure the gender information in speaker embeddings,



finding this to be an improvement over the adversarial method.

3. Methodology
3.1. Multi-task Learning

Multi-task learning (MTL) is a learning paradigm in which the
same representation can be used to solve multiple different tasks
on the same data. For deep learning, this typically means the
initial layers of a neural network are shared between tasks, after
which task specific layers act on the same shared intermediate
representation of the input data.

In the context of training speaker embeddings, such as for
the x-vector network [1, 2], these embeddings are extracted
from the intermediate layer of a network trained on speaker
classification. If the layers up until the embedding are viewed as
the embedding extractor, one can consider the remaining layers
to be a task specific ‘head’. The unmodified x-vector network
has a single task specific head, a feed forward network perform-
ing speaker classification. MTL can be applied by adding sepa-
rate task-specific heads with their own loss functions which also
act on the embedding.

An MTL speaker embedding architecture can be trained as
a whole by optimizing based on a weighted sum of each loss
produced by the task-specific heads. If we consider M addi-
tional tasks, the multi task loss can be viewed as follows:

Lmulti-task = Lspeaker +

M∑
i=1

λmLm , (1)

where each additional task loss Lm is weighted by some cho-
sen loss weighting λm, relative to the speaker classification loss
Lspeaker.

3.2. Adversarial Training

Domain adversarial training [22, 23] is a technique that involves
training an adversary to ascertain the domain of the generated
features, such as embeddings. To train a speaker classification
network in this fashion, a feed forward network would be used
as the adversary, using the embedding layer as an input, and per-
forming a task such as domain classification (Figure 1b). This
task would produce an adversarial loss, and would be added to
the overall loss function like so:

LDomain-Adversarial = LSpeaker − λadv
DomainLadv

Domain , (2)

where λadv is a controllable parameter to determine the weight-
ing of this loss term. Allowing the adversary to act against
the rest of the network is implemented via a gradient rever-
sal layer (GRL) between the extractor and the discriminator,
which multiplies the gradients by a negative constant during
back-propagation. As the loss weighting is negative, the overall
loss is reduced if the adversary cannot perform the domain task
successfully (high Ladv

Domain). The result is an embedding space
which penalizes the inclusion of domain specific information,
in theory increasing robustness to changes of domain.

From this formulation, it is easy to see how adversarial
training can be viewed in conjunction with MTL. In this regard,
an adversary can be considered to be a kind of task-specific
head, with a negative loss weighting and a gradient reversal
layer.

3.3. Disentanglement

This work proposes a means of utilizing both MTL and ad-
versarial techniques to encourage the speaker embedding space
to factorize out specific sources of speaker variation. This is
achieved by having auxiliary task heads act on subsets of the
full speaker embedding dimensions, supplemental to the stan-
dard speaker classification head which takes in the full embed-
ding as input. In this system, each factorized speaker attribute
would have a pair of task heads, a predictor and an adversary
with a gradient reversal layer.

For example for gender, if we would like to factorize out
this attribute into the first dimension of the speaker embed-
ding, the first dimension would be used as input to the predic-
tor, a standard classification head that predicts the gender of the
speaker. Simultaneously, the remaining dimensions of the em-
bedding would be input into the adversary that is also predict-
ing gender. By doing so, the first dimension is encouraged to be
predictive of gender, while the rest of the speaker embedding is
penalized for containing this information - thereby factorising
out this speaker attribute.

Importantly, all dimensions are still used as input to the
speaker classification head, meaning all sources of variation can
be used in performing speaker classification. Figure 1c displays
how the proposed system could be trained to factor out Gen-
der and Age into the first and second dimensions of a speaker
embedding respectively1.

4. Experimental Setup
The two datsets used in this work were VoxCeleb [10, 11] and
the Supreme Court of the United States (SCOTUS) oral argu-
ments corpus [24], which have web-scrapable speaker attribute
information about nationality and age respectively (and both
having gender labeling). More information on SCOTUS can
be found in [16].

The architecture chosen for the speaker embedding extrac-
tor was the x-vector architecture, which was trained on Vox-
Celeb 2 for 200,000 iterations. The number of embedding di-
mensions was chosen at 64. For all experiments in which the
embedding dimension was split up (referred to as SplitDim),
the first embedding dimension was always used to capture the
Gender. For VoxCeleb SplitDim experiments, dimensions 2-12
were used as input for the nationality classification task, and for
SCOTUS SplitDim experiments, dims 2-12 were re-purposed
for a 10-bin age classification task.

SplitDim experiments were also performed without the ad-
dition of the adversaries, denoted by Adv or No-Adv. A base-
line was also trained which only had a speaker classification
head (Figure 1a). Models evaluated on SCOTUS were fine-
tuned on SCOTUS from the VoxCeleb model for 20,000 iter-
ations. The following values were chosen for each loss weight-
ing: λGender = 0.05, λadv

Gender = −20.0, λNationality, Age = 0.05,
λadv

Nationality, Age = −10.0.
To establish the effectiveness of the proposed method of

disentangling speaker attributes, both qualitative and quantita-
tive approaches were taken. Firstly, the embedding spaces were
examined using t-SNE [25], varying which dimensions to in-
clude in this visualization, and labeling points based on suppos-
edly disentangled attributes. Furthermore, the embeddings were
probed for information by training a separate feed forward neu-
ral network on 50,000 embeddings (as fixed inputs) from the

1https://www.github.com/cvqluu/splitdim_
disentangle

https://www.github.com/cvqluu/splitdim_disentangle
https://www.github.com/cvqluu/splitdim_disentangle


Figure 1: The architecture for training a: (a) standard speaker embedding extractor, (b) domain adversarial speaker embeddings, (c)
speaker-attribute disentangled speaker embeddings (SplitDim-Adv).

training set, and then evaluating on the test set. If for example
a separate classifier was able to perform gender classification
successfully on the non-gender dimensions of the embedding, it
would imply that the disentanglement had not been successful,
as this information remained in the other dimensions. Simi-
larly, the opposite observation would demonstrate that gender
information was successfully removed and factored out into the
desired dimension.

After showing a suitable level of disentanglement, the veri-
fication and diarization performance of these models were eval-
uated in terms of Equal Error Rate (EER) and Diarization Er-
ror Rate (DER). This was evaluated while removing certain at-
tributes (dimensions) from the embeddings, and thus demon-
strating what each attribute might contribute to the overall
speaker separability. To account for the performance change
from removing dimensions of the embedding alone, dimensions
were removed from the baseline model to find the average new
performance with a reduced number of dimensions, sampling at
maximum 1000 permutations of the dropped dimensions. All
embeddings were normalized and scored using cosine similar-
ity. Diarization was performed using agglomerative hierarchical
clustering with linkage threshold tuned on train-set recordings,
extracting embeddings for 1.5s windows with 0.75s stride from
oracle speaker activity boundaries.

5. Results and discussions
The t-SNE plots of the embeddings produced by various mod-
els can be seen in Figure 2. Here, one can see that in almost
all embedding spaces, the separation of embeddings by gen-
der is clearly visible, and this includes Figure 2b, showing that
the SplitDim without adversaries still encodes gender in the re-
maining embedding dimensions. SplitDim-Adv however (Fig-
ure 2c), improves in this regard, as when removing the gender
dimension, shows much less clear separation between embed-
dings from each gender. This indicates the necessity of includ-
ing the adversary to ensure such an attribute is truly disentan-
gled in the embedding.

This idea is confirmed further with Table 1, in which a sep-

Probed Accuracy
Gender Nat.

Baseline 99.47% 75.92%
Pick most probable class 70.77% 59.55%

N
o-

A
dv

All dims 99.36% 73.38%
-Gender dim 98.27% 73.01%
-Nationality dims 98.35% 70.39%
-Nationality, Gender dims 98.48% 68.52%

A
dv

All dims 99.49% 72.38%
-Gender dim 67.08% 72.86%
-Nationality dims 97.31% 60.04%
-Nationality, Gender dims 64.18% 58.38%

Table 1: The gender and nationality accuracies on VoxCeleb
when training a separate probe classifier on embedding fea-
tures, removing dimensions.

arate classifier was used to probe the embeddings for gender
and nationality information. Here, the probing classifier was
unable to achieve high accuracy on gender classification when
the gender dimension was removed from the SplitDim-Adv em-
beddings, reducing the probed gender accuracy from 99.47% to
67.08%, which is less accurate than always predicting the most
probable test set gender (70.77%).

For SplitDim-no-Adv, gender accuracy was still very high,
even when removing the gender dimension, again suggesting
that without the adversary, gender information is still present in
the other embedding dimensions. These conclusions also carry
over to the results with probed nationality accuracy, where the
addition of the adversary (Adv) resulted in a much more signif-
icant reduction in probed accuracy when removing the relevant
dimensions, compared to not (No-Adv).

On a practical note, it should be mentioned that attempts
to add the task specific heads to an embedding extractor pre-
trained on only speaker classification were unsuccessful, re-
sulting in embedding spaces that could not be disentangled.
SplitDim-Adv models were only successful when training from
scratch or by initializing using another SplitDim-Adv model
(as was the case when fine-tuning SplitDim-Adv from Vox-
Celeb to SCOTUS). This could explain the findings of [21, 20],



Figure 2: Gender color-coded t-SNE projections of the embeddings produced by: (a) baseline model, (b) SplitDim-no-Adv model, (c)
SplitDim-Adv model

which found adversarial techniques to be ineffective in obscur-
ing the gender information when using pre-trained speaker em-
beddings.

In Table 2, the speaker verification performance on Vox-
Celeb is shown for the baseline model, along with the SplitDim-
Adv model. Firstly, we can see that disentangling the space has
incurred a reduction in performance (4.22% to 6.68% EER),
which is likely due to the addition of the four extra tasks of the
SplitDim-Adv model (Gender, Gender-Adversary, Nationality,
Nationality-Adversary). With extra tasks, especially adversarial
ones, reaching the optimal embedding space for speaker recog-
nition may be difficult if tasks can conflict with each other (as
they are designed to do in adversarial training).

This conflicting performance may also raise questions as to
what degree it is possible to fully disentangle certain attributes.
For example with age and gender, male and female voices may
age in significantly different ways, and thus in order to capture
that effectively, the dimensions reserved for predicting age may
benefit from containing information about the gender also. This
kind of query is very much an open question in disentangled
representation learning literature [9], and out of the scope of
this paper.

Table 2 also shows the verification performance when re-
moving these attribute specific dimensions. As mentioned in
section 4, there is a general performance impact to be expected
from removing dimensions in general, and thus the same num-
ber of dimensions was also removed from the baseline for a
fairer comparison with the removal of attribute specific dimen-
sions. When comparing like for like, the removal of the single
gender dimension is significant in comparison to removing a
single dimension (1.8% versus 14.2% relative increase in EER),
suggesting gender is a powerful contributor to speaker separa-
bility, at least in this test set. Likewise, removing Nationality
and Nationality with Gender dimensions results in performance
degradation beyond that of the baseline model, further support-
ing that these attributes are significant sources of speaker varia-
tion in the speaker embedding space.

For SCOTUS in Table 3, verification performance follows
a similar trend to VoxCeleb, with gender once again being a
significant factor in affecting separability, whereas the affect
that removing age had on performance was more than the base-
line expectation from removing 10 dims, but not as significant
as nationality. However, for diarization, results are somewhat
unexpected, with the SplitDim-Adv model outperforming the
baseline in all cases. Also unexpectedly, removing gender with
diarization produces a very similar performance decrease com-
pared with removing a single dimension from the baseline. The
most likely reason for this is the nature of the SCOTUS corpus,
which is particularly male dominated. Although the verification
trials were selected to be speaker balanced (77% male), this is

EER ∆%
Baseline 4.22% -
Baseline (avg. excl. 1 dim) 4.30% 1.8%
Baseline (avg. excl. 10 dim) 4.81% 14.0%
Baseline (avg. excl. 11 dim) 4.88% 15.6%
All dims 6.68% -
-Gender dim 7.63% 14.2%
-Nationality dims 8.76% 31.1%
-Nationality, Gender dims 10.19% 52.5%

Table 2: Verification performance on VoxCeleb, using the
SplitDim-Adv embeddings and the subset of dimensions. Also
shown is the relative percentage increase in EER compared to
using all dimensions. -Gender removes 1 dim and -Age removes
10 dims.

EER ∆% DER ∆%
Baseline 2.10% - 32.19% -
Baseline (excl. 1-d) 2.13% 1.4% 32.76% 1.77%
Baseline (excl. 10-d) 2.40% 14.1% 36.69% 14.0%
Baseline (excl. 11-d) 2.44% 16.2% 37.48% 16.4%
All dims 3.52% - 29.74% -
-Gender dim 3.67% 4.26% 30.26% 1.75%
-Age dims 4.41% 25.3% 35.07% 17.9%
-Age, Gender dims 4.62% 35.1% 35.69% 20.0%

Table 3: Verification and diarization performance on SCOTUS,
using the SplitDim-Adv embeddings. -Gender removes 1 dim
and -Age removes 10 dims.

not the case with diarizing the raw test set recordings, which
in terms duration are >90% male. Thus when scoring all pairs
of segments, the overwhelming majority of pairs cannot benefit
from distinguishing by gender.

6. Conclusions
In this work, we showed that utilizing multi-task learning along-
side adversarial training can effectively disentangle and fac-
torize speaker attributes in the speaker embedding space, with
the use of the adversaries essential in separating out sources of
variation. Using these disentangled representations, we looked
at how gender, age and speaker nationality contribute toward
speaker separability, finding that gender information was a sig-
nificant source of information when discerning between speak-
ers in the embedding space for verification, compared to that of
nationality or age.
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