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Abstract
We present a method for cross-lingual training an ASR sys-
tem using absolutely no transcribed training data from the tar-
get language, and with no phonetic knowledge of the language
in question. Our approach uses a novel application of a deci-
pherment algorithm, which operates given only unpaired speech
and text data from the target language. We apply this decipher-
ment to phone sequences generated by a universal phone recog-
niser trained on out-of-language speech corpora, which we fol-
low with flat-start semi-supervised training to obtain an acous-
tic model for the new language. To the best of our knowledge,
this is the first practical approach to zero-resource cross-lingual
ASR which does not rely on any hand-crafted phonetic informa-
tion. We carry out experiments on read speech from the Glob-
alPhone corpus, and show that it is possible to learn a decipher-
ment model on just 20 minutes of data from the target language.
When used to generate pseudo-labels for semi-supervised train-
ing, we obtain WERs that range from 32.5% to just 1.9% abso-
lute worse than the equivalent fully supervised models trained
on the same data.
Index Terms: automatic speech recognition, cross-lingual
transfer, decipherment, semi-supervised training

1. Introduction
In recent years there has been considerable research devoted
to reducing the amount of human effort required to build an
automatic speech recognition (ASR) system for a new lan-
guage. Conventional ASR training requires large quantities of
manually-transcribed training data, as well as a hand-crafted
pronunciation dictionary. Recent grapheme-based hybrid-
HMM approaches [1] have shown success at removing the need
for explicit pronunciation knowledge, whilst more recent end-
to-end systems [2] have removed the need for a lexicon entirely
by modelling output tokens at the character or word-piece level.
However, transcribed training data is typically still required,
with end-to-end systems being particularly data hungry.

The process of manual transcription can be extremely time-
consuming and expensive. Consequently a body of research has
focused on reducing the need for such data, for example through
the use of approximately-matching “in-the-wild” speech and
text data, known as lightly-supervised training [3], and through
the use of unlabelled data transcribed with a seed model, known
as semi-supervised training [4]. However, in both cases, manual
expertise is required to train the initial model.

In his 2012 position paper, Glass [5] described the road to-
wards unsupervised speech processing through a set of scenar-
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ios that, he noted, “might seem increasingly outlandish and im-
practical”. He suggested a move from “expert-based” systems,
with a dictionary and phoneme set provided, through “data-
based” systems with parallel speech and text data, to what he
called “decipher-based” systems, through which ASR training
could be achieved using entirely untranscribed speech, together
with unpaired text data. This scenario has the significant advan-
tage that for any languages with a significant web presence at
least, both resources are likely to be relatively abundant without
any human effort.

Since Glass’s paper, significant effort has been devoted to
this so-called “zero-resource” scenario. Approaches to this
problem tend to fall into two categories: those attempting to
learn phoneme- or word-like patterns from speech in a bottom
up manner, often motivated by child speech learning [6, 7];
and those using cross-lingual information to inform the target
model. The latter category extends a long strand of research
into cross-lingual ASR methods – which seek to improve su-
pervised training on a target language through the use of out-
of-language language data – to the case where no transcribed
data exists for the target language. There have been a variety
of recent approaches to this problem, all of which in one way
or another address the problem of matching the modelling units
of the out-of-language model to meaningful units in the target
language. The earliest approaches used IPA-based phone map-
ping schemes [8] whilst more recent related methods have used
automatic multilingual pronunciation mining from the web [9]
or cross-lingual transfer from languages with similar orthogra-
phies [10]. [11] uses knowledge of compositional phonetics in
the target language to remove the need for resources in the tar-
get language, building on earlier supervised approaches such as
[12], whilst [13] used a semi-supervised approach, extending
an initial lexicon using unpaired phonemic transcripts and text
data.

Separately, there has been significant work towards build-
ing language-universal systems, generally with shared pho-
netic knowledge [14]. These approaches can be problematic
due to differing phonotactics between languages [15], though
language-specific embeddings may be used [16]. Again, these
methods require knowledge of pronunciations in a target lan-
guage in order to produce word output. Purely graphemic mul-
tilingual systems have been developed [1] but require the target
language to be in the training set; supervised transliterations ap-
proaches have been used in the context of end-to-end systems
[17].

Purely bottom-up approaches to zero-resource ASR, whilst
interesting, have not generally yielded state-of-the-art ASR per-
formance, when compared to cross-lingual methods. How-
ever, groundbreaking work in this area [18] uses Facebook’s
wav2vec2.0 architecture [19] to produce phone-like sequences
in an entirely bottom-up manner, which are then mapped to
phonemized text sequences using an adversarial objective [20].
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Figure 1: A diagram of a zero-resource cross-lingual transfer
pipeline.

However, this work relies on manually-obtained phone units
and a system trained on a large hand-crafted pronunciation dic-
tionary, with the authors noting that it is easier to learn a map-
ping between the speech audio and phone units. Further, the
wav2vec2.0 models need very large amounts of training data to
be effective.

We believe that no prior research has yet achieved Glass’s
vision of removing both the need for transcribed audio data and
human phonetic knowledge of the target language, thus building
a system with no expert input. In this paper, we propose to re-
turn to his original term of “decipher-based” systems. Inspired
by this, and by similar work for unsupervised transliteration and
machine translation [21, 22], we here present a method for de-
ciphering speech data using only mismatched text data from the
language of interest. Our method starts with a cross-lingual ap-
proach, taking a universal phone recogniser trained on a variety
of source languages. No self-supervised pre-training is needed,
and we find that the technique is highly data efficient, requir-
ing just 20 minutes of speech data from the target language to
achieve a successful decipherment. Furthermore, no phonetic
knowledge of the target language is used, making the method
applicable in principle to almost any language.

2. Zero-Resource Cross-Lingual Transfer
Our method for zero-resource cross-lingual transfer uses a
three-stage approach. First a universal phone recogniser tran-
scribes audio into phones. Then, we decipher this phone se-
quence into graphemes from the target language – for this,
only language models trained on target-language text data are
required. Finally, a flat-start semi-supervised training proce-
dure is used to train a new acoustic model using the deciphered
pseudo-labels. The complete pipeline is illustrated in Figure 1.
We describe the three steps in detail below.

2.1. Universal Phone Recognition

The aim of a universal phone recogniser is to phonetically tran-
scribe speech from any language. To achieve good generalisa-

tion to unseen languages, it is necessary to train the model on
a diverse set of languages, in order to cover as wide a set of
phones as possible. One way to train such a system is to simply
pool data and phonemic lexicons and train a multilingual model
with a shared phoneme set. In this work, for simplicity, we use a
shared phoneme set to train a conventional hybrid HMM-DNN
system on six well-resourced languages. We are aware that [14]
notes that pooling the phoneme sets is sub-optimal as phonemes
might have different surface forms in different languages, and
that the use of linguistically-derived allophone mappings [14]
might be beneficial.

2.2. Decipherment

The task of decipherment is to convert a cipher into plain natural
language, a classic example being deciphering a letter substitu-
tion cipher. The use of this technique to decipher the output of a
multilingual phone recogniser is the most significant contribu-
tion of this paper. We start with the work of Knight [23], who
showed that a noisy-channel framework can be used for deci-
pherment. In this framework the probability of deciphering a
cipher X into an English1 text Y is modelled as

P (Y,X) = Plex(X | Y )Plm(Y ), (1)

where we call Plex(X | Y ) the lexical model and Plm(Y ) the
language model. The lexical model produces the probability
that an English letter y corresponds to a cipher letter x and the
language model Plm(Y ) assigns probabilities to sequences of
English letters. The language model can be trained on any text
corpora and the lexical model Plex(X | Y ) can be trained in
an unsupervised fashion with the Baum Welch algorithm [24].
Once the lexical model is trained, the most probable English
text corresponding to the cipher can be deciphered with the
Viterbi algorithm to obtain:

Ŷ = argmax
Y

Plex(X | Y )Plm(Y ). (2)

In the past, decipherment was used in various NLP ap-
plications such as unsupervised machine transliteration [25],
unsupervised machine translation [21, 26] or unsupervised
Chinese pronunciation learning [27]. However, phoneme-to-
grapheme (P2G) conversion is much more difficult than solv-
ing a deterministic substitution cipher for two reasons: first, a
grapheme can be mapped to many phonemes, for example En-
glish grapheme “a” can be pronounced as AH, AA, AE or EH.
Second, one grapheme can correspond to multiple sequential
phonemes, for example “x” is pronounced as “K S”; similarly,
one phoneme can align with multiple sequential graphemes, for
example “th” is often pronounced as “DH”. Finally, when ap-
plying phoneme-to-grapheme conversion at the utterance level,
our model needs to be able to perform word segmentation.
These challenges are further multiplied when we deal with
noisy inputs from the universal phone recogniser.

To be able to deal with insertion and deletions inherent to
the P2G, we use the following parameterisation proposed by
Nuhn [22]:

Ŷ = argmax
Y

P (Y | X)

= argmax
Y

Plex(X | Y,A)Plm(Y )Pali(A)
(3)

1In this section we follow the literature in taking English as the target
language; of course, in reality we decipher other languages.



0 1
sub
sil

sub
2del

3
ins

sil

sub

sil

sub

Figure 2: A diagram of an alignment model which allows one
insertion or one deletion in a row.

In this parameterisaton the decipherment model consists of
three components: lexical model Plex(X | Y ), alignment model
Pali(A), and language model Plm(Y ). The random variable A
represents a sequence of substitution, insertion and deletion op-
erations. We can also express decipherment using WFST nota-
tion as:

Ŷ = shortest path(X ◦ (L ◦A ◦G)), (4)

where X is an input phone acceptor, L is the lexicon model
transducer, A is the alignment model transducer and G is the
language model acceptor.

The role of the lexical model is to model the probabilities
of mapping phones into graphemes, and also to model the prob-
ability of phone deletions Plex(x | ϵ). The lexical model is
implemented as a simple one state flower transducer. It is ini-
tialised to allow all possible substitutions but during training the
unseen substitutions are pruned from the model, which results
in faster training and inference due to a smaller composition.
However, since we train on small amounts of data in an un-
supervised fashion it is possible that some important arcs are
pruned from the model, which can be detrimental. Therefore,
following [26] we smooth the lexical model at various stages of
training with the following equation:

P s
lex(x | y) = αPlex(x | y) + 1− α

|X| , (5)

where α is a smoothing parameter (we use 0.9) and |X| denotes
the size of the input phone-set. Finally, the lexical model always
maps silence phones to silence or a word boundary in the output.
This results in faster training/inference – because silence prunes
the space of possible word segmentation – and more accurate
decipherment.

The language model is the component most important to
decipherment, providing information to the training process.
The language model predicts the probability of a sequence of
graphemes in the target language. Therefore, it is possible to use
character n-gram models. It is important to keep in mind that us-
ing n-gram models with large contexts results in a big composi-
tion when composed with an unpruned lexical model; therefore
it is not feasible to use them from the beginning. Hence we start
with a simple bigram model and move to using up to 5-gram
grapheme models as training progresses. Subsequently, we use
a word trigram language model together with a grapheme lexi-
con for the final round of training. Since the composition of the
lexical model, alignment model and the word language model
L◦A◦G is slow, and is required after every training epoch, we
reimplemented the standard composition X ◦(L◦A◦G) with a

three-way composition X ◦(L◦A)◦G [28] . We also use prun-
ing to speed up training and inference with the word language
models. Our decipherment pipeline is implemented in Open-
FST [29] and its design is heavily inspired by the BaumWelch
library from OpenGrm [30].

2.3. Semi-Supervised Training

In conventional semi-supervised training (SST) we use a
seed-model to create “pseudo-labels” for untranscribed speech
data [4, 31]. In our previous work [32], we showed that SST
can be successful even with seed models with WER over 80%
if lattices are used to model uncertainty in the hypotheses. In
the previous section we described how decipherment can be
used to convert the output of a universal phone recogniser into
a sequence of target-language graphemes, to be used as pseudo-
labels for untranscribed data. The pseudo-labels can either be
one-best transcripts or decipherment lattices. Unlike conven-
tional SST, we have no seed model for the target language, since
there is no equivalence between the outputs of the phone recog-
niser and the target language graphemes. We therefore choose
to train a model with flat-start lattice-free MMI (LF-MMI) [33],
initialising the lower layers of the model with the universal
phone recogniser, but using a randomly-initialised output layer.

3. Experiments
To demonstrate that decipherment can be used for cross-lingual
transfer, we trained a universal phone recogniser on English,
French, German, Spanish, Russian and Polish and we per-
formed decipherment experiments on Bulgarian (BUL), Czech
(CES), Hausa (HAU), Portuguese (POR), Swahili (SWA),
Swedish (SWE) and Ukrainian (UKR).

3.1. Setup

Our experiments were performed using the GlobalPhone cor-
pus [34]. This corpus comes with data from various languages
and contains lexicons, which can be mapped to X-SAMPA, en-
abling the pooling of phonemes across languages. All these
properties make GlobalPhone an ideal test-bed for evaluation
of zero-resource cross-lingual transfer with decipherment.

To train the universal phone recogniser as a multilingual
model with a shared phone-set we pooled 20 hours of English
LibriSpeech [35] with the training data from GlobalPhone Ger-
man, French, Spanish, Russian and Polish [34], 110 hours of
data in total. The multilingual model was a small time-delayed
neural network [36] with 18 hidden layers each having 798 hid-
den layer size and 90 bottleneck size. In total the model had
7.2M parameters, used 40 dimensional cepstral mean and vari-
ance normalised MFCC features as inputs, and was trained with
LF-MMI [37] using the Kaldi toolkit [38]. We used a phone-
bigram language model estimated on the multilingual training
data for cross-lingual phone decoding.

We trained all language models on the text data from Com-
monCrawl [39]. Because the CommonCrawl text data is noisy
we preprocessed it as follows. We performed word tokenization
and removed tokens consisting only of non-alpha-numeric char-
acters. We mapped words containing characters outside of the
target language alphabet or containing letters repeated at least 3
times in a row to <unk> and removed sentences containing any
word longer than 20 characters or with three consecutive single-
letter words. We trained language models with SRILM [40] on
up to 1B tokens and we pruned the language models to only
contain the 300k most frequent words. We did not use the pre-



Table 1: Word Error Rate (WER) of ASR models trained for Bulgarian (BUL), Czech (CES), Hausa (HAU), Portuguese (POR), Swahili
(SWA), Swedish (SWE) and Ukrainian (UKR).

BUL CES HAU POR SWA SWE UKR
Oracle with GlobalPhone LM 8.5 11.7 7.6 15.0 N/A 16.8 N/A
Oracle with CommonCrawl LM 7.9 12.9 12.2 17.0 10.2 23.3 8.4
Phone-mapping 35.0 44.3 43.4 52.8 82.5 66.8 35.7
+ semi-supervised training 12.6 16.8 25.3 21.8 52.8 37.5 12.1
Decipherment 31.0 49.0 70.8 53.8 105.3 93.5 34.5
+ semi-supervised training 10.7 16.5 30.3 21.2 98.3 55.8 10.3

trained GlobalPhone language models because we found that
some of them had been also trained on the training transcripts
which could bias the results of semi-supervised training. But for
completeness we also include the oracle results obtained with
GlobalPhone LMs in Table 1.

The decipherment model was trained on 20 minutes of
the shortest utterances from the development set of each lan-
guage. We increased the power of the character-level language
model over successive epochs from a bigram up to a 5-gram,
performing 20 iterations of full-batch training with each lan-
guage model. These grapheme language models were trained
on the first 50k lines of the normalised CommonCrawl text data.
To prevent issues with bad initialisation of the decipherment
model we performed 50 random restarts with the bigram lan-
guage model and we picked the model with the best likelihood
on the training data for successive training [41]. To speed up
training with the larger grapheme models, we pruned the lex-
ical model to retain probabilities for only the top 20 phones
for each grapheme after training with the bigram grapheme lan-
guage model. After this stage we smoothed the lexical model
and continued training with the CommonCrawl word language
model. Finally, we smoothed the lexical model again and de-
ciphered the GlobalPhone training data. Note that during train-
ing we used a word language model containing only the 100k
most frequent words but during inference we used the language
model containing the 300k most frequent words.

Subsequently we performed two iterations of semi-
supervised training with the deciphered lattices representing
alternative pseudo-labels. In the first iteration we used these
lattices for flat-start LF-MMI training [33]. Instead of training
the acoustic model from scratch, we replaced the output layer
of the multilingual model with a new layer producing pseudo-
likelihoods for mono-graphemes. In the second iteration we
used the mono-grapheme model to re-decode the training data.
To prevent overfitting to the training data we did not continue
training the mono-grapheme model, but again replaced the out-
put layer of the pretrained multilingual model and used that
model for training. This time we used bi-grapheme targets, be-
cause of now having more reliable pseudo-labels with which to
estimate the state clustering tree. Since the decipherment tends
to produce a lot of deletion errors we used a deletion penalty
during decoding to allow the model to learn to fix them [42].

We compared the performance with two other approaches.
The first was standard supervised training, called Oracle in
Table 1, and in the second we used linguistic knowledge to
map phones from the target language to the closest phone in
the pooled multilingual phone set to generate pseudo-labels for
semi-supervised training [8, 43], called Phone-mapping in Ta-
ble 1. In both approaches we also initialised the acoustic mod-
els by replacing the output layer of the pretrained multilingual
model.

3.2. Results

Our results in Table 1 show that decipherment achieves com-
parable or better results to the hand-crafted phone-mapping ap-
proach for Bulgarian, Czech, Portuguese and Ukrainian, which
are well-resourced languages. For all these languages, decipher-
ment followed by semi-supervised training is only 2 – 4% abso-
lute worse than Oracle with CommonCrawl LM. Swedish is the
only well-resourced language for which decipherment performs
much worse with the absolute difference of 32.5%.

For lower-resourced languages Swahili and Hausa, phone
mapping achieves better results. For Swahili we were unable
to achieve a successful decipherment. By listening to the Glob-
alPhone Swahili data we identified several problems, including
beeps at the beginning of each utterance and a lot of leading and
trailing silence. Even when we removed the beeps and lead-
ing and trailing silence in the Swahili data the performance was
bad (as reported in Table 1). Therefore, we decided to evaluate
the method also on Swahili data from the ALFFA corpus [44]
which has been used for unsupervised speech recognition exper-
iments in [18]. On this dataset decipherment followed by semi-
supervised training achieves a WER of 41.8% which compares
to 32.2% reported in [18] and 24.6% achieved by our oracle
model. These Swahili results suggest that in order to be able to
decipher speech from a new language we need to find speech
amenable to decipherment.

We believe that our results in all languages could be further
improved by using a better universal phone recogniser [14], a
better pre-trained model for initialisation [19] and by leverag-
ing more crawled data for SST [32, 45]. Our results are in-
line with our previous work on conventional low-resource SST
where we showed that it is possible to perform SST even with a
bad seed acoustic model provided that we have a good language
model [32].

4. Conclusions and Future Work
We presented a method for zero-resource cross-lingual transfer
of ASR models based on decipherment that allows training of
ASR models using only untranscribed speech, text corpora and
a universal phone recogniser. Across seven test languages our
method was able to produce a working acoustic model for six,
which could be further improved by using more untranscribed
data for SST. In future we plan to apply decipherment to more
challenging languages, but we believe that for this it may be
necessary to train a more robust universal phone recogniser that
works reliably across a wider range of various languages. We
also intend to improve our decipherment algorithm to enable se-
lection of utterances that can be reliably deciphered. Further, we
hope to replace the universal phone recogniser with automatic
unit discovery to create a pronunciation lexicon-free alternative
for unsupervised speech recognition [18].
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