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Abstract 10 

Responses to hormones that act through nuclear receptors are controlled by modulating hormone 11 

concentrations not only in the circulation but also within target tissues. The role of enzymes that 12 

amplify or reduce local hormone concentrations has become well-established for glucocorticoid and 13 

other lipophilic hormones; moreover, transmembrane transporters have proven critical in 14 

determining tissue responses to thyroid hormones. However, there has been less consideration of the 15 

role of transmembrane transport for steroid hormones. ATP-binding cassette (ABC) proteins were first 16 

shown to influence the accumulation of glucocorticoids in cells almost three decades ago, but 17 

observations over the past ten years suggest that differential transport propensities of both 18 

exogenous and endogenous glucocorticoids by ABCB1 and ABCC1 transporters provides a mechanism 19 

whereby different tissues are preferentially sensitive to different steroids. This Review summarises 20 

this evidence and the new insights provided for the physiology and pharmacology of glucocorticoid 21 

action, including new approaches to glucocorticoid replacement. 22 

 23 

 24 
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Introduction 25 

Glucocorticoid hormones are vital for life; they confer diverse effects on multiple processes 26 

and systems. The adverse consequences of glucocorticoid excess are well demonstrated by the frank 27 

hypercortisolism of Cushing syndrome, but even subtle cortisol dysregulation has implications, 28 

contributing to cardiovascular disease, for example.1 Over the past 30 years it has become clear that 29 

the concentration of glucocorticoid in the blood does not necessarily reflect that within tissues, as 30 

enzymes (such as 11β-hydroxysteroid dehydrogenase, which catalyses the interconversion of inert 31 

cortisone and active cortisol) and delivery mechanisms of corticosteroid binding protein can confer 32 

additional control over the absolute tissue levels.2,3  33 

As lipophilic molecules, glucocorticoids can diffuse across cell membranes to interact with 34 

intracellular targets; however, they can also undergo active transmembrane transport. This process 35 

was first described for the ABCB1 transporter (of the ATP-Binding Cassette [ABC] protein family), 36 

which exports cortisol and a variety of synthetic glucocorticoids from ‘sanctuary sites’ including the 37 

brain.4,5 Intriguingly, corticosterone is not readily exported by ABCB1, but we have discovered that the 38 

ABCC1 transporter, found in tissues including adipose, exports corticosterone but not cortisol.6 39 

In this Review, we will explore the implications of this tissue-specific glucocorticoid transport 40 

in the central control of the hypothalamic–pituitary–adrenal (HPA) axis, adipose tissue metabolism 41 

and pregnancy. We will also consider whether the steroid specificity of ABCB1 and ABCC1 transport 42 

offers insights into the different roles of corticosterone and cortisol in humans and a potential 43 

opportunity for developing glucocorticoid therapies that are better targeted than those currently 44 

available to maximise efficacy and minimise toxicity. 45 

 46 

[H1] The movement of lipophilic hormones  47 
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The ‘free hormone hypothesis’ determines that unbound lipophilic hormones move passively 48 

down a concentration gradient7 and, indeed, steroids are taken up freely by cell types such as 49 

keratinocytes without the relevant membrane transporters.8  Differences in tissue concentrations 50 

were previously attributed to differences in physicochemical properties, such as lipophilicity, until the 51 

discovery of the existence of specific thyroid hormone transporters challenged these traditional 52 

assumptions. In the case of triiodothyronine (T3), which is highly lipophilic owing to the iodinated 53 

aromatic ring, the level of hormone available to receptors not only depends on hormone synthesis 54 

and peripheral enzymatic conversion, but also on transport into and out of cells, notably by the 55 

monocarboxylate 8 (MCT8) transporter.9 The uptake of T3 into neurons is critically impaired in the 56 

absence of MCT8, as occurs in the X-linked Allan-Herndon-Dudley syndrome of neurodevelopmental 57 

anomalies associated with abnormal thyroid function.10 58 

The cellular uptake of glucocorticoids by membrane transporters has been demonstrated in 59 

Drosophila melanogaster, in which loss of the Ecdysone Importer (EcI) membrane transporter 60 

produces a phenotype that is identical to that resulting from the loss of ecdysone or the ecdysone 61 

receptor.11 Organic anion transporting polypeptide transporters mediate the uptake of glucocorticoids 62 

in rat liver ex vivo; however, this uptake has not been reproduced in humans.12,13 Furthermore, a 63 

saturable glucocorticoid uptake mechanism across the blood–brain barrier (BBB) and blood–64 

cerebrospinal fluid barrier that was reported  in mice was only discernible at supraphysiological 65 

concentrations, and so might not be physiologically relevant.14        66 

Our increasing understanding of the importance of transporters for thyroid hormone function 67 

sets a biological precedent for a similar scenario for other lipophilic hormones; however, although the 68 

active cellular import of glucocorticoids in humans has not been shown, there is mounting evidence 69 

supporting the facilitated export of glucocorticoids from cells, particularly by two members of the ABC 70 

transporter family. 71 

 72 
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 [H1] The ABC protein family 73 

As members of one of the most highly conserved protein superfamilies, ABC proteins shuttle 74 

toxins, xenobiotics and signalling molecules across eukaryotic and prokaryotic cell membranes. These 75 

proteins are classified into seven subfamilies according to their structural similarity and sequence 76 

homology, and have been actively researched for decades, particularly in relation to multidrug 77 

resistance. The evolution and relevance of this transporter superfamily in the context of cancer drug 78 

efflux has been well reviewed;15,16 however, of the over 50 human ABC proteins that have been 79 

identified, only ABCB1 and ABCC1 have recognised roles in glucocorticoid transport.17  80 

The typical ABC transporter is a homodimer characterized by two transmembrane domains 81 

(TMDs) and two cytoplasmic nucleotide-binding domains (NBDs) (FIG. 1).18  Each TMD domain contains 82 

between six and ten transmembrane α-helices, depending on the specific transporter, and is involved 83 

in substrate recognition. The cytoplasmic NBDs contain conserved motifs for ATP binding and 84 

hydrolysis, including the ABC signature motif (or C-loop motif), Walker A motif (P-loop)  and Walker B 85 

motif.17 Together, these dimeric NBDs act to hydrolyse ATP and provide energy to drive transport 86 

against concentration gradients. 87 

Several models have been proposed to explain the relationship between ATP hydrolysis and 88 

TMD-mediated transport,19 with most purporting that energy from ATP hydrolysis enables the TMDs 89 

to switch between inward- and outward-facing configurations (FIG. 1A).  Individual ABC transporters 90 

are unidirectional: in eukaryotic cells, they are almost exclusively exporters, but both importers (of 91 

nutrients) and exporters (of toxins and cell wall substrates) exist in bacteria.20 Consistent with this 92 

export function in eukaryotes, ABC transporters are typically found on the apical cell membrane at 93 

luminal surfaces to limit xenobiotic exposure.17 Substrates range from ions to large proteins and there 94 

is a high degree of overlap between transporters, although the molecular basis for this overlap 95 

remains poorly documented. 96 

 97 
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 98 

[H1] ABCB1 and ABCC1 are steroid exporters 99 

[H2] ABCB1 and steroid export  100 

Initially named P-glycoprotein (P-gp) and later multidrug resistance protein 1 (MDR1), ABCB1 101 

has been extensively studied as the archetypal multidrug transporter, exporting a broad array of 102 

xenobiotics including antineoplastics, antimicrobials and antidepressants from cells (reviewed in 103 

15,21,22). In humans, the ABCB1 gene, located on chromosome 7q21.12, encodes a protein of 1280 104 

amino acids (141.5 kDa) in size with 12 membrane-spanning α-helices distributed among two TMDs.23 105 

The polyspecificity of ABC transporters is often purported to result from the plasticity of the drug-106 

binding pocket, both in terms of side chain and backbone arrangements. Numerous attempts have 107 

been made over the years to determine the 3D structure of ABC proteins in an effort to understand 108 

their transport mechanisms and their substrate specificity; however, their size and hydrophobicity 109 

pose significant challenges.24 Advances in the use of cryo-electron microscopy have enabled structural 110 

insights into substrate binding.25-27 Reconstitution of the structure of human ABCB1 in complex with 111 

chemotherapeutic drugs has revealed the drug-binding cavity to be globular in shape, with 112 

interactions contributed by all 12 membrane-spanning α-helices (FIG. 1B).25   Substrate-induced 113 

structural changes in NBD2 are thought to confer changes in ATPase activity, which determines 114 

transport action.  115 

A putative steroid-binding site has been identified in human ABCB1, but this is based upon a 116 

homology model of only the NBDs28 and is not definitive. However, physiological data do support 117 

selective ABCB1-mediated transport of steroids. In the 1960s, murine fibroblasts were observed 118 

exporting steroids in an energy- and temperature-dependent manner, consistent with active 119 

transport.29 Cortisol export was later (in 1992) demonstrated in a porcine renal tubular cell line (LLC-120 

PK1) overexpressing human ABCB1.30 Since then, several endogenous and synthetic steroids have 121 

been confirmed as ABCB1 substrates. Depending on the presence of hydroxyl groups at positions 11 122 

and 17, steroids were stratified into three categories.31 ABCB1-mediated efflux was highest for 123 
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steroids with both hydroxyl groups (including dexamethasone, cortisol and prednisolone), lowest for 124 

those with neither (deoxycorticosterone and progesterone), and intermediate in those with one 125 

hydroxyl group (including corticosterone and aldosterone). A-ring planarity and 6α- and 16α- methyl 126 

substitution were reported to enhance transport when compared to passive diffusion in the LLC-PK1 127 

line, in keeping with the presence of a critical hydrophobic pocket in the steroid-binding region.32 128 

Methylprednisolone is the glucocorticoid most effectively exported by ABCB1, followed by 129 

prednisolone, betamethasone, prednisone, dexamethasone, cortisol and cortisone.31-33 Aldosterone 130 

appears to be weakly transported, and there is no evidence that sex steroids or 11-131 

deoxycorticosterone undergo ABCB1-mediated export,31 although progesterone does bind avidly to 132 

ABCB1 with an inhibitory effect.34 Corticosterone — the predominant glucocorticoid in rats and mice 133 

—  was initially shown to be an ABCB1 substrate on the basis of efflux from murine macrophage-like 134 

cells,35  and subsequent in vitro work in murine adrenocortical cells has demonstrated that 135 

pharmacological ABCB1 inhibition blocked the ability of these cells to secrete corticosterone.36 136 

However, this is in contrast to previous in vitro work showing that corticosterone was not exported in 137 

the murine LMCAT fibroblast line.31,37-39  Studies of the human transporter have not shown 138 

corticosterone to be transported by ABCB1, so affinity might be species specific.4,40  Importantly, 139 

studies in murine thymoma cells overexpressing Abcb1 in which corticosterone and cortisol transport 140 

was compared showed a lower efflux of corticosterone compared with cortisol,31 indicating an overall 141 

preference of this transporter for cortisol. 142 

 143 

[H2] ABCC1 and steroid export 144 

First identified and cloned as multidrug resistance-associated protein 1 (MRP1), ABCC1 was 145 

also discovered in multidrug resistance studies where high levels of expression are poor prognostic 146 

indicators in certain malignancies.41-43  Since then, ABCC1 has been shown to efflux a diverse range of 147 

conjugated xenobiotics and physiological organic anions.44 Like ABCB1, ABCC1 demonstrates a 148 
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polarized distribution in epithelial cells, but is located on the basolateral rather than apical 149 

membrane.45  150 

ABCC1 is encoded by the human ABCC1 gene on the short arm of chromosome 16 (16p13.11). 151 

Strikingly, ABCC1 and ABCB1 share only 23% sequence identity, and differ substantially in their 152 

structural and physiological functions. To date, the structure of only bovine ABCC1 has been 153 

determined by cryo-electron microscopy.45 The 190 kDa ABCC1 protein has 17 transmembrane α-154 

helices distributed among three TMDs (TMD0, TMD1 and TMD2) rather than the two TMDs observed 155 

in ABCB1 (FIG 1C).45 156 

The binding site between TMDs 1 and 2 is ‘bipartite’: it has a positively charged ‘P pocket’, 157 

which forms hydrogen bonds with glutathione residues, and a second ’H pocket’, which interacts with 158 

hydrophobic moieties. This bipartite binding domain explains why glutathione coupling facilitates the 159 

transport of a wide range of compounds.45 160 

ABCC1 substrates tend to be organic anions, whereas those for ABCB1 tend to be weak 161 

cations;45 and ABCC1 uniquely exhibits affinity for phase II hepatic metabolites (endogenous and 162 

xenobiotic compounds conjugated with glutathione, glucuronide and sulphate to facilitate excretion). 163 

There are differences in substrate preference between human and other mammalian isoforms — for 164 

example, the glucuronide conjugate of 17β-oestradiol is a substrate only in humans.46 It has also been 165 

shown in vitro, both in virally transfected mouse fibroblast LMCAT cells and subsequently in human 166 

adipocytes, that ABCC1 can export corticosterone and 11-deoxycorticosterone, but not cortisol, 167 

prednisolone or dexamethasone.6,39 168 

Whilst ABCB1 is thought to transport substrates partitioning through the bilipid cell 169 

membrane (the ‘hydrophobic vacuum’),47 ABCC1 is only open to substates within the cytoplasm.45 170 

 171 

[H1] ABCB1 and ABCC1 expression in tissues  172 
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The mRNA expression profiles of human ABCB1 and ABCC1 in various tissues are summarised 173 

in FIG. 2. ABCB1 is highly expressed (both at mRNA and protein level) in the adrenal gland, but also 174 

found at absorptive surfaces (for example, of the intestines), protective barriers (for example, testis, 175 

BBB and placenta) and in secretory tissues (for example, biliary canaliculi and renal tubule).23 ABCC1 176 

is widely expressed in almost all cell types, with highest levels in the thymus, parathyroid glands and 177 

skeletal muscle. It seems to be poorly expressed in the liver48 and nervous system but, notably, is 178 

found in greater quantities than ABCB1 in adipose tissue and skeletal muscle.23,49,50 179 

A model for the consequences of this tissue-specific transporter expression on the 180 

intracellular concentrations of different glucocorticoids is outlined in FIG. 3. Combining in vitro studies 181 

from three different laboratories, glucocorticoids can be separated into three groups depending on 182 

their relative propensity to be exported by ABCB1 and ABCC1.6,31,39 According to this model, the 183 

intracellular concentrations of cortisol will be lower in tissues that predominantly express ABCB1 184 

(including the central HPA axis negative feedback sites behind the blood-brain barrier), and those of 185 

corticosterone will be lower in tissues that predominantly express ABCC1, such as adipose tissue. We 186 

can use experimental data from animal and human studies to show how this may modulate the 187 

physiology of the HPA axis, influence lipogenesis within adipocytes and alter glucocorticoid transfer 188 

across the placenta. 189 

 190 

[H2] ABCB1 and ABCC1 and the HPA axis  191 

[H3] Insights from murine models.  192 

Central control of the HPA axis depends on feedback from circulating glucocorticoids to the 193 

hypothalamus and pituitary, but to reach the brain the glucocorticoids must traverse the tightly 194 

packed endothelium of the BBB, where ABCB1 is found.51 Murine models have been used extensively 195 

to assess ABCB1-dependent modulation of steroid concentrations within tissues, including the brain. 196 
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Importantly, rodents have two ABCB1 isoforms: ABCB1A (also known as MDR1A or MDR3) and ABCB1B 197 

(also known as MDR1B or MDR1),52,53 which broadly share the characteristics of the human protein.53 198 

Indeed, Abcb1a-knockout mice accumulate 87 times more of the ABCB1 substrate ivermectin in brain 199 

than do wild-type animals,54 while ABCB1 inhibition with tariquidar increases cerebral retention of 200 

labelled verapamil on PET imaging and demonstrates the role of ABCB1 at the human BBB.55  201 

Abcb1a-knockout mice exhibit enhanced retention of cortisol and dexamethasone in the 202 

brain.4,5,54,56 As seen in vitro, results for corticosterone export in vivo are varied, perhaps reflecting 203 

redundancy between the murine isoforms. One study reported no difference in the levels of infused 204 

radiolabelled corticosterone in the brains of adrenalectomised Abcb1a-knockout compared to wild-205 

type mice.4 However, the Abcb1ab-double knockout mouse retained an excess of cortisol and 206 

corticosterone in the brain;57 this retention was greater for cortisol than for corticosterone, suggesting 207 

that, overall, ABCB1 activity in mice favours cortisol over corticosterone transport, as was also found 208 

in vitro. However, another group reported the opposite effect: a retention of both glucocorticoids in 209 

Abcb1a-knockout mice, and cortisol retention alone in the Abcb1ab double knockout mice.58-60 The 210 

authors highlight methodological differences between the studies which might limit comparisons: for 211 

instance, in one study isotope radioactivity rather than intact steroid concentration was measured, 212 

and the use of labelled corticosterone in adrenally intact animals might have resulted in isotope 213 

dilution by endogenously secreted corticosterone.  214 

From these findings we might predict that the HPA axis would be relatively suppressed by the 215 

accumulation of glucocorticoids in the brain if ABCB1 activity is reduced. Indeed, Abcb1a-knockout 216 

mice do show evidence of HPA axis suppression, with lower basal and stress-stimulated levels of 217 

corticosterone, adrenocorticotropic hormone (ACTH) and corticotrophin-releasing hormone than 218 

control animals, with the effect localised to the hypothalamic level.61 Furthermore, mice treated with 219 

the ABCB1 inhibitor tariquidar show an attenuated corticosterone response to stressful stimuli.62 220 

 221 
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[H3] Insights from dogs and humans.  222 

The ABCB1 protein is well conserved in larger, cortisol-dominant species, with a notable exception 223 

being in Collie-derived dogs. Like Abcb1a-knockout mice,54 these animals are exquisitely sensitive to 224 

ivermectin owing to a 4-base pair deletion mutation (termed Mdr1-1△) for which 40–50% of this breed 225 

are homozygous.63,64 This mutation results in a severely truncated protein (<10% of normal length), 226 

which is predicted to be non-functional. Anecdotally, Collie dogs are reported to recover relatively 227 

slowly from illness,65 and animals with the MDR1–/– genotype showed chronic suppression of the HPA 228 

axis, with lower basal cortisol levels and greater ACTH suppression in response to dexamethasone 229 

than their wild-type counterparts. It has been hypothesised that enhanced brain retention of cortisol 230 

(the dominant canine glucocorticoid) leads to this HPA axis suppression, and predisposes the animals 231 

to a form of relative corticosteroid insufficiency.65 This hypothesis has been supported by a 232 

metabolomics study demonstrating lower urinary cortisol metabolites in MDR1–/– dogs than controls 233 

[reaching significance for allotetrahydrocortisol (11.2 ± 3.4 ng/L versus 20.7 ± 14.9 ng/L, P=0.006) and 234 

β-cortol (105.5 ± 63.3 ng/L versus 221.0 ± 225.5 ng/L, P=0.025)].66 235 

In a human study, the corticosterone:cortisol ratio in brain autopsy specimens was five times 236 

greater than the corresponding ratio in plasma in age- and sex-matched healthy controls.4 Similarly, 237 

the ratio of corticosterone to cortisol in live subjects is 5-6 times higher in cerebrospinal fluid than in 238 

plasma.67 Many drugs, including verapamil and cyclosporin A, inhibit ABCB1, but their experimental 239 

use to test ABCB1 physiology in humans is hampered by toxicity at levels that are too low to carry out 240 

meaningful studies of ABCB1 inhibition.68 241 

 242 

[H3] ABCB1 and ABCC1 modulate the HPA axis.   243 

These results are all consistent with the hypothesis that ABCB1 at the BBB exports cortisol and thereby 244 

modulates negative feedback of the HPA axis in cortisol-dominant species. The absence of ABCC1 in 245 
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the brain and BBB is consistent with corticosterone being retained to a greater extent than cortisol in 246 

brain. One additional complexity, however, is that the pituitary gland (which expresses both 247 

transporters)69 lies outside the BBB but also contributes to the control of the HPA axis.  We have 248 

demonstrated that administration of probenecid, an inhibitor of ABCC1, induces greater tonic 249 

negative feedback of the HPA axis in healthy subjects than placebo as judged by elevations in ACTH 250 

and cortisol during combined mineralocorticoid and glucocorticoid receptor antagonism.70 This finding 251 

is consistent with ABCC1 also contributing to the export of corticosterone from the pituitary gland or 252 

other central feedback areas, and warrants further investigation in animal models. 253 

 254 

[H2] ABCC1 transporters in adipose tissue 255 

[H3] Insights from mice and humans.  256 

In contrast with the BBB, where ABCB1 is more abundant than ABCC1, the reverse is true in adipose 257 

tissue. Glucocorticoids within adipose tissue induce lipogenesis; in particular, they stimulate the 258 

accumulation of lipids in visceral tissue and the production of adipokines.71 Abcc1-knockout mice 259 

infused with corticosterone and cortisol showed an enhanced accumulation of corticosterone but not 260 

cortisol in adipose tissue, accompanied by the upregulation of both glucocorticoid-responsive and 261 

adipogenic genes.6 262 

We have also demonstrated that human adipocytes preferentially accumulate cortisol over 263 

corticosterone, and that this accumulation was reversed in vitro after treatment with the ABCC1 264 

inhibitors probenecid or MK-571.6 It was also accompanied by activation of glucocorticoid-responsive 265 

and adipogenic genes (PER1, ADIPOQ, ATGL, HSL) and resulted in the increased accumulation of fatty 266 

acids in lipid droplets.6 Moreover, during infusion of cortisol or corticosterone in vivo in patients with 267 

primary adrenal insufficiency, the induction of glucocorticoid-responsive gene expression (PER1, LPL) 268 

in adipose tissue was greater in response to cortisol than to corticosterone (achieved at plasma 269 
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glucocorticoid levels which were equipotent for ACTH suppression).6 This suggests that corticosterone 270 

could have a more favourable metabolic profile than cortisol in glucocorticoid replacement, 271 

particularly when ACTH suppression is a target. 272 

 273 

[H2] ABCB1 and ABCC1 in the placenta 274 

As the interface between the mother and the fetus in pregnancy, the placenta functions both as a 275 

nutritive source and a barrier, including to glucocorticoid transport. The fetus is unable to synthesize 276 

cortisol until the third trimester, and therefore depends on maternal cortisol; however, although 277 

maternal cortisol levels increase by several-fold during pregnancy, this increase is not transferred to 278 

the fetus indiscriminately.72 In early pregnancy, excessive glucocorticoids are detrimental to the fetus, 279 

so the placenta provides a glucocorticoid barrier,73  but it confers a more facilitative role towards term 280 

for fetal organ maturation.74 281 

 282 

[H3] The placental glucocorticoid barrier: 11β-hydroxysteroid dehydrogenase 2.  283 

The enzyme 11β-hydroxysteroid dehydrogenase 2 is viewed as the main component of the placental 284 

glucocorticoid barrier, converting active cortisol to inactive cortisone.75 However, the results of a study 285 

in which 11β-hydroxysteroid dehydrogenase 2 was inhibited during ex vivo perfusion of human 286 

placentas collected on ice immediately after delivery suggested that the enzyme might contribute only 287 

part of the glucocorticoid barrier, as cortisol transfer was restricted even at maximal inhibition of 11β-288 

hydroxysteroid dehydrogenase 2.76 The role of other mechanisms that are operating at the placental 289 

barrier, such as transmembrane transport, therefore warrants further consideration.       290 

 291 

[H3] The placental glucocorticoid barrier: ABCB1 and ABCC1.   292 
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ABCB1 is located within syncytiotrophoblasts at the apical brush-border membrane, in direct contact 293 

with maternal blood.77 It is highly expressed in early pregnancy and decreases towards term, 294 

consistent with the physiological role suggested above.78 As occurs in other tissues, glucocorticoids  295 

have been shown to upregulate the expression of ABCB1 in the placenta in the first trimester, which 296 

might enhance the barrier effect.79 Data demonstrating low concentrations of ABCB1 substrates 297 

(antiretrovirals, for example) in the fetal circulation both at birth and in the ex vivo perfused placenta 298 

indicate that ABCB1-mediated export towards the maternal circulation is active in vivo.80 ABCC1 is 299 

located on the fetal-facing placental surface and has been identified in cytotrophoblasts, 300 

syncytiotrophoblasts and the fetal endothelium.81 This localization might be consistent with a role in 301 

transferring ABCC1 substrates such as folic acid to the fetus and, in contrast with ABCB1, ABCC1 is 302 

upregulated towards term.81,82 Studies of other ABCC1 substrates using the inhibitors probenecid and 303 

MK-571 have not demonstrated a clear effect on cross-placental transfer, so cannot be extrapolated 304 

to corticosterone transport.83 It has been shown that the cortisol:corticosterone ratio is higher in the 305 

maternal circulation (15:1) than in the umbilical vein (7:1) at term,84 which might be accounted for by 306 

fetal adrenal cortisol:corticosterone secretion rates or by the facilitated transport of maternal 307 

corticosterone by ABCC1 into the fetal circulation. 308 

 309 

[H1] Regulation and dysregulation  310 

[H2] Regulation of ABCB1 311 

The mechanisms underpinning the regulation of the expression of ABCB1 have been reviewed 312 

thoroughly elsewhere.85-87 The ABCB1 promoter contains a number of areas of interest, including 313 

binding sites for the tumour suppressor p53, heat shock proteins and adopted orphan receptors, 314 

including the pregnane X receptor (PXR) and constitutive androstane receptor (CAR), which bind a 315 

number of xenobiotic ligands.88 Xenobiotics, inflammatory mediators and cellular stress (such as 316 

irradiation, heat shock, hypoxia) typically upregulate ABCB1 expression through common pathways 317 
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involving nuclear factor kappa B (NF-κB) and Y-box binding protein.89,90 This upregulation appears to 318 

be a protective response, and polymorphisms in NF-κB are linked with increasing colon cancer risk, 319 

potentially owing to enhanced cellular exposure to toxins.91  320 

Glucocorticoids modulate the expression of ABCB1 mRNA and protein in rodents and humans. 321 

This modulation has been demonstrated across multiple tissues using dexamethasone, prednisolone, 322 

cortisol, methylprednisolone and some inhaled glucocorticoids.33,79,92-97 Although glucocorticoids 323 

predominantly induce the expression of ABCB1, this effect might be specific to some species or cell 324 

types, as there are also instances of ABCB1 expression being downregulated.98 This glucocorticoid 325 

effect is inhibited in the presence of the glucocorticoid receptor blocker RU486, indicating that this 326 

effect is at least partly mediated via the glucocorticoid receptor, but as no consensus glucocorticoid 327 

response element has been found in the human ABCB1 promoter, it is assumed to be an indirect 328 

genomic effect. Dexamethasone-mediated upregulation of ABCB1 in retinal pigment epithelium was 329 

reported to be abolished when the PXR receptor was silenced, implying that PXR (which does contain 330 

a consensus glucocorticoid response element) is either a co-regulator or a target of the glucocorticoid 331 

receptor.97,99,100 This upregulation of expression raises concerns about increased drug efflux when 332 

glucocorticoids are used in combination with other ABCB1 substrates (as often occurs in 333 

chemotherapy protocols), and is theorised to be a cause of glucocorticoid resistance in conditions such 334 

as asthma;33 however, this effect has also been exploited clinically — for example, methylprednisolone 335 

is used in the treatment of paraquat toxicity  to increase excretion of the drug.101   336 

However, the regulation of ABCB1 in inflammation is complex and potentially biphasic. 337 

Evidence from rodent studies indicates that, in the very early stages of inflammation, ABCB1 is 338 

functionally inhibited by lipopolysaccharides and inflammatory cytokines, despite mRNA levels 339 

remaining constant, perhaps owing to ABCB1 being trafficked away from the cell membrane; later in 340 

the evolution of inflammation, however, ABCB1 mRNA and protein levels are upregulated by the 341 

cytokines tumour necrosis factor and endothelin 1 converging on the NF-κB pathway.89 Protein 342 
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turnover at the cell surface under normal conditions is relatively slow (the half-life of ABCB1 is 343 

estimated at just over 24 hours)102 and there might be a role for post-translational and other 344 

mechanisms in modulating this turnover. Taken together, this evidence suggests that in times of 345 

increased physiological stress (for example, in response to illness or injury), ABCB1 can be upregulated 346 

both by stress-activated glucocorticoids and by signals released by cellular damage. This upregulation 347 

might result in positive feedback on cortisol production by further restricting glucocorticoid access to 348 

sites of higher negative feedback.  349 

 350 

[H2] Regulation of ABCC1 351 

Most research on factors affecting the expression levels of ABCC1 and its protein activity relates to 352 

cancer biology and chemotherapeutics, whilst physiological regulation has been poorly studied to 353 

date. Basal transcription of ABCC1 is stimulated by the SP1 transcription factor103 which is, in turn, 354 

inhibited by the tumour suppressor protein p53.104 It has not been clearly established whether PXR 355 

affects ABCC1 transcription105,106 and, although early mapping of the ABCC1 promoter in a human 356 

leukaemic cell line did reveal a putative glucocorticoid response element, dexamethasone has not 357 

been shown to alter ABCC1 expression in the human placenta or in lymphocytes.94,107-109 Furthermore, 358 

we cannot clearly conclude whether ABCC1 is affected by acute inflammation in the same way that 359 

ABCB1 is, as both unchanged and increased mRNA expression have been reported in response to 360 

mediators such as lipopolysaccharide, tumour necrosis factor, IL-1 and IL-6.110-112  361 

In vitro studies investigating the metabolic regulation of ABCC1 have focused on endothelium, 362 

and have demonstrated that expression of the transcript is downregulated in a hyperglycaemic 363 

environment.113 Metformin, a drug commonly used in the treatment of type 2 diabetes mellitus, is 364 

known to reduce ABCC1 expression in a human hepatocellular carcinoma cell line through the AMP-365 

activated protein kinase–hypoxia-inducible factor 1 pathway.114 366 
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Whilst limited, overall this evidence suggests that ABCC1 is regulated differently from ABCB1, 367 

and is predominantly responsive to metabolic and immunomodulatory signals rather than to 368 

mediators of acute stress or inflammation.  369 

 370 

[H2] Pathological dysregulation  371 

There have been few studies of variations in ABC transporter expression beyond the 372 

descriptions in various cancers mentioned above. A transcriptomic analysis utilising single-cell RNA 373 

sequencing showed upregulation of ABCB1 in the adrenal cortex of patients with ACTH-dependent 374 

Cushing disease.36 This upregulation probably reflects the effects of glucocorticoids on ABCB1 375 

expression, but might contribute to pathogenicity by further enhancing the export of cortisol from the 376 

gland. Hypothesizing that steroid retention in adipocytes due to low levels of ABCC1 could be a driving 377 

mechanism for obesity, we actually found that ABCC1 mRNA levels were upregulated in the adipose 378 

tissue (subcutaneous and visceral) of individuals with obesity compared with lean individuals, which 379 

may reduce glucocorticoid concentrations in adipocytes, although this reduction might only be true 380 

for corticosterone.6 381 

 382 

[H2 Lessons from human genetics 383 

[H3] Germline mutations in ABCB1.   384 

Human germline mutations in ABCB1 are rare. To our knowledge, there are only two publications of 385 

ABCB1 mutations: twin girls with recurrent reversible toxic encephalopathy alongside febrile illness, 386 

115 and a 13-year old boy with ivermectin sensitivity.116 In both cases, the mutations were identified 387 

by whole exome sequencing and show compound heterozygosity. The twin girls were found to have 388 

a nonsense mutation (p.Pro1182X) combined with a splice variant (c.2786 + 1 G>T) and showed 389 

markedly enhanced CNS retention of 11C-verapamil on PET imaging in comparison with their parents. 390 
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Their symptoms were suspected to be caused by retention of inflammatory mediators within the brain 391 

during acute illness, and it was shown in a mouse model by the authors that cytokines Tumour 392 

Necrosis Factor, Il-1, Il-6 and Ccl-2 were retained in brain at 24 hours after lipopolysaccharide injection 393 

in Abcb1ab knockout versus wild-type animals. The investigators estimated from studies in 394 

lymphocytes that only ~10% of functional ABCB1 protein was expressed. In the other case, the 395 

affected boy presented with severe neurological side effects after a single oral dose of ivermectin to 396 

treat scabies and was found to have inherited a nonsense mutation in ABCB1 from each parent (c.2380 397 

C>T and c.3053_3056delTTGA), both of which are predicted to result in the loss of the carboxy-398 

terminal nucleotide-binding domain. The boy and twin girls were otherwise healthy and growing 399 

normally in each case.       400 

[H3] Germline mutations in ABCC1.   401 

Similarly, there is only one published mutation of ABCC1 of clinical significance: a heterozygous 402 

missense mutation (c.1769 A>G) identified as causing familial sensorineural deafness.117 ABCC1 has 403 

been found within the rodent cochlea, where it could be protective against neurotoxins.118 This 404 

mutation is thought to disrupt hydrogen bonds, and thus stability between the helices of the 405 

transmembrane domains in the proteins, but analysis of lymphoblastoid cell lines derived from 406 

affected family members showed loss of around 40–45% of ABCC1 mRNA expression when compared 407 

with those unaffected, suggesting an additional impairment in mRNA stability. Extrusion of SNARF-1, 408 

a known ABCC1 substrate, from lymphoblastoid cells as a measure of transport activity was 409 

subsequently shown to be slower.117  410 

[H3] Polymorphisms in ABCB1 and ABCC1.  411 

With nonsense and frameshift mutations being rare, there have been attempts to correlate common 412 

polymorphisms with clinically relevant outcomes (reviewed in 119).  413 
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Three ABCB1 variants are common in humans: c.2677 G>A/T, c.3435 C>T and c.1236 C>T. The c.3435 414 

C>T allele is synonymous, but might affect mRNA stability;120 c.1236 C>T is silent; and c.2677 G>A/T 415 

results in an amino acid substitution (alanine to serine or threonine), which could potentially result in 416 

substrate changes. There is marked variation in the frequency of these polymorphisms across different 417 

races: for example, c.3435 C>T is much less common in African populations (~80% of people from 418 

West Africa are homozygous for the C allele versus ~20% of individuals from western Europe).120,121 419 

However, it has not been convincingly demonstrated that these variants affect substrate transport, 420 

for instance levels of the ABCB1 substrate digoxin have been found to be increased, decreased and 421 

unchanged in the plasma of individuals with these polymorphisms. Subsequent attempts to correlate 422 

polymorphisms with response to chemotherapeutics, drug side effects, and resistance to anti-423 

retroviral and anti-epileptic therapies have been similarly inconclusive.122-124 424 

Studies of the HPA axis in individuals with ABCB1 variants have unfortunately been 425 

inadequately powered. No differences were found in the levels of evening cortisol and ACTH in 30 426 

Japanese men with C/C, C/T or T/T c.3435 genotypes (the variant associated with potentially reduced 427 

transporter mRNA stability); however, another study, of 51 women, reported lower levels of cortisol 428 

in the plasma, taken at 6 pm, of individuals with one or two copies of the T allele compared with C/C 429 

controls; these lower levels reached significance only in the follicular menstrual phase so an 430 

interaction with sex hormones is proposed.125,126 In one candidate gene study of over 5,000 Japanese 431 

individuals, the c.2677 G>A/T variant was highly associated with increased body mass index, which 432 

could potentially reflect increased HPA axis activity, whilst in a study of 154 individuals with 433 

depression, the response of cortisol (but not ACTH) to corticotrophin-releasing hormone was lower in 434 

c.2677 TT homozygotes than in the major allele (GG) or heterozygous (TG) groups, which was taken 435 

to reflect reduced adrenal cortisol release.36,127 However, neither plasma cortisol levels nor body mass 436 

index has been associated with any ABCB1 polymorphisms in larger cohorts.  437 
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Genetic studies have also been undertaken in patients taking exogenous steroids. In a cohort 438 

of 171 patients requiring long-term treatment with glucocorticoids for adrenal insufficiency, those 439 

patients with the c.3435 TT genotype had lower bone density than CC or CT groups, suggesting greater 440 

systemic steroid absorption or enhanced bone retention.128 There have been attempts to correlate 441 

glucocorticoid treatment outcomes in patients with rheumatoid arthritis, inflammatory bowel disease, 442 

immune thrombocytopenic purpura and nephrotic syndrome with ABCB1 polymorphisms.129-132 Most, 443 

but not all, indicate a higher steroid response with the minor allele of the studied polymorphism, but 444 

studies are limited by sample size and a failure to control for multiple testing. 445 

Documented polymorphisms for ABCC1 are mostly rare and non-coding, and have not been 446 

assessed in the context of HPA axis activity or metabolism.133 Three polymorphisms might predict the 447 

outcome of acute myeloid leukaemia, but any corresponding effect of these polymorphisms on 448 

transporter expression or function has so far not been established.134 449 

 450 

[H1] Implications and future research  451 

 The observations that two ABC transporters influence the retention of glucocorticoids in 452 

tissues allow us to add membrane transporters to the list of factors that are involved in the 453 

metabolism of glucocorticoids at the pre-receptor level (FIG. 4). These observations provide insights 454 

into HPA axis physiology and how corticosterone and cortisol might carry out different functions in 455 

species that produce both steroids. These findings also provide therapeutic opportunities for anti-456 

inflammatory and physiological replacement steroid therapies that might better target tissues 457 

mediating efficacy while avoiding those mediating toxicity.  458 

   459 

[H2] Revised glucocorticoid physiology 460 
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In rodents, the lack of steroid 17-hydroxylation necessitates that corticosterone is the sole 461 

endogenous glucocorticoid.135 In humans and other species in which both glucocorticoids circulate, it 462 

is common to consider them interchangeable. Indeed, cortisol and corticosterone share similar 463 

metabolic pathways (for example, susceptibility to metabolism by 11β-hydroxysteroid dehydrogenase 464 

enzymes) and affinities for the glucocorticoid and mineralocorticoid receptors.136-139 However, 465 

corticosterone does exhibit differences to cortisol, including more rapid clearance from the 466 

circulation, and a greater response to ACTH, such that the corticosterone:cortisol ratio rises under 467 

stress.140-142  468 

The findings outlined in this Review further demonstrate that cortisol and corticosterone are 469 

not interchangeable with respect to glucocorticoid action. Specifically, in tissues where ABCB1 but not 470 

ABCC1 is present, such as the brain, cortisol concentrations are constrained by export back into the 471 

circulation and corticosterone can play a disproportionate role. Conversely, in tissues such as adipose 472 

where ABCC1 but not ABCB1 is expressed, corticosterone is exported and the response to cortisol can 473 

be disproportionate (FIG. 5). This observation raises the concept of a distinctive role for corticosterone 474 

in mediating HPA axis negative feedback. In the stressed state, the ability to restrict the high levels of 475 

circulating cortisol from accessing higher centres might prevent axis suppression and facilitate 476 

recovery, as demonstrated by the Mdr1-1△ Collie dogs who lack this capacity.65 It is recognised in 477 

other species that the ratio of cortisol to corticosterone and the peak levels of circulating 478 

glucocorticoids vary seasonally,143 possibly in response to photoperiod length. If corticosterone is 479 

more accessible to negative feedback sites, and less peripherally anabolic than cortisol (in terms of 480 

effects on adipose tissue), then the energy-expending stress response might be restrained and access 481 

to vital adipose energy stores when food is scarce might be improved. Conversely, with a slower 482 

turnover than corticosterone in the circulation and adipose tissue in comparison with other tissues 483 

such as brain and liver,144 cortisol might provide the option for medium-term adjustments, in 484 

comparison with the acute changes mediated by corticosterone.  485 
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Understanding the implications of the differential control and actions of cortisol and 486 

corticosterone in glucocorticoid physiology will require a detailed dissection of the dynamics of ligand 487 

availability for receptors within human target tissues in vivo. The increasing use of exome-wide 488 

sequencing in clinical as well as research settings might well identify further individuals or families 489 

with significant ABCB1 and ABCC1 mutations and offer new routes to addressing these key 490 

physiological issues. 491 

 492 

[H2] Novel glucocorticoid therapies   493 

A major limitation of current glucocorticoid therapies is their narrow therapeutic index. 494 

Despite extensive efforts, it has proved difficult to develop selective glucocorticoid receptor 495 

modulators with pharmacodynamic interactions that discriminate between efficacious and toxic gene 496 

transcription.145 An alternative approach depends on the premise that efficacious and toxic effects are 497 

often mediated in different tissues, suggesting that the therapeutic index could be improved by 498 

modifying the pharmacokinetics of steroid drugs to ‘target’ them to the tissues where efficacy is 499 

mediated while avoiding tissues where toxicity is mediated. Could this be achieved by using steroids 500 

with different affinities for the ABCB1 and ABCC1 transporters? 501 

When considering physiological replacement in patients with adrenal insufficiency, the 502 

challenges of this narrow therapeutic index are well documented, with adverse outcomes including, 503 

but not limited to, obesity, osteopenia and insulin resistance attributable to the steroid regime of 504 

these patients.146,147 Such challenges are particularly evident in patients with congenital adrenal 505 

hyperplasia (CAH),  in whom doses of glucocorticoid that achieve adequate adrenal androgen 506 

suppression are invariably associated with morbidity.146 All glucocorticoids currently used to replace 507 

cortisol (hydrocortisone, prednisolone, dexamethasone, and the active metabolites of pre-drugs 508 

cortisone and prednisone) are substrates for ABCB1 but not ABCC1. Although pharmacokinetic 509 

adjustments, such as delayed release preparations, might confer some benefits,148,149 they cannot 510 
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overcome the closeness of the dose-response relationship between efficacy and toxicity, and the 511 

prospect of choosing a glucocorticoid based on affinity for ABCC1 over ABCB1 is an intriguing 512 

therapeutic prospect.  513 

As one such glucocorticoid, corticosterone is not currently available in an oral form, but our 514 

experimental work using intravenous corticosterone has provided proof-of-concept of the potential 515 

advantages of corticosterone in avoiding harmful metabolic effects mediated in adipose tissue. As 516 

described earlier, infused cortisol induced a greater response of glucocorticoid-responsive gene 517 

expression compared with infused corticosterone in the adipose tissue of patients with Addison 518 

disease.6 In a similar study, 14 individuals with CAH also underwent ramped cortisol and 519 

corticosterone infusions; despite higher plasma levels of corticosterone being achieved, the amount 520 

of insulin released was greater in response to cortisol than to corticosterone – a marker of 521 

glucocorticoid effect on adipose to induce insulin resistance.150 522 

The potential for glucocorticoid therapies that avoid toxicity in metabolic tissues deserves 523 

further investigation but would require the generation of an oral corticosterone preparation for 524 

practical administration to patients. 525 

 526 

Conclusions 527 

 We have collated evidence from cell, animal and human studies that the ATP-binding cassette 528 

transporters ABCB1 and ABCC1 differentially export cortisol, corticosterone and synthetic 529 

glucocorticoids from tissues and contribute to pre-receptor glucocorticoid regulation. Differing 530 

transporter expression profiles in the brain, placenta and adipose confer different tissue sensitivities 531 

to these steroids, which might be important for optimising the responsiveness of the HPA axis, 532 

controlling fetal exposure to steroids throughout gestation, and optimising adipose fuel metabolism. 533 

Although much is known about these transporters in the context of multidrug resistance, their 534 
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physiological roles and regulation remain largely unexplored. The prospect of developing steroid 535 

therapies with transporter affinities that are tailored to give improved efficacy, without deleterious 536 

peripheral toxicity, offers new avenues for exploration for the management of inflammatory and 537 

endocrine diseases. 538 

 539 

Box 1 - Multidrug Resistance 540 

 541 

Multidrug resistance (MDR) is the ability of malignant cells to evade the actions of a broad range of 542 

chemotherapeutic agents. Tumours which are initially very sensitive can become resistant to multiple 543 

agents over the course of the disease, ultimately resulting in treatment failure and disease 544 

progression. There are several potential reasons for this, but the key mechanism is increased drug 545 

efflux out of malignant cells by membrane transporters, particularly those of the ABC family. Some 546 

tumours have innately high levels of transporter expression, but others develop this after exposure to 547 

chemotherapy.151 548 

 549 

ABCB1 is the transporter most widely associated with MDR, particularly since alkylating agents, 550 

anthracyclines and vinca alkaloid drugs are all substrates.21 ABCC1 and ABCG2 (aka Breast cancer 551 

Resistance Protein) are also implicated in MDR. 552 

 553 

As examples, survival rates from lung cancer, multiple myeloma and acute myeloid leukaemia have 554 

been inversely associated with levels of ABCB1 expression.152-154 High levels of ABCC1 expression are 555 

associated with poor outcomes in childhood neuroblastoma,155 whilst over-expression of ABCG2 is a 556 

negative prognostic factor in pancreatic ductal adenocarcinomas.156 557 
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The Human Protein Atlas: https://www.proteinatlas.org/ 1059 

 1060 

Key points 1061 

• Humans have two circulating glucocorticoid hormones, cortisol and corticosterone, which 1062 

diffuse into cells to become transcription factors when bound to their intracellular receptors. 1063 

• The availability of glucocorticoids to interact with their receptors depends not only on their 1064 

plasma concentration but also on their intracellular concentration, which is modulated by 1065 

intracellular enzymes and by transmembrane transporters. 1066 

• Glucocorticoids are susceptible to cellular export by membrane transporters from the ABC 1067 

(ATP-binding cassette) transporter family: cortisol is a substrate for the ABCB1 transporter, 1068 

and corticosterone for ABCC1. 1069 

• Tissues expressing ABCB1 (such as the brain) might be relatively sensitive to corticosterone 1070 

over cortisol; those expressing ABCC1, such as adipose, might be more sensitive to cortisol.  1071 

• In future, therapeutic glucocorticoids could be selected on the basis of lower tendency to be 1072 

exported from sites of efficacy and higher tendency for export from sites where harmful side 1073 

effects occur.  1074 
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Glossary terms: 1075 

sanctuary sites – areas within the body that are relatively protected from access by drugs (e.g. anti-1076 

cancer agents) and toxins 1077 

α-helices – a form of secondary protein structure formed by hydrogen bonding between amine and 1078 

carbonyl groups of amino acids 4 apart, and resulting in a stable rod shape 1079 

luminal surfaces – the lining surfaces of body channels, such as the intestines or blood vessels 1080 

polyspecificity – the capacity to bind multiple unrelated substrates 1081 

glutathione coupling – conjugation with the tri-peptide glutathione 1082 

phase II hepatic metabolites – conjugation of a substance to another molecule, such as glutathione 1083 

or glucuronide, in the liver to make it more water soluble and thus facilitate excretion 1084 

syncytiotrophoblasts – cells forming the outer layer of the placenta, and the major site of gas and 1085 

nutrient exchange between mother and fetus 1086 

cytotrophoblasts – the inner stem cell layer of the placenta villi – cellular precursors to 1087 

syncytiotrophoblasts 1088 

adopted orphan receptors – an orphan receptor is a receptor whose ligand has not been identified. 1089 

It can later be termed an “adopted orphan receptor” when a ligand is discovered. 1090 

compound heterozygosity – the presence of two different mutant alleles at a genetic locus 1091 

lymphoblastoid cell lines – immortalised cells which are derived from, and closely resemble, 1092 

peripheral blood lymphocytes 1093 

synonymous – a silent genetic mutation where a change in DNA sequence does not result in a 1094 

change in the amino acid sequence of the protein produced 1095 

therapeutic index – the margin between the desirable and undesirable effects of a drug. The 1096 

narrower the margin, the more likely it is that side effects will occur at a therapeutic dose. 1097 
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Figure legends  1098 

Figure 1: Action and structure of ABCB1 and ABCC1. a| In general, most ABC transporters are 1099 

comprised of two transmembrane domains (TMDs) and 2 nucleotide binding domains (NBDs). In the 1100 

proposed model of action, binding of ATP dimerises the NBDs and induces a conformational change 1101 

within the TMDs, resulting in the switch between ‘inward’ and ‘outward’ facing configurations.17,18 1102 

Subsequent hydrolysis of ATP returns the transporter to baseline status. b| Ribbon diagram of human 1103 

ABCB1 (Protein Data Bank ID 6QEX) and c|ribbon diagram of bovine ABCC1 (Protein Data Bank ID 1104 

5UJA). The amino (N)- and carboxyl (C)- terminal halves are coloured magenta and blue, respectively. 1105 

NBD1 and NBD2 are coloured green and yellow, respectively, with the drug-binding pocket 1106 

highlighted. 1107 

 1108 

Figure 2: Tissue-specific expression of ABCB1 and ABCC1. Human expression of ABCB1 and ABCC1, as 1109 

derived from data from the Human Protein Atlas, is shown. Expression is normalised to an Nx 1110 

(normalised expression) value based on outputs from the Human Protein Atlas, the genotype-tissue 1111 

expression (GTEx) project and FANTOM5 transcriptomic analyses (data available online from The 1112 

Human Protein Atlas).23 Tissues are ranked in order of ABCB1:ABCC1 ratio, such that those towards 1113 

the top of the Y axis have greater ABCB1 expression, and those at the bottom have higher ABCC1 1114 

expression.  1115 

 1116 

Figure 3: Tissue ABC transporter expression determines glucocorticoid sensitivity. The influence of 1117 

ABCB1 and ABCC1 on the retention of common glucocorticoids within human target tissues according 1118 

to transporter affinity is depicted. Steroids in red are predominantly substrates for ABCB1, those in 1119 

dark blue are predominantly substrates for ABCC1, and those in light green are substrates for neither 1120 

transporter. Passive diffusion is indicated by double-headed arrows.  1121 

 1122 

Figure 4: Intracellular glucocorticoid regulatory pathways. After diffusing into cells (double-headed 1123 

arrows), the glucocorticoids cortisol and corticosterone might (1) be exported by the membrane-1124 

bound ATP transporters ABCB1 and ABCC1; (2,3) might undergo enzymatic metabolism by 11β-1125 

hydroxysteroid dehydrogenase (11β-HSD), 5α reductase or carbonyl reductase enzymes; or (4) might 1126 

become incorporated in the intracellular steroid pool. These processes restrict access to the nuclear 1127 

glucocorticoid and/or mineralocorticoid receptors (GR and MR), which mediate the cellular response 1128 

(5). 1129 

 1130 

Figure 5: Modulation of the hypothalamic–pituitary–adrenal (HPA) axis by ABCB1 and ABCC1. 1131 

Glucocorticoids are secreted from the adrenal cortex upon stimulation by signals from the 1132 

hypothalamus and pituitary . They act peripherally on sites throughout the body, and feed back to the 1133 

hypothalamus, pituitary and higher centres to maintain homeostasis. ABCB1 present at the blood–1134 

brain barrier might act to restrict the access of cortisol to feedback sites. Conversely, ABCC1, which is 1135 

found without ABCB1 in adipose and skeletal muscle, exports corticosterone but not cortisol. The 1136 

activity of the adrenal enzyme CYP17 (17-hydroxylase) determines the ratio of secreted 1137 

cortisol:corticosterone.  1138 

 1139 
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Text for Table of Contents 1140 

This Review discusses the ATP-binding cassette (ABC) proteins ABCB1 and ABCC1 and their 1141 

preferential cellular export of cortisol and corticosterone, respectively, as well as exploring the 1142 

potential to select therapeutic glucocorticoids on the basis of their different tendencies for export to 1143 

avoid harmful side effects. 1144 

 1145 

 1146 


