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a b s t r a c t

Language processing requires the integration of diverse sources of information across mul-

tiple levels of processing. A range of psycholinguistic properties have been documented in

previous studies as having influence on brain activation during language processing. How-

ever, most of those studies have used factorial designs to probe the effect of one or two in-

dividual properties using highly controlled stimuli and experimental paradigms. Little is

known about the neural correlates of psycholinguistic properties in more naturalistic

discourse, especially during languageproduction.Theaimofour study is toexplore theabove

issues in a rich fMRI dataset in which participants both listened to recorded passages of

discourse and produced their own narrative discourse in response to prompts. Specifically,

wemeasured 13 psycholinguistic properties of the discourse comprehended or produced by

the participants, andwe used principal components analysis (PCA) to address covariation in

these properties and extract a smaller set of latent language characteristics. These latent

components indexed vocabulary complexity, sensory-motor and emotional language con-

tent, discourse coherence and speech quantity. A parametric approachwas adopted to study

the effects of these psycholinguistic variables on brain activation during comprehension and

production.We found that the pattern of effects across the cortexwas somewhat convergent

across comprehension and production. However, the degree of convergence varied across

language properties, being strongest for the component indexing sensory-motor language

content.We report the full, unthresholded effectmaps for each psycholinguistic variable, as

well as mapping how these effects change along a large-scale cortical gradient of brain

function. We believe that our findings provide a valuable starting point for future, confir-

matory studies of discourse processing.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC
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1. Introduction

Human brains possess the ability to understand and produce

language with apparent ease, which provides the foundation

forsocial interactionandcommunication inoureveryday lives.

Although language processinghas always been a popular topic

of study in cognitive science, linguistics and other fields, the

neural substrate supporting language processing is still a puz-

zle, particularly at the level of complexdiscourse. Processingof

language isamultifacetedprocess that requires the integration

of diverse sources of information across multiple levels of

processing. Each of these levels engages distinct brain net-

works, which are in turn responsive to different properties of

speech. At the level of auditory-phonological perception, for

example, classic studies have demonstrated linear response

increases intheauditorysysteminrelationto therateofspeech

input (Dhankhar et al., 1997; Price et al., 1992). At the semantic

level, embodiment theories predict the engagement of specific

sensory-motor association cortices when people process lan-

guage that relates to different types of sensory-motor experi-

ence (Barsalou, 2008; Glenberg & Gallese, 2012). And at the

discourse level, executivecontrol regionsare thought toplayan

important role in regulating the topic of speech and have been

implicated in the maintenance of coherence in narrative pro-

duction tasks (Ash et al., 2013; Hoffman, 2019; Marini &

Andreetta, 2016). Consequentially, in order to build models of

the neural basis of language, it is critical to understand how

activation across the brain varies as a function of different

properties of language across processing levels.

fMRI investigations of the effect of psycholinguistic prop-

erties on activation commonly use factorial manipulations of

one or two individual properties in highly controlled experi-

ments (e.g., Binder, Westbury, McKiernan, Possing, & Medler,

2005; Hoffman, Binney, & Lambon Ralph, 2015; Skipper &

Olson, 2014; Xiaosha Wang, Wang, & Bi, 2019). For example,

to investigate which regions are sensitive to the concreteness

of words, researchers will typically employ two sets of stimuli

which differ in concreteness but are matched for other prop-

erties that the researchers deem important (formeta-analyses

of many such studies, see Bucur & Papagno, 2021; Wang,

Conder, Blitzer, & Shinkareva, 2010). Factorial designs such

as these are ideal for ensuring stimulus control and have led to

many important discoveries in the neuroscience of language.

They are, however, subject to some limitations. By adopting a

binary assignment to two conditions, factorial analyses are

insensitive to continuous variation in the property of interest

within each condition. In addition, factorial designs

frequently do not exploit the full range of values available for

continuous variables. To combat this, an alternative approach

is to investigate the neural response to the property of interest

in a parametric fashion and some studies have done this with

great success (Graves, Desai, Humphries, Seidenberg, &

Binder, 2010; Hauk, Davis, & Pulvermuller, 2008; Mummery,

Ashburner, Scott, & Wise, 1999; Price et al., 1992; Wise et al.,

2000).

In recent years, researchers have often moved beyond

univariate analysis of single-voxel responses, in favour of

sophisticated multivariate pattern analyses (MVPA)

(Kriegeskorte & Kievit, 2013; Kriegeskorte, Mur, & Bandettini,
2008; Norman, Polyn, Detre, & Haxby, 2006). These tech-

niques have been extremely valuable in identifying the

organisational principles that support coding of different se-

mantic and linguistic categories in the brain (Bruffaerts et al.,

2019; Caucheteux & King, 2022; Frankland& Greene, 2015; Gao

et al., 2021; Meersmans et al., 2021; Xu et al., 2018). However,

they are less suited to identifying how stimulus properties

influence the degree to which a brain region is activated.

Classifiers trained on multivoxel data from a region can suc-

cessfully discriminate between two experimental conditions,

evenwhen there is nomean activation difference between the

conditions at the group level (for discussion, see Coutanche,

2013; Jimura & Poldrack, 2012; Mur, Bandettini, &

Kriegeskorte, 2009). Furthermore, MVPA statistics are typi-

cally insensitive to the direction of an effect, meaning that

significant multivariate effects can be found when the direc-

tion of the mean activation difference varies substantially

between participants (Todd, Nystrom, & Cohen, 2013). For

example, a classifier could show above-chance decoding for

concrete versus abstract words in a region, even if half of the

participants showed greater mean activation for concrete

words and the remainder showed the opposite effect. For

these reasons, univariate analyses remain valuable when

investigating how specific stimulus properties affect neural

engagement.

Irrespective of the analysis approach, neurolinguistic

studies have traditionally used single words or highly

controlled simple sentences to probe language functions. A

number of researchers have argued that these stimuli are not

representative of language usage in everyday life and that a

more naturalistic approach is essential to understand the

neural correlates of language processing “in the wild”

(Hamilton & Huth, 2020; Hasson & Honey, 2012; Nastase,

Goldstein, & Hasson, 2020; Willems, Nastase, & Milivojevic,

2020). Although the aim of all studies is to generate conclu-

sions that can be generalised to how language is used in real

life, some effects observed in artificial experimental settings

might not carry over tomore naturalistic speech. At present, it

is often unclear which psycholinguistic property effects

observed at the single-word or sentence level are present

when people process more natural language passages. For

instance, theories of concreteness effects state that abstract

words are harder to comprehend than concrete words

because they are associated with more possible contexts

(Schwanenflugel & Shoben, 1983). The additional processing

demands associated with selecting an appropriate contextual

interpretation has been proposed as an explanation for higher

activation in prefrontal cortex for more abstract words (Bucur

& Papagno, 2021; Hoffman, Binney, et al., 2015; Wang et al.,

2010). Evidence for these effects comes primarily from

studies of single words or sentences presented out of context.

Such effectsmight not occur inmore natural discourse, where

a rich prior context is available to constrain semantic

processing.

In attempts to increase ecological validity, an increasing

number of researchers have used naturalistic language

stimuli, such as stories, to investigate the neurobiology of

language (e.g., Gwilliams, King, Marantz, & Poeppel, 2020;

Huth, de Heer, Griffiths, Theunissen, & Gallant, 2016; Wehbe

et al., 2021; Zhang, Han, Worth, & Liu, 2020). The predictors of

https://doi.org/10.1016/j.cortex.2022.08.002
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neural activity in such studies vary. Some studies have used

the response time course in one subject's brain to predict that

in other individuals listening to the same story (i.e., inter-

subject correlation analysis, Nastase, Gazzola, Hasson, &

Keysers, 2019). These studies indicate that activity in a wide

set of regions is synchronised across listeners during

comprehension, and that this synchronisation is disrupted

when people understand narratives in different ways

(Nguyen, Vanderwal, & Hasson, 2019; Yeshurun et al., 2017).

Others have used computational linguistic models of lexical-

semantic content as predictors of neural activity, revealing

the brain regions that encode different categories of semantic

knowledge (Dehghani et al., 2017; Deniz, Nunez-Elizalde,

Huth, & Gallant, 2019; Huth et al., 2016; Wehbe et al., 2014;

Zhang et al., 2020). The use of traditional psycholinguistic

variables, such as word frequency and concreteness, to pre-

dict activation is less common. Some studies have investi-

gated this with story reading paradigms. For example, Desai

and colleagues have combined fMRI and eye tracking to

examine the effects of noun manipulability and word fre-

quency in the brain during the reading of whole text para-

graphs (Desai, Choi, & Henderson, 2020; Desai, Choi, Lai, &

Henderson, 2016). Another group of researchers have inves-

tigated the neural correlates of various psycholinguistic

properties of single words during the reading of rapidly pre-

sented narrative text (200e300 msec/word) (Yarkoni, Speer,

Balota, McAvoy, & Zacks, 2008). However, investigations in

spoken comprehension are rare and limited to investigations

of the effects of lexical surprisal on activation (Russo et al.,

2020; Willems, Frank, Nijhof, Hagoort, & van den Bosch,

2016).

Although there has been a recent shift to investigating

comprehension with more natural stimuli, far fewer studies

have explored the neural correlates of language properties

during discourse production. Almost all neuroimaging studies

that have probed psycholinguistic property effects have done

so in receptive (comprehension) tasks and little is known

about whether similar effects occur during language produc-

tion. Many theories of language processing posit shared pro-

cesses and representations for comprehension and

production, at the semantic and conceptual levels (Dell &

Chang, 2014; Garrod & Pickering, 2004; Hagoort, 2013; Hickok

& Poeppel, 2007; Kintsch & Van Dijk, 1978; Levelt, Roelofs, &

Meyer, 1999; Pickering & Garrod, 2021). These theories pre-

dict that neural correlations with lexical-semantic properties

should be similar irrespective of whether participants are

listening to speech or producing their own utterances. How-

ever, the degree to which speech properties have similar in-

fluences on speaking and listening is largely unknown,

because few studies have systematically investigated pro-

duction, and fewer still have directly compared comprehen-

sion and production in the same individuals. Although some

previous studies have examined the neural activity coupling

across the speaker's and listener's brains during production

and comprehension (Heidlmayr, Weber, Takashima, &

Hagoort, 2020; Jiang et al., 2012; Liu et al., 2019; Nguyen

et al., 2022; Silbert, Honey, Simony, Poeppel, & Hasson, 2014;

Stephens, Silbert, & Hasson, 2010), those studies do not

compare psycholinguistic property effects during speaking

and listening in the same individuals.
We have recently acquired an fMRI dataset of naturalistic

discourse comprehension and production that allows the

above issues to be explored. In our study, during scanning, the

same group of participants listened to excerpts of naturalistic

speech on everyday topics as well as producing their own

discourse in response to topic prompts (e.g., Describe how you

would make a cup of tea or coffee). We originally used these

data to investigate the correlates of discourse coherence on

activation during comprehension and production (Morales,

Patel, Tamm, Pickering, & Hoffman, in press). In the present

exploratory study, we investigated the neural correlates of a

wider range of psycholinguistic properties, comparing their

effects during comprehension and production. Specifically,

we used a parametric approach to investigate how neural

activation is affected by fluctuations in the psycholinguistic

properties of natural speech, characterising our results at

different neural levels (i.e., whole-brain and network levels).

We used principal components analysis (PCA) to address

covariation in language properties and to generate a small

number of latent underlying psycholinguistic factors. All

studies in the field of language processing have to deal with

the fact that psycholinguistic properties are inter-correlated,

such that the effects of one variable can be confounded by

others. Later acquired words, for example, tend to be longer,

lower in frequency and more abstract than those acquired

early in development. In experimental paradigms, this issue

can be addressed by varying one property while controlling for

other correlated properties (e.g., Price et al., 1992; Wang et al.,

2019; Wise et al., 2000) or by selecting stimuli such that the

properties under investigation are uncorrelated (Graves et al.,

2010). However, these methods cannot be adopted with

naturalistic data, where researchers are at the mercy of sta-

tistical regularities present in the language as a whole. More

importantly, the correlations between individual psycholin-

guistic properties may be a consequence of more primitive or

basic qualities that underpin the structure of language. For

example, the degree to which words evoke visual and haptic

experiences are positively correlatedwith each other andwith

concreteness ratings (Connell & Lynott, 2012), presumably

because all of these measures are influenced by the degree to

which words refer to tangible objects.

The most commonly used and well-understood strategy to

solve the above problems is to use PCA to extract a smaller set

of latent variables that capture the underlying variance

among a set of measures (for examples of the use of this

approach in psycholinguistics studies, see Baayen, 2010;

Baayen, Feldman, & Schreuder, 2006; Davies, Barbon, &

Cuetos, 2013; Troche, Crutch, & Reilly, 2017). PCA applied to

speech properties has been used successfully in previous

studies of discourse and aphasia (e.g., Alyahya, Halai, Conroy,

& Lambon Ralph, 2020a; Binder et al., 2016; Hoffman,

Loginova, & Russell, 2018; Sajjadi, Patterson, Arnold, Watson,

& Nestor, 2012). In particular, this strategy has been found to

be useful in structural MRI studies to identify the neural cor-

relates of different aspects of speech production in aphasic

patients (Alyahya, Halai, Conroy, & Lambon Ralph, 2020b;

Mirman et al., 2015). The use of PCA or other related data

reduction methods is also implicit in fMRI studies which use

computational models of natural language processing (NLP) to

predict brain activation (Dehghani et al., 2017; Deniz et al.,

https://doi.org/10.1016/j.cortex.2022.08.002
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2019; Huth et al., 2016; Pereira et al., 2018; Wehbe et al., 2014;

Zhang et al., 2020). This is because such models use data

reduction methods (sometimes through the use of deep neu-

ral networks) to extract latent components of word meaning

from statistical patterns of word co-occurrences in large lan-

guage corpora (Landauer & Dumais, 1997; Mikolov, Chen,

Corrado, & Dean, 2013; Pennington, Socher, &Manning, 2014).

Although the general benefitsof PCAarewell-established in

language research, the technique has rarely been applied to

traditional psycholinguistic measures (as opposed to NLP lan-

guagemodels) to generate predictors for fMRI analysis.We are

awareoftwopreviousstudies.Hauketal. (2008)appliedPCAtoa

set of 21 word-level properties and used the resulting compo-

nents to predict activation in a single-word reading task. More

recently,Fernandinoetal. (2016)usedPCAonasetof5variables

indexing sensory-motor experiences associatedwithwords, in

an fMRI study based on single-word semantic judgements.

However, they did not investigate the neural correlates of the

individualPCAcomponents. In thecurrentstudy,weexamined

whether PCA could be used to explore the core structure that

underlies psycholinguistic properties in more naturalistic

discourse comprehension and production tasks. We then

investigated how neural activation correlated with variations

in the latent psycholinguistic components we obtained.

In summary, in the present study, we aimed to directly

compare the neural correlates of psycholinguistic effects in

discourse during comprehension and production in a natu-

ralistic task. Our approach was (1) to compute a range of

language statistics from the discourse samples which partic-

ipants listened to or produced in our study; (2) to perform PCA

to investigate the underlying factors that emerged from the

set of measures; (3) to explore how these underlying factors

were correlated with neural activation at different levels.

Rather than test specific hypotheses about which brain re-

gions correlate with which aspects of language, our intention

in this exploratory report is to present the full, unthresholded

effect maps for each component of language and to map how

these patterns change along a large-scale cortical gradient of

brain function (Margulies et al., 2016). We hope that this

exploratory investigation of naturalistic discourse processing

will provide a useful starting point for future, targeted in-

vestigations of how specific regions contribute to discourse.
2. Materials and methods

2.1. Participants

Twenty-five adult participants (21 females, mean age ¼ 24

years, SD ¼ 4.4 years, range ¼ 18e35 years) were recruited

from the University of Edinburgh and participated in the study

in exchange for payment. Sample size was determined by the

resources available to complete the study. No participants or

runs were excluded from analysis. All participants were

native speakers of English, right-handed based on the Edin-

burgh Handedness Inventory (Oldfield, 1971) and reported to

be in good healthwith no history of neurological or psychiatric

illness. The study was approved by the Psychology Research

Ethics Committee of the University of Edinburgh and all par-

ticipants gave informed consent.
2.2. Materials

In the comprehension and production tasks, discourse was

related to 12 prompts that asked about common semantic

knowledge on particular topics (e.g., How would you prepare

to go on holiday? see Supplementary Table S1 for a complete

list of prompts). Speech comprehension topics were different

from those used in the production task, to avoid priming

participants' production responses with information pre-

sented in the comprehension trials. For the comprehension

task, we selected 24 samples of speech (half of them were

highly coherent and half of themwere less coherent passages)

discussing the 12 different topics from a corpus of responses

provided by participants in a previous behavioural study,

which were further split into two sets of different stimuli and

each presented to half of the participants (Hoffman et al.,

2018). All comprehension speech passages were recorded by

the same male native English speaker and their duration was

50 sec each. Baseline conditions involved either listening to

(comprehension condition) or reciting (production condition)

of the English nursery rhyme, Humpty Dumpty. Thus the

baseline condition involved grammatically well-formed

continuous speech, but without the requirement to under-

stand or generate novel utterances. The baseline conditions

were part of the dataset but not used in analyses in the current

study.

2.3. Procedure

There were two production and two comprehension runs for

each participant. Half of the participants began the experi-

ment with a production run and the other half began with a

comprehension run. Each run consisted of six discourse trials

and five baseline trials, the order of which was fully rando-

mised. The structure of a single trial is shown in Fig. 1A.

Specifically, for the discourse conditions, trials started with

the presentation of a written prompt for 6 sec. Participants

were asked to prepare to listen/speak during this period and to

start listening/speaking when a green circle replaced the

prompt in the centre of screen. Participants were instructed to

listen/speak for 50 sec, after which a red cross would replace

the green circle. At this point participants were instructed to

wait for the next prompt to appear on screen. The procedure

for the baseline conditions was the same as the discourse

conditions, except that the participants were asked to listen

(comprehension task) to or to recite (production task) the

Humpty Dumpty rhyme for 10 sec. All trials were presented

with an interstimulus interval jittered between 3 sec and 7 sec

(5 sec on average) and each scanning run was approximately

8 min in total.

Before scanning, participants were presented with two

training trials to familiarise them with the two tasks. They

were also informed that they would receive a memory test

regarding the comprehension runs after scanning to increase

their motivation and attention. In this memory test, for each

topic presented during speech comprehension runs, three

statements were presented and one of them was taken from

the actual comprehension passage. Participants were asked to

choose the statement that they remembered hearing. Addi-

tionally, an audibility scale of 1 (inaudible) - 7 (perfectly

https://doi.org/10.1016/j.cortex.2022.08.002
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audible) was rated to ensure participants could hear the audio.

The results showed that participants correctly responded to

most of the questions in the memory test (10 out of 12 on

average, SD ¼ 1.6; one-sample t-test comparing with chance

performance: t ¼ 31.21, p < .001) and rated the recordings in

the comprehension task as highly audible (mean ¼ 5.5,

SD ¼ 1.0).

2.4. Processing of speech samples

The overall analysis strategy is shown in Fig. 1B. For the

speech production runs, responses to each prompt were

digitally recorded with an MRI-compatible microphone and

processed with noise cancellation software (Cusack,

Cumming, Bor, Norris, & Lyzenga, 2005) to reduce noise from
the scanner. They were then transcribed and split into 5-

second blocks. A block length of 5 sec was chosen for two

reasons. First, changes in some of our psycholinguistic prop-

erties occur only over relatively long timescales of discourse.

For example, a shift in discourse away from its original topic

(i.e., a change in global coherence) typically occurs over the

course of at least one or two sentences. Second, a block length

of 5 sec is wellmatched to the temporal resolution of the BOLD

signal. However, we conducted a control analysis where PCA

was performed on data using windows of 10-s duration and

this provided very similar results to those reported in the

main analysis (see Supplementary Table S2).

We then calculated a number of psycholinguistic proper-

ties for each block of speech. We chose 13 variables that

together index key aspects of lexical quality, semantic

https://doi.org/10.1016/j.cortex.2022.08.002
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content, discourse structure and syntactic structure. While

there are many other variables that we could potentially have

included, we aimed to use the variables most commonly

investigated in previous fMRI studies, such as word length,

frequency and concreteness. We did not use vector-based

semantic representations derived from computational

models of language (Landauer & Dumais, 1997; Mikolov et al.,

2013; Pennington et al., 2014), as their ability to predict acti-

vation has been investigated extensively in other work

(Dehghani et al., 2017; Deniz et al., 2019; Huth et al., 2016;

Pereira et al., 2018; Wehbe et al., 2014; Zhang et al., 2020).

Most of the variables were calculated at the lexical level by

averaging the relevant measures over the nouns produced in

the block (where words straddled a block boundary, their

properties were counted in the block that contained the

larger portion of the word). We restricted analysis of lexical

properties to nouns to ensure that measures were compara-

ble across blocks that contained different classes of word.

Since different parts of speech vary systematically in their

properties (e.g., verbs and adjectives tend to be less concrete

than nouns; Bird, Franklin, & Howard, 2001), including all

parts of speech could potentially confound lexical-semantic

characteristics with syntactic structure and word class.

However, we conducted a control analysis including all open-

class words which provided very similar results (see

Supplementary Table S3). We submitted transcripts to the

Stanford Log-linear Part-of-Speech Tagger v3.8 for automated

part-of-speech tagging (Toutanova, Klein, Manning, & Singer,

2003) in order to identify nouns. At the lexical level, the

following psycholinguistic properties were then measured

and averaged over words to give values for each block of

speech:

2.4.1. Mean noun frequency
Log-transformed frequencies (Zipf) in the SUBTLEX-UK data-

base (van Heuven, Mandera, Keuleers,& Brysbaert, 2014) were

obtained for all words tagged as nouns.

2.4.2. Mean noun concreteness
Concreteness ratings of nouns were obtained from Brysbaert,

Warriner, and Kuperman (2014).

2.4.3. Mean noun age of acquisition (AoA)
Estimates of AoAwere obtained from the norms of Kuperman,

Stadthagen-Gonzalez, and Brysbaert (2012).

2.4.4. Mean noun number of phonemes
The length of all nouns (in phonemes) was also calculated

with the norms of Kuperman et al. (2012).

2.4.5. Mean noun semantic diversity (SemD)
SemD values for nouns were obtained fromHoffman, Lambon

Ralph, and Rogers (2013). SemD is a measure of variability in

the contextual usage of words. Words with high SemD values

are used in a wide variety of contexts and thus have more

variable and less well-specified meanings.

2.4.6. Mean noun perception strength
The perception strength (Minkowski 3 measure) of all

nouns was obtained from the norms of Lynott, Connell,
Brysbaert, Brand, and Carney (2020). This property was

measured with behavioural ratings in which participants

were asked to rate to what extent they experienced the

concepts by six perceptual modalities (touch, hearing,

smell, taste, vision, and interoception), and these single

modality ratings were then combined to compute the

perception strength.

2.4.7. Mean noun action strength
The action strength (Minkowski 3 measure) was obtained

from the norms of Lynott et al. (2020). This property was

measured with behavioural ratings in which participants

were asked to rate to what extent they experienced the con-

cepts by performing an actionwith five body effectors (mouth/

throat, hand/arm, foot/leg, head excluding mouth/throat, and

torso), and the ratings were combined to compute the action

strength.

2.4.8. Mean noun valence
Valence ratings for nouns were obtained from Warriner,

Kuperman, and Brysbaert (2013). As we were interested in

the comparison of neutral versus highly valenced words (but

not positive vs negative valence), we subtracted median value

of the scale from the averaged valence ratings and trans-

formed the results into absolute values.

2.4.9. Mean noun arousal
Arousal ratings in the norms of Warriner et al. (2013) were

obtained for nouns in each block.

In addition, we measured the following properties at the

level of the discourse:

2.4.10. Number of words
The total number of words produced in the 5-second speech

block.

2.4.11. Proportion closed-class words
Closed-class words are words that play primarily a functional

or syntactic role in language, as opposed to open-class words

which carry semantic meaning. We classified nouns, verbs

and adjectives and some adverbs (classified by the Stanford

Part-of-Speech Tagger) as open-class and all other words

(including pronouns, numbers, prepositions, conjunctions,

determiners, auxiliaries and some adverbs) as closed-class.

We then calculated the proportion of words in each block

that were closed-class.

2.4.12. Local coherence
Local coherence refers to the degree to which adjoining ut-

terances in speech are meaningfully related to one another. A

measure of local coherence was computed using the same

computational methods as Hoffman et al. (2018). Latent se-

mantic analysis (LSA) was used to compare the semantic

content of each 20-word passage of speech with the speech

from the previous 20 words. High scores indicate a strong

semantic relationship between adjoining passages of speech,

whereas low scores indicate a shift in topic. Amoving window

approach was used to generate a value for the local coherence

at each point in the discourse and the values for the words in

each block were averaged.

https://doi.org/10.1016/j.cortex.2022.08.002
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2.4.13. Global coherence
Global coherence refers to thedegree towhichutteranceswere

meaningfully related to the topic being probed. This property

was measured using the method first described in Hoffman

et al. (2018), by comparing the LSA semantic representation

of each participant's response to each prompt with a group-

average prototype LSA vector that represented typical

discourse on the topic. Higher values indicate utterances that

are more closely related to typical discourse on the topic. This

measurewas again calculated over passagesof 20words, using

amoving-windowapproach,with the value fromeachwindow

was assigned to the final word in the window. The global

coherence was included in the current study because of its

close relationship with semantic control and executive func-

tion during speech processing (Hoffman, 2019; Hoffman et al.,

2018; Morales et al., in press). This measure is the same as

that used in our previous study (Morales et al., in press).

The above psycholinguistic properties were also quantified

for the speech samples presented in the comprehension task.

Thus, we obtained a comprehensive set of speech properties

for each of the 3000 5-sec blocks of speech recorded in the

production task (10 blocks x 12 topics x 25 participants) and for

eachof the240blocksof speechpresented toparticipants in the

comprehension task (10 blocks x 12 topics x 2 versions of each

topic).

2.5. Processing of psycholinguistic characteristics of
speech

Considering that some of the psycholinguistic properties of

interest may be inter-correlated with each other, a series of

analyses were conducted to reveal the relationships among

different properties and combine these properties into a

comprehensive measure. The data for these analyses

comprised thespeechmeasures for the3240blocksof speechin

the study (combining comprehension and production). Specif-

ically, we first computed the Pearson correlation between each

pair of psycholinguistic properties to identify covariations be-

tweendifferent psycholinguistic properties. To further explore

the structure among speech characteristics and to generate

comprehensivemeasures for all psycholinguistic properties, a

PCA was performed, which resulted in the extraction of five

latent factors (which were the only factors with eigenvalues

greater than one and together explained 68% of the variance

withinthesetofproperties).Thefactorswerepromaxrotatedto

aid interpretationandtoreducecorrelationsbetweenthelatent

variables. Each block's scores on these psycholinguistic prin-

cipal components (PCs) were later used as predictors of neural

activity in ourmain analyses (see Supplementary Figure S1 for

the distribution of PC scores). There are a range of other data

reduction approaches that could be applied to these data. We

opted to use PCA because it is widely used in psycholinguistic

research (see Introduction) and because of specific drawbacks

associated with other approaches. For example, non-negative

matrix factorisation imposes non-negativity constraints and

generates factors that are not necessarily orthogonal to one

another,whichmake thismethod tend to grouponlypositively

correlated variables together and ignore negative relationship

that likely reflects a single underlying latent factor.
2.6. Image acquisition and processing

Images were acquired on a 3T Siemens Prisma scanner with a

32-channel head coil. For the functional images, the multi-

echo EPI sequence included 46 slices covering the whole

brain with echo time (TE) at 13 msec, 31 msec and 48 msec,

repetition time (TR) ¼ 1.7 sec, flip angle ¼ 73�, 80 � 80 matrix,

reconstructed in-plane resolution ¼ 3 mm � 3 mm, slice

thickness ¼ 3.0 mm (no slice gap) and multiband factor ¼ 2. In

total, four runs of 281 volumes (477.7 sec) were acquired. A

high-resolution T1-weighted structural image was also ac-

quired for each participant using an MP-RAGE sequence with

1 mm isotropic voxels, TR ¼ 2.5 sec, TE ¼ 4.6 msec. To mini-

mize the impact of speech-related head movements and

signal drop out in the ventral temporal regions (Kundu et al.,

2017), the study employed a whole-brain multi-echo acquisi-

tion protocol, in which data were simultaneously acquired at

3 TEs. Data from the three echo series were weighted and

combined, and the resulting time-series were denoised using

independent components analysis (ICA).

Images were pre-processed and analysed using SPM12 and

the TE-Dependent Analysis Toolbox 0.0.7 (Tedana) (Kundu

et al., 2013; Kundu, Inati, Evans, Luh, & Bandettini, 2012). Es-

timates of head motion were obtained using the first BOLD

echo series. Slice-timing correction was carried out and im-

ages were then realigned using the previously obtained mo-

tion estimates. Tedana was used to combine the three echo

series into a single-time series and to divide the data into

components classified as either BOLD-signal or noise-related

based on their patterns of signal decay over increasing TEs

(Kundu et al., 2017). Components classified as noise were

discarded. After that, images were unwarped with a B0 field-

map to correct for irregularities in the scanner's magnetic

field. Finally, functional images were spatially normalised to

MNI space using SPM's DARTEL tool (Ashburner, 2007) and

were smoothed with a kernel of 8 mm FWHM.

Data in our studywere treatedwith a high-pass filter with a

cut-off of 128 sec and the four experimental runs (two

comprehension and two production runs) were analysed

using a single general linear model. Four speech periods were

modelled as different event types: discourse comprehension,

baseline comprehension, discourse production, and baseline

production. Discourse periods were modelled as a series of

concatenated 5-sec blocks. This allowed us to include para-

metric modulators that coded the psycholinguistic PCs/prop-

erties of speech in each 5-sec block. In our main analyses, the

PC scores of the 5 psycholinguistic PCs, calculated as

described earlier, were included in the model as modulators

for each run. We also included time within each discourse

period as another modulator to exclude the potential in-

fluences of time on effects of psycholinguistic information

(e.g., later stages of a speech tend to possess lower coherence,

see Hoffman, 2019). Modulators were mean-centred for each

run. Additional regressors modelled the preparation periods

for discourse and baseline in each task. Covariates consisted

of six motion parameters and their first-order derivatives. In

addition to the PC-based model, we also conducted para-

metric modulation analysis for each individual psycholin-

guistic property separately by including one property at a time

https://doi.org/10.1016/j.cortex.2022.08.002
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in the GLM. This provided data on the raw property effects

without considering relationships among different psycho-

linguistic properties. We include these results as supple-

mentary analyses.

2.7. Analyses

After estimation of the first-level models, we submitted the

individual-level beta maps of each modulator to second-level

group analyses. In keeping with the exploratory nature of the

investigation, our analyses focus on characterising the effect

sizes of each PC in different parts of the brain, rather than

testing specific hypotheses.

2.7.1. Whole-brain level
In this section of analyses, we investigated the effects of

psycholinguistic PCs/properties in areas across the whole

brain. Individual-level beta maps of each psycholinguistic

modulator were averaged across all participants. In line with

the guidelines for Cortex's Exploratory Reports format, we

present the unthresholded group-level beta maps, which

provide estimates of the effect sizes of different psycholin-

guistic PCs/properties on activation throughout the brain. The

brain activation maps were visualized with the BrainNet

Viewer (http://www.nitrc.org/projects/bnv/) (Xia, Wang, & He,

2013). We did not threshold results based on tests of statistical

significance (again in line with guidelines for Exploratory Re-

ports) as our aim was to provide visualisations of the overall

pattern of effects across the whole brain. To investigate the

similarity of the beta maps in comprehension and production

for each psycholinguistic PC, we extracted the beta values for

comprehension and production in each voxel and computed

voxelwise correlations between the two tasks.

2.7.2. Network level
We also investigated the effect of psycholinguistic informa-

tion on activation at network level. Cortical networks are

often identified in a discrete fashion, e.g., by using connec-

tivity patterns in resting-state fMRI data to segregate the

cortex into a set of distinct networks (e.g., Yeo et al., 2011).

Such approaches assume hard boundaries between networks.

Here, however, we used a different approach based on the

assumption that function varies in a graded fashion as one

moves across the cortical surface. We used the principal

connectivity gradient described in Margulies et al. (2016).

Margulies et al. mapped the organisation of the cortex along a

single continuous gradient, such that regions of the brain that

shared similar patterns of functional connectivity were

located at similar points on the gradient (shown in Fig. 3A). At

one end of this spectrum lie the sensorimotor cortices, which

show strong functional connectivity with one another. At the

other end lie regions associated with the default-mode

network (DMN), whose activity is correlated with one

another but is anti-correlated with sensorimotor systems.

Regions situated between the two extreme ends of the prin-

cipal gradient include the inferior frontal sulcus, the intra-

parietal sulcus, and the inferior temporal sulcus, constituting

heteromodal integration and higher-order cognitive regions

(e.g., attention and executive areas). It has been proposed that

this spectrum represents a functional hierarchy in the cortex,
ranging from regions implicated in external, stimulus-driven

processing to those engaged by internally-generated abstract

thoughts (Margulies et al., 2016). The DMN extreme of the

gradient was of particular interest in the present study. Pre-

vious studies have linked DMN with general semantic pro-

cessing (Binder&Desai, 2011; Binder, Desai, Graves,& Conant,

2009; Binder et al., 1999), and it is thought to play an important

role in constructing a mental representation of discourse

during comprehension and production (often termed a “situ-

ation model”, Garrod & Pickering, 2004; Heidlmayr et al., 2020;

Kintsch & Van Dijk, 1978).

We aimed to investigate how the effects of psycholin-

guistic properties varied along this gradient. To do this, we

divided voxels along the gradient into 10 equally-sized bins

(from sensorimotor to DMN regions) using similar methods to

Xiuyi Wang, Margulies, Smallwood, and Jefferies (2020). Then

we extracted mean PC effects (beta values) for each partici-

pant for the voxels contained in each bin. To determine how

the effects varied along the cortical gradient, we fitted linear

mixed models predicting these psycholinguistic effects for

comprehension and production separately. Our fixed effect

was the position of the bin on the gradient (from 1 to 10),

treated as a numeric variable and centered and scaled. To test

for higher order relationships between gradient bins and

psycholinguistic effects, we also built mixed models which

included second-order and third-order terms for bin position.

We investigated if the including of higher orders of predictors

improved model fits, by comparing the Akaike information

criterion (AIC) of differentmodels.We selected themodelwith

the lowest AIC to represent the change in effects along the

gradient. All models in this section included random in-

tercepts by participant.
3. Results

3.1. Characteristics of speech

The relationships among the 13 psycholinguistic properties of

interest were first investigated with correlation analysis. We

divided each 50 sec speech period into ten 5-second blocks

and calculated the psycholinguistic properties for each block.

Then we combined the measures of all the speech blocks in

both comprehension and production tasks and computed

Pearson correlations for each pair of properties. Table 1 shows

the results of the correlation analysis. As expected, none of

the properties was entirely independent of the others: every

property covaried with some of the other speech properties.

For example, speech blocks with lower word frequency typi-

cally contained words acquired later in life and had lower

semantic diversity. Blocks that included more concrete words

were unsurprisingly more perception- and action-related.

These results underscore the need to utilize data reduction

techniques to generate latent dimensions as measures of

speech characteristics.

To further explore the structure among speech properties

and generate latent measures of speech characteristics, a PCA

was performed on all properties of all speech blocks, which

resulted in the extraction of five PCs (which together

explained 68% of the variance). The results are reported in

http://www.nitrc.org/projects/bnv/
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Table 2 and example speech passages that scored low and

high on each component are presented in Table 3. For con-

venience, we labelled each component according to the as-

pects of speech it appeared to index:

PC 1. Complexity of Vocabulary (blocks containing high

frequency, high semantic diversity, short, early-acquired

words scored highly on this factor while those containing

more complex vocabulary received low scores)

PC 2. Sensory-motor content (blocks containing words high

in concreteness and sensorymotor information scored highly)

PC 3. Coherence (blocks high in global and local coherence

loaded positively on this factor)

PC 4. Emotional content (blocks with words high in arousal

and valence scored highly)

PC 5. Quantity/word type (blocks containing a high number

of words and high proportion of closed class words loaded

positively on this factor)

The PCA indicates that the 13 individual properties we

derived from the speech samples cohere into a smaller set of

distinct and readily interpretable underlying components.

Moreover, these components map clearly onto different levels

of language processing: PC1 relates to lexical properties of

speech, PC2 and PC4 to semantic content, PC3 to the structure

and organisation of the discourse and PC5 to the overall rate of

speech and its grammatical content. This result is consistent

with previous studies that have used PCA to decompose

speech properties in healthy and disordered populations;

these have found latent factors relating to similar levels of

language processing (Alyahya et al., 2020b; Hoffman, 2019;

Hoffman et al., 2018; Mirman et al., 2015). In addition, we

conducted two control analyses to investigate the effects of (a)

varying the length of the time window over which properties

were aggregated, and (b) using lexical properties for all open-

class words and not just nouns. These control analyses pro-

vided similar results to the main analysis (see Supplementary

Tables S2 and S3).

The PCA provides us with an interpretable set of latent

properties with which to interrogate our neuroimaging data.

Our main neuroimaging analysis was therefore based on the

PCA results, in which neural activity during discourse was

simultaneously predicted from block scores on the five latent

factors described above (as well as the position of the block

within the discourse). The results of parallel analyses inves-

tigating the effects of the 13 individual language properties are

provided in Supplementary Materials for interested readers.

3.2. Activation during speech processing as a function of
psycholinguistic properties

To investigate how brain activation co-varied with the five PCs

underlying speech processing, we performed voxel-wise and

network-level analyses. At the voxel level, we computed effect

sizes (beta values) for each PC in each voxel across the whole

brain, as shown in Fig. 2. Activation in hot colour areas was

positively correlated with the scores on the five psycholin-

guistic factors, increasing when participants comprehended

or produced speech that scored positively on this factor,

whereas cold colour areas were negatively correlated with the

factor scores. At the network level, we classified voxels
according to their position on the principal cortical gradient

reported by Margulies et al. (2016). This gradient places the

cortex along a continuum from primary sensory and motor

regions to the DMN (see Fig. 3A). We computed and plotted the

mean effect size of each PC at 10 positions along this gradient,

as shown in Fig. 3B, along with the model fits based on AIC of

the corresponding mixed effects models (Table 4). Taken

together, the whole-brain maps and gradient plots provide

information about how activation in different brain regions

changes as a function of the properties of discourse during

both comprehension and production. Finally, to assess the

level of convergence between language tasks, we also

computed the voxel-wise correlation between the effect size

(beta) maps for comprehension and production, as reported in

Fig. 2 (using similar methods with Morales et al., in press;

Xiuyi Wang et al., 2020). In the following section, we provide a

verbal summary of the topographic distribution of the effects

observed for each PC, focusing particularly on areas known to

be involved in language processing and semantic cognition.

For the vocabulary component, the mean net effect across

the cortical gradient was positive in both comprehension and

production tasks. That is, there was a tendency towards

greater activation for passages that contained less complex

nouns. During speech comprehension, increased activation

for less complex vocabularywas evidentwithin angular gyrus,

superior frontal gyrus, posterior cingulate gyrus, precuneus,

and areas in the occipital lobe. This interpretation was sup-

ported by the gradient-based analysis, which showed a strong

positive effect at the unimodal end of the gradient (corre-

sponding to visual cortex in the occipital lobe), and an in-

crease in positive effects towards the opposing DMN end of

the spectrum. In contrast, when participants heard more

complex terms, language areas showing activation increases

included inferior frontal gyrus and inferior temporal gyrus

and the ventral anterior temporal lobe. Similar sets of regions

showed effects of the vocabulary component in the speech

production task. Indeed, we found a positive correlation be-

tween the activation maps of the vocabulary component in

comprehension and production tasks (r ¼ .25) suggesting

convergence across language tasks.

For the sensory-motor factor, during speech comprehen-

sion stronger activation for more concrete content included

parts of the DMN such as the angular gyrus, posterior cingu-

late, and ventromedial prefrontal cortex, as well as para-

hippocampal gyrus, inferior temporal gyrus and inferior

frontal gyrus. In contrast, there was strong activation increase

for abstract words in areas of superior temporal gyrus close to

and anterior to primary auditory cortex, as well as in occipital

cortex. In support of this interpretation, the gradient analysis

for comprehension showed a linear trend, with cortex closer

to primary sensory-motor regions activating to more abstract

content while regions towards the DMN activating to more

concrete content. During speech production, the effect for

concrete words in DMN appeared less pronounced (in line

with no consistent effect in the gradient analysis) and there

was a pronounced increase for more abstract content in the

left anterior temporal lobe. Despite some apparent differ-

ences, the correlation between comprehension and produc-

tion for the sensory-motor factor was the strongest of all five
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Fig. 2 e Unthresholded maps of psycholinguistic PC effects (beta values) on speech comprehension and speech production,

and voxelwise correlations between tasks.
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PCs (r ¼ .42), suggesting that the sensory-motor content of

discourse has relatively similar neural correlates whether one

is speaking or listening.

For the coherence factor, superior temporal gyrus and

parts of the left frontal lobe showed greater activation when

people heard more coherent passages of speech. However,

stronger correlations were observed for less coherent speech,

in DMN regions such as the angular gyrus, posterior cingulate

and ventromedial prefrontal cortex, and along the length of

the superior temporal sulcus. Similarly, the gradient-based
analysis indicated that the strongest negative response to

coherence was at the DMN extreme of the cortical gradient.

For the speech production task, the gradient analysis showed

weaker effects and the negative effects of coherence were

much less pronounced. There were, however, notable positive

effects in inferior frontal gyrus, posterior middle temporal

gyrus and the inferior parietal lobule, all of which showed

higher activation for more coherent speech. Less coherent

discourse was also associated with greater activation in DMN

regions during production, though to a lesser extent than in

https://doi.org/10.1016/j.cortex.2022.08.002
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Fig. 3 e (A) Principal connectivity gradient map from Margulies et al. (2016), with the unimodal extreme of the gradient

shown in blue and the DMN extreme in red. (B) Model fits for the mixed effects models that examined the effect of the

gradient on psycholinguistic PCs activation during speech comprehension and production. Linear, quadratic and cubic

models were fitted for each PC. The trend line for the best-fitting model (lowest AIC) in each case is shown.
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Table 1 e Correlations among psycholinguistic properties of speech.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

1. Frequency e

2. Concreteness �.07 e

3. AoA �.50 �.41 e

4. Number of phonemes �.37 �.20 .42 e

5. SemD .66 �.34 �.28 �.13 e

6. Number of words .10 .02 �.08 �.14 .08 e

7. Proportion closed-class words �.05 .02 .02 �.01 �.01 .28 e

8. Global coherence �.13 .16 �.02 �.08 �.25 �.08 �.12 e

9. Local coherence �.12 .15 �.04 �.09 �.19 �.005 �.003 .46 e

10. Arousal �.04 �.06 .08 .18 �.12 �.09 �.03 �.01 �.05 e

11. Valence .01 .06 �.23 �.02 �.17 �.05 .03 .06 .05 .27 e

12. Perception strength .09 .60 �.43 �.12 �.18 �.04 .01 .11 .09 .14 .32 e

13. Action strength .12 .24 �.19 �.08 �.05 �.09 �.05 .11 .05 .19 .19 .47

Note: N ¼ 3240, r values greater than ± .034 are significant at p < .05 (uncorrected).

Table 2 e Results of principal component analysis of speech properties.

PC 1:
Vocabulary

PC 2:
Sensory-motor

PC 3:
Coherence

PC 4:
Emotion

PC 5:
Quantity/word type

Frequency .91 �.08 �.05 .08 �.04

SemD .81 �.38 �.16 �.03 �.05

AoA ¡.62 �.50 �.01 �.01 �.03

Number of phonemes ¡.53 �.22 �.24 .22 �.12

Concreteness �.19 .94 �.06 �.24 .01

Perception strength .01 .84 �.10 .22 �.03

Action strength .11 .45 �.03 .37 �.17

Local coherence �.02 �.12 .87 .05 .06

Global coherence �.05 �.06 .85 .06 �.14

Arousal �.09 �.12 �.03 .80 �.01

Valence .07 .10 .15 .72 .16

Proportion closed-class words �.13 �.002 �.10 .13 .82

Number of words .11 �.06 .02 �.02 .77

Note: Table shows loadings in pattern matrix following promax rotation. The order of the properties was organized based on their loadings on

factors (each property's strongest loading highlighted in bold). AoA ¼ age of acquisition; SemD ¼ semantic diversity.

Table 3 e Example speech passages that scored high and low on each psycholinguistic factor.

Factor Factor score Speech

Vocabulary 2.37 …dress formally and the next important bit is definitely be on time, be early.

If you are early you are on time. If you are…

�4.37 …drastic changes within the environment thanks to pollution and

degradation of the biodiversity within, in different countries…

Sensory-motor 2.37 …put all your liquids in the right bags and stuff, roll up your clothes so they

all fit in. I usually only use hand luggage so you do not have very much…

�3.65 …the internet has had more advantages than disadvantages. There are so

many new ways of reaching people…

Coherence 3.15 …I would pour the water into the mug and stir the teabag in the water. Let it

sit and brew and then…

�2.44 …health is wealth but anyway. I guess it is like important for the

environment too. Because if you eat more veggies, it probably is better…

Emotion 4.33 …everyone just talks walks around and talks to each other. It is not really

fun, it is pretty awkward…

�3.01 …and then I go through every aisle usually at Tesco or a Lidl. I go through

every aisle, get what I need…

Quantity/word type 2.78 …would probably start by putting the kettle on. So I would pick the kettle

and then I would fill it up in the sink and then I put it on and I would…

�4.43 …it stops you putting on a lot of weight. It gives you energy. It can, it can help

prevent lots of diseases…

Note: Factor scores belong to the speech blocks highlighted in bold. For the coherence examples, the topics were “describe how youwouldmake

a cup of tea or coffee” (high example) and “why is it important to have a balanced diet” (low example).
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Table 4eAIC for themixed effectsmodels with different order effects of the gradient bins on psycholinguistic PCs activation
during speech.

Factors Comprehension task Production task

0th 1st 2nd 3rd 0th 1st 2nd 3rd

Vocabulary �738.01 �740.96 �750.47 ¡751.03 �900.55 �898.65 ¡904.82 �902.82

Sensory-motor �674.38 ¡698.10 �696.20 �694.58 �964.94 �976.50 �989.09 ¡997.75

Coherence �714.88 �717.54 ¡728.80 �726.81 �940.31 �942.27 �941.52 ¡943.57

Emotion ¡795.96 �794.54 �794.95 �793.18 �960.70 ¡988.10 �987.94 �985.95

Quantity/word type �707.20 �709.61 �709.00 ¡726.12 �901.07 �916.10 �926.69 ¡936.77

Note: AIC that suggested the best model fit for each factor has been highlighted in bold.
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the comprehension task. The activation maps in compre-

hension and production were positively correlated with each

other (r ¼ .29), suggesting some convergence in the distribu-

tion of effects. These results are similar to our previous

analysis of coherence in this dataset (Morales et al., in press).

For the emotion component, the gradient analysis

revealed net positive effects of emotional content on brain

activation, particularly during the production task. Areas

showing activation increases during comprehension of high-

emotion passages included cingulate gyrus, insula, medial

frontal gyrus, precuneus and superior temporal gyrus. In

contrast, inferior frontal gyrus and parahippocampal gyrus

were more activated when speech included more neutral

content. For the production task, parts of the cingulate gyrus,

insula, medial frontal gyrus, superior temporal gyrus and

precentral/postcentral gyri showed greater activation to

high-emotion speech. Inferior parietal lobule, angular gyrus,

inferior frontal gyrus and parts of the ventral temporal lobe

showed greater activation to neutral speech, though these

effects were small. A positive correlation was found when the

effect maps of the emotion factor in the two tasks were

compared but this was very weak (r ¼ .08), suggesting that

the processing of emotional language engages somewhat

different systems depending on whether one is speaking or

listening to speech.

Finally, for the quantity/word type factor, in the compre-

hension task, a robust increase to speech including more

(closed-class) words was observed in superior temporal gyrus

and superior temporal sulcus bilaterally, which was the

strongest effect for this component. The gradient analysis for

comprehension showed a pronounced positive effect around

gradient bin 4, which corresponds to the position of mid-to-

anterior STG regions on the gradient. Greater activation to

blocks including fewer words and fewer closed-class words

was found in intraparietal sulcus, inferior frontal gyrus and

insula, with larger effects in the right hemisphere. These ef-

fects may indicate regions that deactivate during language

comprehension. In the production task, gradient analysis

indicated a net positive effect on activation across the brain

when participants produced more words, with the strongest

effect towards theDMN. In the effectmaps, particularly strong

effectswere seen in precuneus, superior frontal gyrus, angular

gyrus, the lateral temporal lobe and motor cortices. No brain

regions activated more strongly for speech blocks containing

fewer (closed-class) words, with the possible exception of the

ventral anterior temporal cortices. When comparing the

activation maps in comprehension and production tasks, we
found a weak positive correlation for the quantity/word type

factor (r ¼ .18).

We also generated topographic activation maps for each of

the individual psycholinguistic properties, to explore raw

feature effects without accounting for their relationships with

other psycholinguistic properties. These results are provided

in Supplementary Materials.
4. Discussion

A common approach in language neuroscience is to investi-

gate how neural activity is influenced by the properties of the

language being processed. Most fMRI studies to use this

method have used simple experimental stimuli at the single

word or sentence level, rather than more naturalistic

discourse. In addition, few studies have investigated psycho-

linguistic effects during language production rather than

comprehension. In this exploratory fMRI study, we investi-

gated how neural activity covaried with the psycholinguistic

properties of naturalistic discourse, comparing speech

comprehension with production in the same participants.

Several findings emerged from the present study. First, we

found that PCA could be used successfully to reduce a broad

range of linguistic properties of interest to five meaningful

latent factors, which quantified the lexical properties of

speech (vocabulary), its semantic content (sensory-motor,

emotion), its organisation at the discourse level (coherence)

and its overall quantity and composition. Second, by exploring

the neural correlates of each of these psycholinguistic factors

at a whole-brain level, we found frequent convergence be-

tween effects observed in language comprehension and pro-

duction, though there was also evidence for divergence on

some properties. Third, we observed different responses

across the brain to different factors, some of which corrobo-

rate previous findings derived from more constrained exper-

imental stimuli, and some of which suggest new hypotheses

for future research. Overall, our study demonstrates that

naturalistic fMRI paradigms can be used to study neural pro-

cesses in speech production as well as comprehension. In this

Discussion, we note where our findings are most compatible

with the existing literature and where they generate new

research questions and hypotheses for future research.

We begin by considering the level of convergence between

effects in comprehension and production. The strongest cor-

relation between tasks was for the sensory-motor speech

factor. This factor indexes the degree to which speech

https://doi.org/10.1016/j.cortex.2022.08.002
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passages contain concrete referents associated with percep-

tion and action and therefore loads most squarely on the se-

mantic level of language processing. Most theories of language

agree that semantic representations are shared between

comprehension and production (Gambi & Pickering, 2017;

Garrod & Pickering, 2004; Hagoort, 2013; Hickok & Poeppel,

2007; Kintsch & Van Dijk, 1978; Levelt et al., 1999; Pickering

& Garrod, 2021). In line with this general consensus, the

sensory-motor component showed the highest degree of

convergence between our two tasks, suggesting that sensory-

motor content of speech influences neural activity in a similar

fashion whether one is speaking or listening to speech. In

contrast, the lowest correlation between tasks occurred for

the emotion factor. This result suggests that there may be

important differences in the neural systems engaged by

emotional content in one's own language production, when

compared with someone else's speech. Studies investigating

theory of mind have found neural differences when making

judgements about our own emotional states compared with

inferring and empathising with the mental states of other

people (Ochsner et al., 2004; Reniers, V€ollm, Elliott, &

Corcoran, 2014; Ruby & Decety, 2004). Here we have found

that, even during passages of relatively neutral discourse, the

brain's response to emotion words seems to vary depending

on their source. Future studies could investigate the precise

neural loci of such effects and the underlying mechanisms

that give rise to these differences. It is possible, for example,

that we experience an increased propensity to simulate or re-

experience emotional states when we recount our own ex-

periences, compared with listening to other people's. The

correlation for the quantity factor was also low. This is

perhaps unsurprising since variations in speech rate are likely

to place demands on different sensorimotor systems

depending onwhether one is listening to or producing speech.

The remaining two factors (vocabulary and coherence)

showed intermediate levels of correlation between the two

tasks, which suggests some overlap between comprehension

and production.

In addition to measuring whole-brain convergence be-

tween comprehension and production, the topographic dis-

tribution of different psycholinguistic effects can provide

useful insights into the engagement of neural systems during

discourse processing. For the vocabulary factor, consistent

with the positive effects of word frequency in previous studies

of single-word reading (Carreiras, Riba, Vergara, Heldmann, &

Münte, 2009; Graves et al., 2010; Prabhakaran, Blumstein,

Myers, Hutchison, & Britton, 2006), we found that simpler

vocabulary was associated with increased activation in DMN

areas including angular gyrus, cingulate gyrus and precuneus,

which have been strongly implicated in semantic processes

(Binder et al., 2009). One can intuit that simpler vocabulary is

more likely to elicit stronger activation in a semantic network

due to their extensive exposure compared withmore complex

words, which are lower in frequency, acquired later in life and

have fewer links to other words (Binder & Desai, 2011; De

Deyne & Storms, 2008; Reilly & Desai, 2017). In contrast, the

negative correlations for word frequency observed previously

in inferior frontal gyrus and ventral temporal cortex during

single-word reading tasks (Carreiras et al., 2009; Graves et al.,

2010; Hauk et al., 2008; Hoffman, Lambon Ralph, & Woollams,
2015; Prabhakaran et al., 2006) were also observed in our study

when participants processed more complex spoken language.

Given the established role of inferior prefrontal cortex in

cognitive control, particularly during language tasks (Jackson,

2021), it is not surprising that the processing of complex lan-

guage engages this area. The greater engagement of ventral

anterior temporal regions to more complex vocabulary was

less expected and warrants future investigation. Both the

ventral anterior temporal cortex and inferior parietal cortex

have been proposed as the sites of semantic “hubs” that code

conceptual knowledge (Binder & Desai, 2011; Lambon Ralph,

Jefferies, Patterson, & Rogers, 2017; Mirman, Landrigan, &

Britt, 2017). Here, however, they showed opposite responses

to the vocabulary component of discourse. Further investi-

gation of the specific factors that influence discourse-related

activity in each region may be valuable in teasing apart the

specific functions of these regions.

Our second factor indexed the sensory-motor content of

language. This factor has been frequently studied by manip-

ulating the concreteness of written words. Such studies have

reliably found that angular gyrus, precuneus/cingulate, para-

hippocampal gyrus and ventromedial prefrontal cortex

(generally considered DMN regions) show increased activation

to more concrete words (for meta-analyses, see Bucur &

Papagno, 2021; Wang et al., 2010). Our data largely replicate

these effects in auditory comprehension, though they

appeared somewhat weaker during language production.

Concrete concepts are thought to have a richer and more

easily accessed semantic representation (Paivio, 1991;

Schwanenflugel, 2013), thus the activation of the above DMN

areas could reflect engagement of richer semantic represen-

tations for speech containingmore concrete content (Binder&

Desai, 2011). Our results are also consistent with the findings

that emerge from the studies focusing on examining effects of

sensory-motor information on brain activity. For example,

Fernandino et al. (2016) found that multiple sensory-motor

attributes of words can modulate the neural activity in a

similar set of regions to our study, including parahippocampal

gyrus, precuneus/cingulate, medial prefrontal cortex and

angular gyrus. Other studies have suggested that left lateral

occipitotemporal cortex is critically involved in representing

action information (Wu, Wang, Wei, He, & Bi, 2020; Wurm &

Caramazza, 2019; Wurm, Caramazza, & Lingnau, 2017),

which was one of the properties that contributed to our

sensory-motor factor. Consistent with this account, we

observed a positive response to more sensory-motor language

content in posterior occipitotemporal regions during both

language tasks.

Previous meta-analyses have identified greater activation

to more abstract word comprehension in left lateral tempo-

ral (particularly anterior) regions and the left IFG (Bucur &

Papagno, 2021; Wang et al., 2010). Consistent with this, we

observed greater activation to less sensory-motor speech

passages in the lateral temporal cortices in both compre-

hension and production. However, there was no suggestion

of a similar effect in IFG for either task. We suggest that this

is potentially an important point of divergence between

experimental stimuli and more natural speech, which war-

rants future investigation. It has been proposed that abstract

concepts engage IFG because they have greater contextual

https://doi.org/10.1016/j.cortex.2022.08.002
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variability than concrete concepts (Schwanenflugel &

Shoben, 1983) and thus require more engagement of se-

mantic selection and control processes supported by IFG

(Hoffman, Binney, et al., 2015; Hoffman, Jefferies, & Lambon

Ralph, 2010; Noppeney & Price, 2004). In the present para-

digm, unlike in previous studies, abstract words were

embedded in naturalistic discourse and their interpretation

was therefore constrained by the rich prior context of the

discourse. Therefore, it is possible that the executive de-

mands for abstract words in our study were minimised,

which could account for the lack of IFG response to this

variable. This interpretation supports the context availability

theory of concreteness effect (Schwanenflugel & Shoben,

1983) and suggests a need to directly compare the semantic

processing mechanisms of discourse versus single words in

future studies. We suggest that the executive control de-

mands for different types of concepts could vary radically

according to the specific experimental environment in which

they are presented.

The coherence factor in our data loaded on measures of

global coherence, which indexes the degree to which utter-

ances conform to the expected topic of the discourse, and

local coherence, which measures the relatedness of neigh-

bouring passages of speech (Glosser & Deser, 1992). Both of

these measures reflect the high-level organisation of

discourse. The results for this factor replicate and extend our

previous analyses of the current dataset, in which we inves-

tigated the effect of global coherence specifically (Morales et

al., in press). Our previous study found that DMN regions

showed greater activation when less coherent speech was

heard or produced, potentially reflecting updating of mental

representations when discourse deviated from the expected

topic. The present results support this conclusion and

demonstrate that the previous findings are valid even when

the influences of other properties of language are statistically

controlled with PCA.

For the emotion factor, several areas showed increased

activation to speech containing more emotional content,

including anterior cingulate cortex, insula, and medial frontal

gyrus. These areas were also reported in previous studies as

typically responding to emotionally significant language or

more general stimuli (e.g., pictures) (Citron, 2012; Kensinger &

Schacter, 2006; Vigliocco et al., 2014). Nevertheless, another

classical emotion-related area, the amygdala, showed a slight

negative effect to emotional language in the present study. As

stated earlier, effects of the emotion factor were very weakly

correlated across comprehension and production, suggesting

that the neural processing of emotional discourse during

language production differs in important ways from in lan-

guage comprehension. In general, brain regions were much

more likely to show emotion-related activation increases

during the production task. The reasons for this are unclear.

One possibility is that our comprehension task did not elicit a

high level of emotional engagement from participants, since

they did not see the face of the speaker and was not aware of

their identity. It is important to also note that our topics were

designed to probe general knowledge rather than personal

experiences, and thus were not suited to eliciting highly

emotional discourse. Thus our data may be less sensitive to

this aspect of language. In other words, the variance of neural
activity elicited by the emotion factor could be harder to detect

than the other aspects of language, as there was not much

emotional content in the stimuli.

Lastly, for the quantity/word type factor, strong activation

increases were observed in auditory cortices and the sur-

rounding superior temporal gyri during comprehension. Pas-

sages loading on this factor contained a high number of words

and a high proportion of closed-class words that carry syn-

tactic rather than semantic information. This result is

consistent with other studies that have investigated effects of

speech rate on brain activation (Dhankhar et al., 1997;

Mummery et al., 1999; Price et al., 1992) and likely reflects the

fact that regions surrounding primary auditory cortex play a

critical role in speech perception (Hickok& Poeppel, 2007). The

superior temporal gyrus is also implicated in syntactic pro-

cessing (Friederici, 2012), which may also explain why this

region responds strongly to passages containing a large

number of closed-class words. Strong negative effects of

quantity/word type during comprehension were observed in

large swathes of the right hemisphere, which may indicate

increasing deactivation of brain areas not responsive to lan-

guage, with deactivation occurring in proportion to the in-

tensity of speech processing demands.

To our knowledge, no neuroimaging study has previously

investigated the parametric effect of speech quantity in

discourse production. Effects herewere somewhat different to

those observed in comprehension, with increasing activation

as a function of speech quantity/word type across muchmore

of the cortex. Activation increases were strongest in the

angular gyri bilaterally, with other DMN regions also showing

strong effects. As we have noted earlier, these regions are

implicated in semantic representation, mental models of

events and situations and with self-generated thought more

generally (Andrews-Hanna, Smallwood, & Spreng, 2014;

Binder & Desai, 2011; Margulies et al., 2016). One hypothesis

arising from this result is that the more strongly people

engage these systems, the more fluently and rapidly they are

able to generate discourse.
5. Conclusions

In conclusion, using PCA to derive measures of language

properties, the current study is one of the first to directly

compare the neural correlates of psycholinguistic effects in

naturalistic discourse during comprehension and production.

Findings of this exploratory study suggest a number of di-

rections for futurework. First, previouswork has not explicitly

investigated to what extent the neural correlates of psycho-

linguistic properties overlap during speech comprehension

and production. Our results suggest that the alignment of

discourse processes during listening and speaking is complex,

since their neural correlates were similar across listening and

speaking for some aspects of speech (e.g., the sensory-motor

factor) but not others (e.g., the emotion factor). Future

studies should investigate why different aspects of speech

elicit different degrees of neural alignment between compre-

hension and production.

Second, despite the demonstrable benefits of naturalistic

paradigms (Hamilton & Huth, 2020; Hasson & Honey, 2012;
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Nastase et al., 2020; Yarkoni et al., 2008), most fMRI studies

still rely on relatively non-naturalistic single-word designs,

with small sets of stimuli. Our results suggest that some

findings obtained with experimentally constrained paradigms

may not be generalized to more naturalistic language pro-

cessing. Therefore, ecological validity needs to be taken into

account in future studies, and the underlying mechanisms

leading to differences between naturalistic and non-

naturalistic language processing should be investigated. Of

course, the “naturalness” of a stimulus is a matter of degree.

We used discourse passages of a limited 50 sec duration,

where participants were instructed to discuss particular

topics. This could be argued to be somewhat artificial. For

comprehension, open fMRI datasets using more much longer

stimuli like narrated stories are available (Li et al., 2021;

Nastase et al., 2021). We are not aware of similar data for

discourse production and we believe the field would benefit

greatly from such data.

Finally, in the present study, the structure of psycholin-

guistic properties was explored using PCA, which is a data-

driven decomposition technique that has been previously

used with success in structural MRI studies and fMRI studies

(Alyahya et al., 2020a, 2020b; Fernandino et al., 2016; Hauk

et al., 2008; Huth et al., 2016; Mirman et al., 2015). Here, we

successfully implemented this technique with naturalistic

discourse data during both comprehension and production to

generate predictors for fMRI data, which provided strong ev-

idence for the applicability of this technique in future studies.

Thus, our findings not only contribute to understanding of

shared and distinct neural processes in the comprehension

and production of naturalistic discourse, but also provide ev-

idence for the utility of applying quantitative analysis of

naturalistic speech to study the neural mechanisms of

language.
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