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Abstract. In recent years, neural implicit representations have made remarkable
progress in modeling of 3D shapes with arbitrary topology. In this work, we
address two key limitations of such representations, in failing to capture local 3D
geometric fine details, and to learn from and generalize to shapes with unseen
3D transformations. To this end, we introduce a novel family of graph implicit
functions with equivariant layers that facilitates modeling fine local details and
guaranteed robustness to various groups of geometric transformations, through
local k-NN graph embeddings with sparse point set observations at multiple
resolutions. Our method improves over the existing rotation-equivariant implicit
function from 0.69 to 0.89 (IoU) on the ShapeNet reconstruction task. We also
show that our equivariant implicit function can be extended to other types of
similarity transformations and generalizes to unseen translations and scaling.

Keywords: Implicit neural representations; equivariance; graph neural networks;
3D reconstruction; transformation.

1 Introduction

Neural implicit representations are effective at encoding 3D shapes of arbitrary topol-
ogy [32,30,10]. Their key idea is to represent a shape by a given latent code in the
learned manifold and for each point in space, the neural implicit function checks whether
a given coordinate location is occupied within the shape or not. In contrast to traditional
discrete 3D representations such as triangle meshes or point clouds, this new paradigm
of implicit neural representations has gained significant popularity due to the advantages
such as being continuous, grid-free, and the ability to handle various topologies.

Despite their success, latent-code-conditioned implicit representations have two
key limitations. First, the latent code of the shape captures coarse high-level shape
details (i.e., the global structure) without any explicit local spatial information, hence
it is not possible to learn correlations between the latent code and local 3D structural
details of the shape. As a result, the surface reconstruction from latent-code-conditioned
implicit functions tends to be over-smoothed and they are not good at capturing local
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Fig. 1: Our equivariant graph implicit function infers the implicit field F (·|X) for a
3D shape, given a sparse point cloud observation X. When a transformation Tg (rotation,
translation, or/and scaling) is applied to the observation X, the resulting implicit field
F (·|Tg(X)) is guaranteed to be the same as applying a corresponding transformation
T ∗
g to the inferred implicit field from the untransformed input (middle). The property

of equivariance enables generalization to unseen transformations, under which existing
models such as ConvONet [34] often struggle (right).

surface detail [34,11,25,21,18]. Second, implicit representations are sensitive to various
geometric transformations, in particular to rotations [16]. The performance of the implicit
representations heavily relies on the assumption that shape instances in the same category
are required to be in the same canonical orientation such that shape structures of planes
and edges are in line with the coordinate axes. While data augmentation loosely addresses
this second issue to some degree, a principled approach is to enable the representations
to be inherently aware of common geometric operations such as rotations, translations,
and scaling, which are found commonly in real-world 3D objects.

To address the first challenge of modeling local spatial information, recent meth-
ods [34,11] first discretize 3D space into local 2D or 3D grids and then store implicit
codes locally in the respective grid cells. However, these methods are still sensitive to
transformations as the grid structure is constructed in line with the chosen coordinate
axes. This results in deteriorated performance under transformations as shown in Fig. 1.
In addition, the grid discretization often has to trade fine details of the shape, hence
the quality of shape reconstruction, for better computational efficiency through a low
resolution grid. Deng et al. [17] propose VN-ONet to tackle the second challenge of
pose-sensitivity with a novel vector neuron formulation, which enables the network ar-
chitecture to have a rotation equivariant representation. Nevertheless, similar to implicit
representations, the VN-ONet encodes each shape with a global representation and hence
fails to capture local details. As grid discretization is not robust to transformations, this
solution is not compatible with the grid-based local implicit methods. Thus, integrating
VN-ONet with grid-approach is not a feasible solution.

In this work, our goal is to simultaneously address both challenges of encoding local
details in latent representations and dealing with the sensitivity to geometric transfor-
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mations such as rotations, translations, and scaling. To this end, we propose a novel
equivariant graph-based local implicit function that unifies both of these properties. In
particular, we use graph convolutions to capture local 3D information in a non-Euclidean
manner, with a multi-scale sampling design in the architecture to aggregate global and
local context at different sampling levels. We further integrate equivariant layers to
facilitate generalization to unseen geometric transformations. Unlike the grid-based
methods [34,11] that requires discretization of 3D space into local grids, our graph-based
implicit function uses point features from the input point cloud observation directly with-
out interpolation from grid features. Our graph mechanism allows the model to attend
detailed information from fine areas of the shape surface points, while the regularly-
spanned grid frame may place computations to less important areas. In addition, our
graph structure is not biased towards the canonical axis directions of the given Carte-
sian coordinate frame, hence less sensitive than the grid-local representations [34,11].
Therefore, our graph representation is maximally capable of realizing an equivariant
architecture for 3D shape representation. In summary, our contributions are as follows:
– We propose a novel graph-based implicit representation network that enables effective

encoding of local 3D information in a multi-scale sampling architecture, and thus mod-
eling of high-fidelity local 3D geometric detail. Our model features a non-Euclidean
graph representation that naturally adapts with geometric transformations.

– We incorporate equivariant graph layers in order to facilitate inherent robustness
against geometric transformations. Together with the graph embedding, our equivari-
ant implicit model significantly improves the reconstruction quality from the existing
rotation equivariant implicit method [17].

– We extend our implicit method to achieve a stronger equivariant model that handles
more types of similarity transformations simultaneously with guaranteed perfect
generalization, including rotation, translation and scaling.

2 Related Work

Implicit 3D representations. Neural implicits have been shown to be highly effective
for encoding continuous 3D signals of varying topology [32,30,10]. Its variants have
been used in order to reconstruct shapes from a single image [38,52,53], or use weaker
supervision for raw point clouds [1,2,3] and 2D views [29,31,26].
Local latent implicit embeddings. ConvONet [34] and IF-Net [11] concurrently pro-
pose to learn multi-scale local grid features with convolution layers to improve upon
global latent implicit representations. Other variants of grid methods [25,5] takes no
global cues, hence restricted by requiring additional priors during inference such as
normals [25] or the partial implicit field [5]. The paradigm is extended to adaptive
grids or octrees [44,45,47]. Inspired by non-grid local embeddings in point cloud net-
works [36,48,28,20], we aim for non-grid local implicit methods, which are less explored.
The existing non-grid local implicits [22,18] are limited without multi-scale hierarchi-
cal designs, and thus restricted to single objects. The pose-sensitivity problem is not
addressed in all these local methods. In contrast, we use a hierarchical graph embedding
that effectively encodes multi-scale context, as the first local implicit method to address
the pose-sensitivity problem.
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Pose-sensitivity in implicit functions. As generalization becomes a concern for 3D
vision [42,4,9,8], Davies et al. [16] first point out that the implicit 3D representations are
biased towards canonical orientations. Deng et al. [17] introduce a rotation equivariant
implicit network VN-ONet that generalises to random unseen rotations, but yet with the
restrictions from the global latent. Concurrent to our work, [41,7,54] extend equivariance
of implicit reconstruction to SE(3) group for reconstruction and robotic tasks, while our
method further handles scaling transformation, and recovers significantly better local
details with the graph local embedding design. As grid embeddings are sensitive to
rotation, seeking a compatible local latent embedding is a non-trivial problem.
Rotation equivariance with 3D vector features. Equivariance has drawn attention in
deep learning models with inductive priors of physical symmetries, e.g., the success of
ConvNets are attributed to translation equivariance. Advanced techniques are developed
for equivariance to rotation [14,51,46], scale [43,56] and permutation [55,35]. Recently,
a new paradigm for rotation equivariance uses 3D vectors as neural features [17,40]
with improved effectiveness and efficiency upon methods based on spherical harmon-
ics [51,46,50,49,19]. Shen et al. [40] first introduced pure quaternion features that are
equivalent to 3D vectors. Deng et al. [17] proposed a similar design with improved
nonlinear layers. Satorras et al. [39] proposed to aggregate vector inputs in graph
message passing, but without vector nonlinearities involved. Leveraging on existing
work [40,17,39], we introduce hybrid vector and scalar neural features for better perfor-
mance and efficiency. We also adapt the paradigm for scale equivariance, for the first
time in literature.

3 A Definition of Equivariance for Implicit Representations

While equivariance to common geometric transformations is widely studied for explicit
representations of 2D and 3D data [13,51,46], the property for implicit representations
that encode signals in a function space is more challenging since continuous queries
are involved, yet an important problem for 3D reconstruction. We discuss standard 3D
implicit functions and then define equivariance for the representation.
3D implicit representations. We build our model on neural 3D occupancy field func-
tions [30], widely used as a shared implicit representation for a collection of 3D shapes.
Given an observation X ∈ X of a 3D shape, the conditional implicit representation
of the shape, F (·|X) : R3 → [0, 1], is a 3D scalar field that maps the 3D Euclidean
domain to occupancy probabilities, indicating whether there is a surface point at the
coordinate. In this work, we consider X as a sparse 3D point cloud, such that the in-
formation from the observation is indifferent under an arbitrary global transformation,
as required for equivariance. For each 3D query coordinate p⃗ ∈ R3, the conditioned
implicit representation is in the form of

F (p⃗|X) = Ψ(p⃗, z⃗) = Ψ(p⃗, Φ(X)), (1)

where Φ(X) = z⃗ ∈ RCz⃗ is the latent code in the form of a Cz⃗-dimensional vector from
the observation X, and Φ is the latent feature extractor that encodes the observation
data X. Ψ is the implicit decoder implemented using a multi-layered perceptron with
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ReLU activations. Occupancy probabilities are obtained by the final sigmoid activation
function of the implicit decoder. Following [30,34], the model is trained with binary
cross-entropy loss supervised by ground truth occupancy. The underlying shape surface
is the 2-manifold {p⃗′|F (p⃗′|X) = τ}, where τ ∈ (0, 1) is the surface decision boundary.
Preliminary of equivariance. Consider a set of transformations Tg : X → X on a
vector space X for g ∈ G, where G is an abstract group. Formally, Tg = T (g) where
T is a representation of group G, such that ∀g, g′ ∈ G,T (gg′) = T (g)T (g′). In the
case that G is the 3D rotation group SO(3), Tg instantiates a 3D rotation matrix for a
rotation denoted by g. We say a function Ξ : X → Y is equivariant with regard to group
G if there exists T ∗

g : Y → Y such that for all g ∈ G: T ∗
g ◦ Ξ = Ξ ◦ Tg. We refer to

[13,46] for more detailed background theory. Next, we define equivariance for implicit
representations as follows:

Definition 1 (Equivariant 3D implicit functions). Given a group G and the 3D trans-
formations Tg with g ∈ G, the conditioned implicit function F (·|X) is equivariant with
regard to G, if

F
(
· |Tg(X)

)
= T ∗

g

(
F (·|X)

)
, for all g ∈ G,X ∈ X . (2)

where the transformation T ∗
g applied on the implicit function associated to Tg is applying

the inverse coordinate transform on query coordinates T ∗
g (F (·|X)) ≡ F (T−1

g (·)|X).

Remark 1 Eq. (2) can be reformulated more intuitively as:

F (·|X) = F
(
Tg(·)|Tg(X)

)
, for all g ∈ G,X ∈ X . (3)

Eq. (3) indicates that the equivariance is satisfied if for any observation X and query p⃗,
the implicit output of F (p⃗|X) is locally invariant to any Tg applied jointly to X and p⃗ in
the implicit model.

4 Transformation-robust Graph Local Implicit Representations

Our goal is to design an equivariant implicit function model using local feature embed-
dings to capture fine details of the 3D geometry. However, existing grid-based local
implicit functions are sensitive to geometric transformations such as rotations, thus not
suitable for equivariant implicit representations. To address this limitation, we propose a
graph-based local embedding which is robust to geometric transformations.
Background: grid local implicit representations. To overcome the limitation of a
global latent feature, recent methods, such as ConvONet [34] and IF-Net [11], propose
to learn spatially-varying latent features zp = Φgrid(p;X). The main idea is to partition
the 3D space into a grid and compute latent codes locally. Specifically, these methods
formulate the local latent implicit function on the grid as Fgrid(p|X) = Ψ(p, zp) =
Ψ(p, Φgrid(p;X)), where the grid local latent extractor Φgrid is further decomposed as
Φgrid(p;X) = ψgrid (p, ϕgrid(X)). The function ϕgrid is the grid feature encoder that
learns to generate a 2D or 3D grid-based feature tensor M from the entirety of point
observations X. For each grid location, point features are aggregated for all xi ∈ X in
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Fig. 2: Graph (left) vs. grid (right) local implicit feature embeddings under rotation.
Φgraph extracts k-NN graphs and applies graph convolutions; Φgrid partitions points into
regular grids and applies regular convolutions. Left: given a point cloud observation
X (navy) (i), our method aggregates the local latent feature at any query coordinate p
(orange) from a local k-NN graph connecting its neighbours in X (ii). Moreover, when a
transformation Tg , e.g. rotation, is applied to the shape, (iv) the constructed local graph
is in the same structure as (v) applying Tg to the graph from untransformed data. Right:
in contrast, (vi) visualizes discretized grid features. (vii) The off-the-grid query location
p interpolates the neighboring on-grid features. However, (viii) with Tg applied to the
raw observation, often (ix) the sub-grid point patterns for the local features are different
from (x) applying Tg to the untransformed local grids. This makes the grid local implicit
models sensitive to transformations such as rotation.

the corresponding bin. Convolutional layers are applied to the grid-based M to capture
multi-scale information and maintain translation equivariance. Given the local 3D feature
tensor M, the local latent aggregator ψgrid computes local latent feature zp on any off-
the-grid query coordinate p using a simple trilinear interpolation. We refer to [25,5]
for other variants of grid-based representations using purely local information without
global cues, while restricted by requiring additional priors during inference such as
the normals. Overall, grid partitioning is not robust to general transformations such as
rotations, especially when the sub-grid structure is considered for the resolution-free
implicit reconstruction. Fig. 2 (right) shows an illustration of this limitation, which we
will address in our method.

4.1 Graph-structured local implicit feature embeddings

We propose to use graphs as a non-regular representation, such that our local latent
feature function is robust to these transformations and free from feature grid resolutions.
The graph-local implicit function extends the standard form of Eq. (1) to

Fgraph(p|X) = Ψ(p, zp) = Ψ(p, Φgraph(p;X)) = Ψ(p, ψ (p, ϕ(X)) . (4)

Φgraph is a deep network that extracts local latent features zp on the graph, composed
of two sub-networks ϕ and ψ. The point feature encoder ϕ maps the point set X =
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Fig. 3: Multi-scale design, with enlarged receptive fields of local k-NN graphs for the
graph point encoder ϕ (orange) and the graph local latent aggregator ψ (violet).

{xi} to the associated features {hi}, and is invariant to the sampled query location p.
The graph local latent feature aggregator ψ propagates the input point feature to the
query coordinate p. Unlike grid-based methods, we directly aggregate local information
from the point cloud feature {(xi,hi)} without an intermediate grid feature tensor. In
particular, we construct a local k-nearest neighbor (k-NN) graph (V, E) for every query
point p, where the vertices V = X ∪ {p} include the point set elements and the query
coordinate. The edges E = {(p,xi)} are between the query point p and its k-NN points
from the observation point set xi′ ∈ Nk(p,X), with Nk(p,X) denoting the set of the
k-NN points of p from X. Last, with graph convolutions, we aggregate into the local
feature vector zp the point features of the neighbors of p. We adopt a simple spatial
graph convolution design in the style of Message Passing Neural Network (MPNN) [23],
which is widely used for 3D shape analysis [48,24]. For each neighboring point xi′ from
the query p, messages are passed through a function η as a shared two-layer ReLU-MLP,
where the inputs are the point features hi′ and the query coordinate p as node feature as
well as the displacement vector xi′ - p as the edge feature, followed by a permutation-
invariant aggregation AGGRE over all neighboring nodes, e.g., max- or mean-pooling:

zp = AGGRE
i′

η(p,hi′ ,xi′ − p). (5)

For each neighboring point as a graph node, the edge function η take as inputs, the query
coordinate p, the node point feature hi′ , and the relative position xi′ − p.

As all the graph connections are relative between vertices, the local latent feature
aggregation is robust to transformations like rotations, as illustrated in Fig. 2 (left).

4.2 Learning multi-scale local graph latent features

To capture the context of the 3D geometry at multiple scales, both ConvONet [34] and
IF-Net [11] rely on a convolutional U-Net [37], with progressively downsampled and
then upsampled feature grid resolutions to share neighboring information at different
scales. Our graph model enables learning at multiple scales by farthest point sampling
(FPS). That is, we downsample the point set X to X(l) at sampling levels l = 1, . . . , L
with a progressively smaller cardinality |X(l)| < |X(l−1)|, where X(0) = X is the
original set.

Moreover, we use a graph encoder for the point encoder ϕ, instead of PointNet [35].
This way, without involving regular grid convolutions, we can still model local features
and facilitate a translation-equivariant encoder, which is beneficial in many scenarios,
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especially for learning scene-level implicit surfaces [34]. Next, we sketch the multi-scale
graph point encoder and latent feature aggregator, with Fig. 3 as a conceptual illustration.

The graph point encoder ϕ learns point features {h(l)
i } for the corresponding points

xi ∈ X(l) at each sampling level l = 0 . . . , L. The encoder starts from the initial
sampling level l = 0 where the input features are the raw coordinates. At each sampling
level, a graph convolution is applied to each point to aggregate message from its local
k-nearest neighbor point features, followed by an FPS operation to the downsampled
level l + 1. The graph convolution is similar to that in Eq. (5), with the point features
from both sides of the edge and the relative position as inputs. The graph convolutions
and FPS downsampling are applied until the coarsest sampling level l = L. Then the
point features are sequentially upsampled back from l = L to l = L− 1, until l = 0. At
each sampling level l, the upsampling layer is simply one linear layer followed by ReLU
activation. For each point, the input of the upsampling layer is the nearest point feature
from the last sampling level l + 1, and the skip-connected feature of the same point at
the same sampling level from the downsampling stage. Thus far, we obtain multi-scale
point features {(xi,h

(l)
i )} for xi ∈ X(l) at sampling levels l = 0, . . . , L, as the output

from the graph point encoder ϕ.
For the graph latent feature aggregator ψ, at each query coordinate p, we use graph

convolutions to aggregate the k-neighboring features {(xi,h
(l)
i )} at different sampling

levels l, as described in Sec 4.1. The aggregated features from all sampling levels l are
concatenated to yield the local latent vector zp as output. The detailed formulations of ϕ
and ψ are provided in the supplementary material.

5 Equivariant Graph Implicit Functions

The local graph structure of the proposed implicit function, with X ∪ {p} as the set of
vertices, is in line with the requirement of equivariance in Sec. 3 and Eq. (3). As a result,
the local graph implicit embedding can be used for an equivariant model to achieve
theoretically guaranteed generalization to unseen transformations. To do this, we further
require all the graph layers in the latent extractor Φgraph to be equivariant in order to
obtain equivariant local latent feature. We present the equivariant layers for 3D rotation
group G = SO(3), a difficult case for implicit functions [16].

To build the equivariant model from equivariant layers, we additionally remove the
query coordinate input p to ensure the implicit decoder Ψ spatially invariant in Eq. (4),
as the local spatial information is already included in the latent zp. See Appendix A.1 for
details. We also extend the method to other similarity transformations, such as translation
and scaling. See Appendix A.2.

5.1 Hybrid feature equivariant layers

Our equivariant layers for the graph convolution operations is inspired by recent methods
[17,40] that lift from a regular neuron feature h ∈ R to a vector v ∈ R3 to encode
rotation, and the list of 3D vector features V = [v1,v2, . . . ,vCv ]

⊤ ∈ RCv×3 that
substitutes the regular features h ∈ RCh . However, using only vector features in the
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Fig. 4: Hybrid feature equivariant layers. Visualization of how vector and scalar
features share information in linear and nonlinear layers. Vector features go through an
invariant function Ω that is added to the scalar part. Scalar features are transformed with
normalizing ·/∥ · ∥ to scale the vector feature channels.

network is non-optimal for both effectiveness and efficiency, with highly regularized
linear layers and computation-demanding nonlinearity projections.

To this end, we extend the method and propose hybrid features {s,V} to replace
the regular feature h, where vector features V encode rotation equivariance, and scalar
features s ∈ RCs are rotation-invariant. In practice, hybrid features show improved
performance and computation efficiency by transferring some learning responsibility to
the scalar features through more powerful and efficient standard neural layers.
Linear layers. For input hybrid hidden feature {s,V} with s ∈ RCs , and V =
[v1,v2, . . . ,vCv ]

⊤ ∈ RCv×3, we define a set of weight matrices, Ws ∈ RC′
s×Cs ,

Wv ∈ RC′
v×Cv , Wsv ∈ RC′

s×Cs , and Wvs ∈ RC′
s×Cv for the linear transformation,

with information shared between scalar and vector features in the inputs. The resulting
output features {s′,V′} become:

s′ = Wss+Wvs Ω(V) (6)
V′ = WvV ⊙ (Wsv s / ∥Wsv s∥) (7)

where ⊙ is channel-wise multiplication between WvV ∈ RC′
s×3 and Wsvh ∈ RC′

v×1,
and the normalized transformed scalar feature Wsv s / ∥Wsv s∥ learns to scale the
output vectors in each channel; Ω(·) is the invariance function that maps the rotation
equivariant vector feature V ∈ RCv×3 to the rotation-invariant scalar feature Ω(V) ∈
RCv , to be added on the output scalar feature. The design of the invariance function Ω(·)
is introduced later in Eq. (9).
Nonlinearities. Nonlinearities apply separately to scalar and vector features. For scalar
features, it is simply a ReLU(·). For vector features, the nonlinearity v-ReLU(·) adopts
the design from Vector Neurons [17]: the vector feature vc at each channel c takes
an inner-product with a learnt direction q = [WqV]⊤ ∈ R3 from a linear layer
Wq ∈ R1×Cv . If the inner-product is negative, vc is projected to the plane perpendicular
to q.

[v-ReLU(V)]c =

vc if
〈
vc,

q
∥q∥

〉
≥ 0,

vc −
〈
vc,

q
∥q∥

〉
q

∥q∥ . otherwise.
(8)

Invariance layer. The invariance function Ω(·) maps the rotation equivariant vector
feature V ∈ RCv×3 to a rotation-invariant scalar feature Ω(V) ∈ RCv with the same
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Table 1: ShapeNet implicit reconstruction from sparse noisy point clouds. The grid
resolutions are marked for ConvONet and IF-Net.

SO(3) equiv. Mean IoU ↑ Chamfer-ℓ1 ↓ Normal consist. ↑

ONet × 0.736 0.098 0.878
ConvONet-2D (3×642) × 0.884 0.044 0.938

ConvONet-3D (323) × 0.870 0.048 0.937
IF-Net (1283) × 0.887 0.042 0.941

GraphONet (ours) × 0.904 0.038 0.946

VN-ONet ✓ 0.694 0.125 0.866
E-GraphONet-SO(3) (ours) ✓ 0.890 0.041 0.936

Input GT ONet ConvONet-2D ConvONet-3D IF-Net GraphONet
(ours)

VN-ONet E-GraphONet
(ours)

Non-equivariant models Equivariant models

Fig. 5: ShapeNet object reconstruction in canonical space. GraphONet is among
the best performing non-equivariant implicit representation methods; E-GraphONet
significantly improves on the existing equivariant method VN-ONet [17].

channel dimension Cv. At each layer c = 1, . . . , Cv, [Ω(V)]c ∈ R takes the inner
product of vc with the channel-averaged direction:

[Ω(V)]c =

〈
vc,

v

∥v∥

〉
, (9)

where v = 1
Cv

∑Cv

c′=1 vc′ is the channel-averaged vector feature. One can verify that
applying any rotation on the vector feature does not change the inner product. Our Ω
adopts from [17] with modification. Ours is parameter-free using averaged direction,
while [17] learns this vector.

The invariance function is applied in each linear layer in Eq. (7) to share the informa-
tion between vector and scalar parts of the feature. In addition, at the end of equivariant
graph feature network Φgraph, Ω(V) is concatenated with the scalar feature as the final
invariant local latent feature zp = Ω(V)∥s , as to be locally invariant with transformed
p and X in line with Eq. (3).

6 Experiments

We experiment on implicit surface reconstruction from sparse and noisy point observa-
tions. In addition, we evaluate the implicit reconstruction performance under random
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Table 2: Implicit surface reconstruction with random rotation, IoU↑. The left table
evaluates non-equivariant methods, and the right one compares the best performing
model with equivariant methods. I denotes canonical pose and SO(3) random rotation. I
/ SO(3) denotes training with canonical pose and test with random rotation, and so on. ∗:

models not re-trained with augmentation due to guaranteed equivariance.

training / test I / I I / SO(3) SO(3) / SO(3)

ONet 0.742 0.271 [-0.471] 0.592 [-0.150]

ConvONet-2D 0.884 0.568 [-0.316] 0.791 [-0.093]

ConvONet-3D 0.870 0.761 [-0.109] 0.838 [-0.032]

GraphONet (ours) 0.904 0.846 [-0.058] 0.887 [-0.017]

training / test equiv. I / I I / SO(3) SO(3) / SO(3)

GraphONet (ours) × 0.904 0.846 [-0.058] 0.887 [-0.017]

VN-ONet SO(3) 0.694 0.694 [-0.000] 0.694∗ [-0.000]

E-GraphONet (ours) SO(3) 0.890 0.890 [-0.000] 0.890∗ [-0.000]

transformations of rotation, translation and scaling. Our method is referred to as Graph
Occupancy networks, or GraphONet, while E-GraphONet is the equivariance model
with 3 variants: SO(3), SE(3) and similarity transformations (Sim.).

Implementation details. We implement our method using PyTorch [33]. The number of
neighbours in k-NN graph is set as 20. For the multi-scale graph implicit encoder, we
take L = 2, i.e., the point set is downsampled twice with farthest point sampling (FPS) to
20% and 5% of the original cardinality respectively. The permutation invariant function
AGGRE adopts mean-pooling for vector features and max-pooling for scalar features.
We use an Adam optimizer [27] with γ = 10−3, β1 = 0.9 and β2 = 0.999. Main
experiments are conducted on the ShapeNet [6] dataset with human designed objects,
where the train/val/test splits follow prior work [12,34] with 13 categories. Following
[34], we sample 3000 surface points per shape and apply Gaussian noise with 0.005
standard deviation. More details are provided in the Appendix. Code is available at
https://github.com/yunlu-chen/equivariant-graph-implicit.

6.1 Canonical-posed object reconstruction

We experiment on ShapeNet object reconstruction following the setups in [34]. For
quantitative evaluation in Table 1, we evaluate the IoU, Chamfer-ℓ1 distance and normal
consistency, following [30,34]. The qualitative results are shown in Fig. 5. Our Gra-
phONet outperforms the state-of-the-arts methods ConvONet [34] and IF-Net [11], as our
graph-based method aggregates local feature free of spatial grid resolution and captures
better local details. IF-Net is better than ConvONet but at large memory cost per batch
with 1283 resolution grid feature. For rotation equivariant models, our E-GraphONet
significantly outperforms VN-ONet [17], benefiting from the graph local features.

6.2 Evaluation under geometric transformations

Rotation. First, we investigate how implicit models perform under random rotations,
which is challenging for neural implicits [16]. In Table 2 left, GraphONet shows the
smallest performance drop among all non-equivariant methods under rotations, either
with (SO(3) / SO(3)) or without augmentation (I / SO(3)) during training, since the graph
structure is more robust to rotations. ConvONet [34]-2D is more sensitive than the 3D

https://github.com/yunlu-chen/equivariant-graph-implicit
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Table 3: Implicit surface reconstruction performance under various types of
seen/unseen transformations, mIoU↑.

Transformation(s)
equiv.

- translation scale rot. & transl. rot. & scale transl. & scale all
Training augmentation - × ✓ × ✓ × ✓ × ✓ × ✓ × ✓

ONet × 0.738 0.221 0.716 0.423 0.685 0.154 0.585 0.235 0.591 0.202 0.713 0.121 0.573
ConvONet-2D (3×1282) ×‡ 0.882 0.791 0.878 0.812 0.850 0.532 0.771 0.542 0.789 0.723 0.838 0.481 0.728

ConvONet-3D (643) ×‡ 0.861 0.849 0.856 0.797 0.837 0.759 0.836 0.742 0.832 0.771 0.835 0.721 0.803
GraphONet (ours) ×‡ 0.901 0.884 0.898 0.857 0.893 0.837 0.881 0.798 0.880 0.852 0.888 0.798 0.874

VN-ONet SO(3) 0.682 0.354 0.667 0.516 0.662 0.357 0.658 0.511 0.666 0.360 0.638 0.309 0.615
E-GraphONet (ours) SO(3)‡ 0.887 0.823 0.876 0.824 0.880 0.825 0.877 0.825 0.882 0.726 0.872 0.729 0.870
E-GraphONet (ours) SE(3) 0.884 0.884 0.884∗ 0.840 0.880 0.884 0.884∗ 0.838 0.880 0.841 0.878 0.840 0.878

E-GraphONet (ours) Sim.† 0.882 0.882 0.882∗ 0.882 0.882∗ 0.882 0.882∗ 0.882 0.882∗ 0.882 0.882∗ 0.882 0.882∗

†Similarity transformation group. ‡ The (graph) convolution subnetwork is translation equivariant. ∗with no augmentation due to guaranteed equivariance.

w/o
transformations

Rotation

Translation

Scale

ONet ConvONet-2D ConvONet-3D VN-ONet 
SO(3) 

GraphONet 
(ours) 

E-GraphONet 
SO(3) (ours) 

E-GraphONet 
SE(3) (ours) 

E-GraphONet 
Sim. (ours) 

Fig. 6: Implicit surface reconstruction under unseen transforms. Visualizing back-
transformed shapes. Shapes are scaled by a factor of 0.25, and translation is from the unit
cube center to the corner. E-GraphONet-Sim is robust to all similarity transformations.
See the appendix video for reconstructions under different poses and scales.

version, as 3D rotation would lead to highly distinct 2D projections. In Table 2 right,
E-GraphONet, equipped with equivariant layers, achieves better performance under
random rotations, even when the non-equivariant methods are trained with augmentation.
It also outperforms the previous equivariant method VN-ONet [17] by a large margin.

Scale, translation and combinations. We evaluate how implicit methods perform under
various similarity transformations besides SO(3) rotation, including scale, translation and
combinations. We apply random scales and rotations in a bounded unit cube [−0.5, 0.5]3,
as assumed by grid methods, and set the canonical scale to be half of the cube. ConvONet
resolutions are doubled to keep the effective resolution. Random scaling and translation
are added under the constraint of the unit bound, with the minimum scaling factor of 0.2.

From the results in Table 3, GraphONet is more robust to transformations than other
non-equivariant models. For equivariant models, VN-ONet and the SO(3) E-GraphONet
models perform poorly on other types of transformations, as they are optimized towards
the rotation around origin only. Similarly, the SE(3) E-GraphONet does not generalize to
scaling. Our model with full equivariance performs well on all similarity transformations
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Table 4: Parameter- and data-efficiency.
Evaluated on the full test set with 5 runs of
130 randomly sampled training examples.

#param. IoU↑

ConvONet-2D 2.0× 106 0.727 ±0.009
ConvONet-3D 1.1× 106 0.722 ±0.008

GraphONet (ours) 1.9× 105 0.867 ±0.004
E-GraphONet (ours) 6.5× 104 0.873 ±0.002
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Fig. 7: Ablation on hybrid feature chan-
nels. Mixed vectors and scalars are more
effective and efficient than pure vectors.

with numerically the same performance. Fig 6 shows qualitative examples, where our
E-GraphONet-Sim handles all types of unseen similarity transformations.

6.3 Analysis

We show some ablation experiments while more results are provided in the Appendix.
Learning from very few training examples. We show that our graph method is both
parameter- and data-efficient, and the transform-robust modeling inherently benefits gen-
eralization. As reported in Table 4, we use less than 10% of the parameters of ConvONet
as the graph conv kernel shares parameters for all directions. We evaluate the test set per-
formance when training on only 130 examples - 10 per class - instead of the full training
set size of 30661. While ConvONets fail to achieve good performance, GraphONets does
not drop by far from the many-shot results in Table 1. The E-GraphONet demonstrates
even better performance, with more parameter-sharing from the equivariance modeling,
indicating better power of generalization.
Ablation on vector and scalar feature channels. We validate our design of hybrid
features by experimenting different ratio of vector and scalar channels. We constrain in
total 48 effective channels, with one vector channel counted as three scalars. In Fig. 7,
using both vectors and scalars with a close-to-equal ratio of effective channels obtains
higher performance with less memory cost than using pure vectors, i.e., in the Vector
Neurons [17]. This indicates the expressive power of the scalar neuron functions. We
provide additional results for non-graph-based equivariant models in the Appendix.

6.4 Scene-level reconstructions
Table 5: Indoor scene reconstructions.

Dataset Synthetic room ScanNet
IoU↑ Chamfer↓ Normal↑ Chamfer↓

ONet 0.514 0.135 0.856 0.546
ConvONet-2D (3×1282) 0.802 0.038 0.934 0.162

ConvONet-3D (643) 0.847 0.035 0.943 0.067
GraphONet (ours) 0.883 0.032 0.944 0.061

E-GraphONet (ours) 0.851 0.035 0.934 0.069

In addition to the ability of handling object
shape modeling under transformations, our
graph implicit functions also scale to scene-
level reconstruction. We experiment on two
datasets: (i) Synthetic Rooms [34], a dataset
provided by [34], with rooms constructed with
walls, floors, and ShapeNet objects from five
classes: chair, sofa, lamp, cabinet and table.
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ConvONet-3D ConvONet-2D

GraphONet (ours) E-GraphONet SE(3) (ours)

GT ONetInput

GT

ConvONet-3D

Input

GraphONet (ours)

Fig. 8: Indoor scene reconstructions on Synthetic rooms (left) and ScanNet (right).
Our GraphONet produces shaper edges and better finer details.

(ii) ScanNet [15], a dataset of RGB-D scans of real-world rooms for testing synthetic-to-
real transfer performance.

We train and evaluate our model on Synthetic room dataset [34] using 10,000 sampled
points as input. The quantitative results are shown in Table 5 and qualitative results in
Fig. 8 (left). Our GraphONet performs better than ConvONets [34] at recovering detailed
structures. We evaluate the SE(3) variant of our equivariance model, and it performs
generally well, but less smooth at flat regions. In addition, we evaluate the model transfer
ability of our method on ScanNet [15] with the model trained on synthetic data, for
which we report the Chamfer measure in Table 5. Our GraphONet ourperforms other
methods. Fig. 8 (right) shows a qualitative example of our reconstructions.

7 Conclusion

In this paper, we introduce graph implicit functions, which learn local latent features from
k-NN graph on sparse point set observations, enabling reconstruction of 3D shapes and
scenes in fine detail. By nature of graphs and in contrast to regular grid representations,
the proposed graph representations are robust to geometric transformations. What is
more, we extend the proposed graph implicit functions with hybrid feature equivariant
layers, thus guarantee theoretical equivariance under various similarity transformations,
including rotations, translations and scales, and obtain models that generalize to arbitrary
and unseen transformations.
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