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Abstract. Rights provisioned within data protection regulations, per-
mit patients to request that knowledge about their information be elim-
inated by data holders. With the advent of AI learned on data, one can
imagine that such rights can extent to requests for forgetting knowledge
of patient’s data within AI models. However, forgetting patients’ imaging
data from AI models, is still an under-explored problem. In this paper,
we study the influence of patient data on model performance and for-
mulate two hypotheses for a patient’s data: either they are common and
similar to other patients or form edge cases, i.e. unique and rare cases.
We show that it is not possible to easily forget patient data. We pro-
pose a targeted forgetting approach to perform patient-wise forgetting.
Extensive experiments on the benchmark Automated Cardiac Diagnosis
Challenge dataset showcase the improved performance of the proposed
targeted forgetting approach as opposed to a state-of-the-art method.

Keywords: Privacy · Patient-wise Forgetting · Scrubbing · Learning

1 Introduction

Apart from solely improving algorithm performance, developing trusted deep
learning algorithms that respect data privacy has now become of crucial impor-
tance [1,15]. Deep models can memorise a user’s sensitive information [2,10,11].
Several attack types [23] including simple reverse engineering [7] can reveal pri-
vate information of users. Particularly for healthcare, model inversion attacks
can even recover a patient’s medical images [24]. It is then without surprise
why a patient may require that private information is not only deleted from
databases but that any such information is forgotten by deep models trained on
such databases.

A naive solution to forget a patient’s data is to re-train the model without
them. However, re-training is extremely time-consuming and sometimes impos-
sible [21]. For example, in a federated learning scheme [17], the data are not
centrally aggregated but retained in servers (e.g. distributed in different hospi-
tals) which may not be available anymore to participate in re-training.

As more advanced solutions, machine unlearning/forgetting approaches aim
to remove private information of concerning data without re-training the model.
* Contributed equally



2 R. Su et al.

Fig. 1. (a) Visualisation of the scrubbing and targeted forgetting methods. Dr and Df

are the retaining data and the forgetting data. (b) Illustration of the two hypothe-
ses. Blue contour delineates a big sub-population of similar samples within a common
cluster ; red contours denote several small sub-populations of distinct samples in edge
cases. X and X are examples of samples to be forgotten.

This involves post-processing to the trained model to make it act like a re-trained
one that has never seen the concerning data. Several studies have previously
explored forgetting/unlearning data and made remarkable progress [5, 8, 9, 18,
19]. When the concept of machine unlearning/forgetting was first developed
in [5], they discussed forgetting in statistical query learning [12]. Ginart et al. [8]
specifically deal with data deletion in k-means clustering with excellent deleting
efficiency. Another approach is to rely on variational inference and Bayesian
models [18]. Recently, Sekhari et al. [19] propose a data deleting algorithm by
expanding the forgetting limit whilst reserving the model’s generalization ability.
Golatkar et al. [9] address machine unlearning on deep networks to forget a subset
of training data with their proposed scrubbing procedure (shown in Fig. 1(a)),
which adds noise to model weights that are uninformative to the remaining
data (training data excluding the concerning data) to achieve a weaker form of
differential privacy [6].

Different from previous work, we specifically consider the scenario of patient-
wise forgetting, where instead of forgetting a selected random cohort of data,
the data to be forgotten originate from a patient. We hypothesise (and show
experimentally) that in a medical dataset, a patient’s data can either be similar
to other data (and form clusters) or form edge cases as we depict in Fig. 1(b).
These hypotheses are aligned with recent studies on long-tail learning [4, 16],
where different sub-populations within a class can exist with some being in the
so-called long tail.1 Subsequently, we will refer to these cases as common cluster
and edge case hypotheses.

We first study the patient-wise forgetting performance with simple transla-
tion of an existing machine unlearning method developed in [9]. For patients
1 There is also a connection between edge cases and active learning [20], where one

aims to actively label diverse data to bring more information to the model.
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under different hypotheses, forgetting and generalisation performance obtained
after scrubbing [9] vary as detailed in Section 3. In particular, the scrubbing
method removes information not highly related to the remaining data to main-
tain good generalisation after forgetting, which is a weaker form of differential
privacy [6]. When forgetting a patient under common cluster hypothesis, ad-
equate performance can be achieved with the scrubbing method by carefully
tuning the level of noise added to the model weights. When forgetting an edge-
case patient, the scrubbing method does not remove specifically the edge-case
patient’s information but noise will be introduced to model weights correspond-
ing to most of the edge cases in the remaining dataset. Hence, the overall model
performance will be negatively affected. In fact, we observed in our experiment
that data of a large portion of patients are edge cases while for computer vision
datasets, the selected random cohort of data to be forgotten usually falls in the
common cluster hypothesis. This limits the application of the scrubbing method
and possibly other machine unlearning approaches that designed specifically for
vision datasets to patient-wise forgetting.

To alleviate the limitation, we propose targeted forgetting, which only adds
weighted noise to weights highly informative to a forgetting patient. In partic-
ular, we follow [9] to measure the informativeness of model weights with Fisher
Information Matrix (FIM), which determines the strength of noise to be added to
different model weights. With the proposed targeted forgetting, we can precisely
forget edge case data and maintain good model generalisation performance. For
patient data fall under the common cluster hypothesis, the algorithm can forget
their information with the trade-off of the model performance on the whole clus-
ter. This implies that for some patients within the common cluster hypothesis,
it is not easy to forget them without negatively affecting the model.
Contributions:

1. We introduce the problem of patient-wise forgetting and formulate two hy-
potheses for patient-wise data.

2. We show that machine unlearning methods specifically designed for vision
datasets such as [9] have poor performance in patient-wise forgetting.

3. We propose a new targeted forgetting method and perform extensive exper-
iments on a medical benchmark dataset to showcase improved patient-wise
forgetting performance.

Our work we hope will inspire future research to consider how different data
affect forgetting methods especially in a patient-wise forgetting setting.

2 Method

Given a training dataset D, a forgetting subset Df ⊂ D contains the images
to be removed from a model A(D), which is trained on D using any stochastic
learning algorithm A(·). The retaining dataset is the complement Dr=D \ Df ,
thus Dr ∩ Df = ∅. Test data is denoted as Dtest. For patient-wise forgetting,
Df is all the images of one patient. Let w be the weights of a model. Let S(w)



4 R. Su et al.

denote the operations applied to model weights to forget Df in the model, and
A(Dr) be the golden standard model.

2.1 The scrubbing method

Assuming that A(D) and Dr are accessible, Golatkar et al. [9] propose a robust
scrubbing procedure modifying model A(D), to brings it closer to a golden stan-
dard model A(Dr). They use FIM to approximate the hessian of the loss on Dr,
where higher values in FIM denote higher correlation between corresponding
model weights and Dr. With the FIM, they introduce different noise strength
to model weights to remove information not highly informative to Dr, and thus
forget information corresponding to Df . The scrubbing function is defined as:

S(w) = w +
(
λσ2

h

) 1
4 FDr (w)−1/4, (1)

where FDr
(w) denotes the FIM computed for w on Dr. Scrubbing is controlled

by two hyperparameters: λ decides the scale of noise introduced to w therefore it
controls the model accuracy on Df ; σh is a normal distributed error term which
simulates the error of the stochastic algorithm, ensuring a continuous gradient
flow after the scrubbing procedure. Practically during experiments, the product
of the two hyperparameters is tuned as a whole.

The Fisher Information Matrix F of a distribution Px,y(w) w.r.t. w defined
in [9] is:

F = Ex∼D,y∼p(y|x)
[
∇w log pw(y | x)∇w log pw(y | x)T

]
(2)

To save computational memory, only the diagonal values for FIM are com-
puted and stored. The trace of FIM is calculated by taking the expectation of the
outer product of the gradient of a deep learning model. In a medical dataset, the
FIM (FDr (w)) is derived by summing up the normalised FIM of each patient’s
data in the retaining set Dr and take the expectation at patient-level. Therefore,
weights highly related to the cluster’s features show high values in FIM because
several cluster patients within Dr are correlated to these weights. Whereas for
edge cases, no other patients are correlated with the same weights as of these
edge cases; thus, the aggregated values in FIM for weights corresponding to edge
cases are relatively small.

A value within FDr
(w) reflects to what extent the change to its corresponding

weights w would influence the model’s classification process on this set Dr.
Hence, if a model weight is correlated with multiple data and thus considered to
be important in classifying these data, its corresponding value in FIM would be
relatively high, and vice versa. This also explains that weights correlated to data
under common cluster hypothesis hold larger value than edge case hypothesis.
Therefore, when scrubbing an edge case from a model, weights correlated to other
edge cases even within Dr are also less informative to the remaining data thus
will be scrubbed as well, making the model performance be negatively affected.
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Fig. 2. Example images of ACDC dataset. DCM: dilated cardiomyopathy. HCM: hy-
pertrophic cardiomyopathy. MINF: myocardial infarction. NOR: normal subjects. RV:
abnormal right ventricle.

2.2 The targeted forgetting method

Based on the idea of scrubbing model weights, and the connection between the
hessian of a loss on a set of data of a model and the extent to which the weights
are informative about these data, we develop the targeted forgetting procedure.
We assume access to the forgetting data Df instead of Dr. We believe that even
in a real patient-wise forgetting scenario, temporary access to patient data is
permissible until forgetting is achieved.

We compute FIM for w on Df instead of Dr to approximate the noise added
to model weights. Instead of keeping the most informative weights corresponding
to Dr as in [9], our method precisely introduce noise to model weights highly
informative about Df (see Fig. 1(a)). Our proposed targeted forgetting is defined
as:

ST(w) = w +
(
λTσ

2
hT

) 1
4 FDf

(w)1/4, (3)

where λT and σhT
are analogous parameters to λ and σh defined in Eq 1.

Performance on the two hypotheses Common cluster hypothesis: Targeted
forgetting will add noise to the most informative model weights corresponding
to Df so it will also reduce model performance on the corresponding cluster in
Dr and Dtest. Edge case hypothesis: Targeted forgetting will precisely remove
information of an edge case and maintain good model performance. Results and
discussion are detailed in Section 3.

3 Experiments

We first explore why scrubbing [9] works well on computer vision datasets but
shows poorer performance on patient-wise forgetting. We conduct an experi-
ment to demonstrate the intrinsic dataset biases of CIFAR-10 [14] and ACDC
[3]. Then, we compare the forgetting and model performance after forgetting
achieved using the scrubbing and our targeted forgetting methods.
Datasets: CIFAR-10 has 60,000 images (size 32 × 32) of 10-class objects. The
Automated Cardiac Diagnosis Challenge (ACDC) dataset contains 4D cardiac
data from 100 patients with four pathologies classes and a normal group. We
split the 100 patients into training and testing subsets. Overall, by preprocess the
patient data into 224× 224 2D images, there are 14,724 images from 90 patients
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Fig. 3. Histograms of re-training experiments. The y-axis refers to the total number of
patients/sets whose golden standard lies within an interval(e.g. [95,100]) of x-axis.

form D, and 1,464 images from 10 patients form Dtest. Patients in both sets
are equally distributed across the five classes. Example images from the ACDC
dataset are shown in Fig. 2. When conducting experiments under the patient-
wise forgetting scenario, we only select one patient to be forgotten devising the
forgetting set composed of all the images of the same patient.
Implementation details: For CIFAR-10, we follow the implementation steps
in [9]. When training the ACDC classifier, the model has a VGG-like architecture
as in [22]. We use Cross Entropy as the loss function and use Adam optimizer
[13] with β1 = 0.5, β2 = 0.999. During training we use data augmentation
including random rotation, Gaussian blur, horizontal and vertical flip. We train
all classifiers with a learning rate of 0.0001 for 13 epochs. The original model
trained with all 90 patients has 0.00 error on Dr and Df , and 0.19 error on Dtest.

3.1 The hardness of patient-wise forgetting

Here we compare between CIFAR-10 and ACDC to show that some patient data
are hard to learn and forget. For 90 patients in ACDC, we remove one patient’s
data and re-train a model on the remaining 89 to be the golden standard model,
A(Dr). We then measure the error of the deleted patient on A(Dr). We repeat
this for all 90 patients. For CIFAR-10, we select 10 non-overlapping sets from
its training set, each with 100 images from the same class, to be the deleting
candidates and repeat the re-train experiments. Data are hard to generalize by
its golden model show high error on A(Dr) and thus should be hard to forget.
Results and discussion: Fig. 3 collects the findings of this experiment as
histograms and shows the differences between the two datasets. Overall, for
ACDC, the 90 individually measured results of classification error of a Df on its
corresponding golden model A(Dr) vary from 0% to 100%, whereas in CIFAR-
10, the 10 experimental results only vary from 10% to 25%. High golden model
error on a Df means that the model is unable to generalise to this patient’s data;
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Table 1. Forgetting results for four patients. We report Error = 1−Accuracy on the for-
getting (Df ) and test (Dtest) sets respectively. Scrubbing Method refers to the method
of [9] whereas Targeted Forgetting refers to the method in Section 2.2. Red and blue
denote the golden standard of forgetting performance for each row respectively, with
performance being better when it is closer to the standard. With respect to error on
Df High noise level refers to the noise strength when a method reaches 1.00 error;
Medium: 0.85±0.05 error; and Low: 0.14±0.05 error. The confidence bar is obtained
over three experiments.

Patient
ID Error on Golden

Standard

Noise level
Low Medium High

Scrubbing Targeted
Forgetting Scrubbing Targeted

Forgetting Scrubbing Targeted
Forgetting

94
(Edge)

Df

Dtest

1.000±0.000
0.237±0.002

0.154±0.005
0.671±0.012

0.174±0.020
0.223±0.011

0.859±0.010
0.739±0.007

0.851±0.018
0.291±0.005

1.000±0.000
0.746±0.008

1.000±0.000
0.316±0.002

5
(Edge)

Df

Dtest

0.809±0.009
0.253±0.026

0.127±0.022
0.394±0.017

0.121±0.019
0.269±0.004

0.853±0.020
0.624±0.015

0.857±0.002
0.407±0.001

0.997±0.003
0.696±0.002

1.000±0.000
0.506±0.002

13
(Cluster)

Df

Dtest

0.202±0.004
0.194±0.012

0.111±0.006
0.361±0.001

0.092±0.002
0.343±0.007

0.871±0.018
0.590±0.005

0.850±0.021
0.524±0.013

1.000±0.000
0.694±0.004

1.000±0.000
0.602±0.016

9
(Cluster)

Df

Dtest

0.010±0.002
0.233±0.007

0.176±0.005
0.402±0.012

0.152±0.009
0.442±0.001

0.892±0.003
0.643±0.006

0.862±0.005
0.613±0.001

0.998±0.002
0.699±0.005

0.995±0.005
0.656±0.001

thus, this patient is not similar to any other patients in the training set, and
must belong to the edge case hypothesis. By considering a threshold of 50% on
the error of the golden model, we find that > 60% of patients in ACDC can
be considered to belong to the edge case hypothesis. This is remarkably
different in CIFAR-10: golden model results concentrate at low error indicating
that few edge cases exist. In addition, as discussed in section 2.1, when dealing
with edge cases, scrubbing can degrade model performance. This will explain
the results of the scrubbing method: under-performance in ACDC because many
patients fall under the edge case hypothesis.

3.2 Patient-wise forgetting performance

We focus on four representative patients using the analysis in Section 3.1: pa-
tients 94 and 5 that fall under the edge case hypothesis; and patients 13 and 9
fall under a common cluster hypothesis. Here we consider a stringent scenario:
the re-trained golden standard model is not available for deciding how much to
forget, so the level of noise to be added during scrubbing or forgetting is un-
known. We adjust noise strength (low, medium and high) by modulating the
hyperparameters in both methods to achieve different levels of forgetting.2 We
assess forgetting performance by comparing against golden standard models: A
method has good forgetting performance by coming as close to the performance
of the golden standard model on Dtest.
Is targeted forgetting better for forgetting edge cases? For edge cases,
forgetting can be achieved (compared to the golden standard) at high level of

2 For our experiments we fix to introduce noise to 1% most informative weights (based
on extensive experiments) when applying the targeted forgetting.
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Table 2. The average noise value added to weights at High (when achieving 1.00 error
on Df ). Note that medium and low noise is with 66.7% and 30.0% of high noise level
respectively.

Patient
ID

High
Scrubbing Targeted Forgetting

94 (Edge) 2.33E-05 3.00E-06
5 (Edge) 1.65E-05 4.5E-06

13 (Cluster) 1.6E-05 8.66E-06
9 (Cluster) 1.43E-05 1.2E-05

noise with both methods. However, the scrubbing method significantly degrades
the model generalisation performance. With targeted forgetting, good model
generalisation performance on Dtest at all noise levels is rather maintained. Ad-
ditionally from Table 2 we observe that the scrubbing method adds more noise
to model weights to forget an edge case. This further supports our discussion
in section 2.1 on how the scrubbing method negatively affects the overall model
performance when forgetting edge case.
Is targeted forgetting better for forgetting common cluster cases? For
common cluster cases, both methods can achieve standard forgetting with a
near low level of noise with nice model’s generalisation performance on Dtest, as
shown in Table 1. For example for patient 13, the test error of two methods at
low noise level is 0.361 and 0.343, which is close and relatively small. When the
noise level grows to medium and high to forget more, although the test error with
two methods still being close, it grows to a high value. Overall, when forgetting
common cluster cases, the two methods show similar good performance at a
standard level of forgetting and they both can forget more about a patient by
sacrificing the model’s generalisation.
Can patient data be completely forgotten? Overall, for edge cases, using
targeted forgetting, the patient-wise data can be completely forgotten (achieving
error higher than 0.80 (random decision for 5 classes in our case) on Df ) with-
out sacrificing the model generalisation performance. While for common cluster
cases, it is less likely to forget the patient data as completely forgetting will result
the significantly degraded generalisation performance with the scrubbing or our
targeted forgetting. In fact, the level of noise added to the model weights affects
the trade-off between model performance and respecting data protection. Higher
noise leads to more information being removed, thus protecting the data better
yet degrading the model accuracy. Therefore, the noise needs to be carefully de-
signed such that a sweet spot between forgetting and generalisation performance
can be achieved.

4 Conclusion

We consider patient-wise forgetting in deep learning models. Our experiments
reveal that forgetting a patient’s medical image data is harder than other vision
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domains. We found that this is due to data falling on two hypotheses: common
cluster and edge case. We identified limitations of an existing state-of-the-art
scrubbing method and proposed a new targeted forgetting approach. Experi-
ments highlight the different roles of these two hypotheses and the importance
of considering the dataset bias. We perform experiments on cardiac MRI data
but our approach is data-agnostic, which we plan to apply on different medical
datasets in the future. In addition, future research on patient-wise forgetting
should focus on better ways of detecting which hypothesis the data of patients
belong to and how to measure patient-wise forgetting performance with consid-
ering the two hypotheses.
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6 Appendix

We explore if overfitting would be an issue affecting the results in Section 3.1
by redoing the experiment by early-stop training models. With all the settings
being the same as in Section 3, the training epochs for the 90 individual models
is changed from 13 to 7 to obtain less overfitted models.

Fig. A1 collects the results with early stop models. Overall, compared with
Fig.3 in Section 3.1, although the distribution of the early stop results histogram
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Fig.A1. Histograms of re-training experiments. The y-axis refers to the total number
of patients/sets whose golden standard lies within an interval(e.g. [95,100]) of x-axis.

is slightly different, the 90 individually measured results of classification error
of a Df on its corresponding golden model A(Dr) also vary from 0% to 100%.
By considering a threshold of 50% on the error of the golden model, there are
still > 50% of patients in ACDC can be considered to belong to the edge case
hypothesis. Therefore, overfitting is not considered the reason for the emergence
of edge cases.
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