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Coherent structures in plane channel flow of dilute polymer solutions with vanishing
inertia

Alexander Morozov1, ∗

1SUPA, School of Physics and Astronomy, The University of Edinburgh,
James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom

When subjected to sufficiently strong velocity gradients, solutions of long, flexible polymers exhibit
flow instabilities and chaotic motion, often referred to as elastic turbulence. Its mechanism differs
from the familiar, inertia-driven turbulence in Newtonian fluids, and is poorly understood. Here,
we demonstrate that the dynamics of purely elastic pressure-driven channel flows of dilute polymer
solutions are organised by exact coherent structures that take the form of two-dimensional travelling
waves. Our results demonstrate that no linear instability is required to sustain such travelling wave
solutions, and that their origin is purely elastic in nature. We show that the associated stress profiles
are characterised by thin, filament-like arrangements of polymer stretch, which is sustained by a
solitary pair of vortices. We discuss the implications of the travelling wave solutions for the transition
to elastic turbulence in straight channels, and propose ways for their detection in experiments.

Close to the transition to chaos, a wide range of sys-
tems, spanning magnetoelastic devices [1], electric cir-
cuits [2], chemical reactions [3], flows of Newtonian flu-
ids [4, 5], neural and myocardial [6] tissues, and lasers
[7], exhibits low-dimensional dynamics organised by un-
stable coherent structures. The phase space vicinity of
such structures is generally attractive, with a (relatively)
small number of unstable directions. In this scenario, a
chaotic trajectory amounts to a ‘pin-ball’-like motion in
phase space that spends a long time in close vicinity of
coherent structures. Knowledge of such structures thus
allows for relatively accurate statistical description of an
otherwise unpredictable system [8].

In Newtonian parallel shear flows, the discovery of
travelling waves and periodic orbits organised around
streamwise streaks and vortices has lead to the predic-
tion of the transitional values of the Reynolds number
[9], revealed the transient nature of turbulence near its
onset [10, 11], and helped to identify directed percola-
tion as the universality class for the transition to New-
tonian turbulence [12–14]. Addition of small amounts
of high-molecular weight flexible polymers was shown to
suppress Newtonian coherent structures in parallel shear
flows [15, 16], while higher levels of viscoelasticity trig-
ger elasto-inertial turbulence [17–20], characterised by a
different set of coherent structures [21–24].

At very low Reynolds numbers, in the presence of
sufficiently strong velocity gradients, dilute solutions
of high-molecular weight flexible polymer molecules ex-
hibit a unique chaotic flow state often referred to as
elastic turbulence [25, 26]. Its origins differ from the
inertia-dominated turbulence in Newtonian fluids, and
lie in the flow-induced stretch and orientation of poly-
mer molecules [27]. Despite being implicated as a ma-
jor production-limiting factor in polymer processing [28],
elastic turbulence is still poorly understood.

Here, we shed light on the transition to elastic tur-
bulence in parallel shear flows of polymer solutions, like
flow through a plane channel or a straight pipe. For the

parameters relevant to typical experiments with dilute
polymer solutions, parallel shear flows are linearly stable
[26, 29]. It has previously been proposed theoretically
[30, 31] that such flows exhibit a direct, sub-critical tran-
sition to elastic turbulence, similar to their Newtonian
counterparts. These predictions are supported by exper-
iments in straight microfluidic channels that report the
existence of strong velocity fluctuations that appear sub-
critically above the onset flow rate [32–36]. The emerg-
ing transition scenario suggests strong parallels between
purely elastic and Newtonian flows [30], implicating co-
herent structures in organising the phase-space dynamics
of both systems. Yet, very little is known about purely
elastic flow structures experimentally [36, 37], and we
are not aware of any numerical simulations of such flows
to date. Despite the aforementioned advances, purely
elastic turbulence is still being commonly rationalised in
terms of the dynamics of individual polymer molecules
in imposed random flows [27]. In this Letter, we demon-
strate numerically the existence of two-dimensional trav-
elling wave solutions (TWS) in parallel shear flows of
dilute polymer solutions at vanishingly small Reynolds
numbers and discuss how they are related to turbulent
dynamics in such flows.

We perform direct numerical simulations of two-
dimensional pressure-driven channel flow of a model sim-
plified Phan-Thien-Tanner (PTT) polymeric fluid [38],
chosen to capture the shear-thinning nature of dilute
polymer solutions [26]. We performed linear stability
analysis and confirmed that the flow is linearly stable
for all parameters studied here (see [39] for detail). We
consider a straight channel formed by two infinite par-
allel plates, with x and y being Cartesian coordinates
along the streamwise and gradient directions, respec-
tively. Equations are rendered dimensionless by using
d, U , d/U , and ηpU/d, and (ηs + ηp)U/d as the units of
length, velocity, time, stress, and pressure, respectively.
Here, d is the channel half width, ηs and ηp are the sol-
vent and polymeric contributions to the viscosity, and U
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is the maximum value of the laminar fluid velocity of a
Newtonian fluid with the viscosity ηs + ηp at the same
value of the applied pressure gradient. In two spatial
dimensions, the dimensionless equations of motion are
given by

∂c

∂t
+ v · ∇c− (∇v)

T · c− c · (∇v) = κ∇2c

− c− I
Wi

[
1− 2 ε+ εTrc

]
, (1)

∂v

∂t
+ v · ∇v = −∇p+

β

Re
∇2v

+
(1− β)

ReWi
∇ · c +

(
2/Re

0

)
, (2)

∇ · v = 0, (3)

where, p is the pressure, c is the polymer conformation
tensor, and v is the fluid velocity.

The parameter space of this model fluid is spanned
by four dimensionless numbers [26]: i) the Weissenberg
number, Wi = λU/d, that controls how strongly poly-
mer molecules are stretched in a flow, and, thus, the
magnitude of the elastic stresses; here, λ is the poly-
mer relaxation time. ii) the Reynolds number, Re =
ρUd/(ηs + ηp), that gives the relative importance of in-
ertia compared to the viscous stresses; here, ρ is the den-
sity of the fluid. Elastic turbulence is characterised by
small values of the Reynolds number and throughout this
work we set Re = 10−2. iii) The ratio of the solvent
to the total viscosity of the solution, β = ηs/(ηs + ηp),
that acts as an indirect measure of the polymer concen-
tration in dilute polymer solutions. iv) The strength of
shear-thinning, ε, that controls how fast elastic stresses
grow with Wi. To represent the weakly shear-thinning
nature of dilute polymer solutions, we set ε = 10−3.
We note that the choice of U as the velocity scale im-
plies that the maximum value of the laminar streamwise
velocity profile can exceed unity due to shear thinning.
The fluid velocity obeys the no-slip boundary condition,
v(x, y = ±1, t) = 0. The boundary conditions for the
conformation tensor [40] are obtained by requiring that
c(x,±1, t) is equal to the values obtained at the bound-
aries from Eq.(1) with κ = 0.

Simulations are performed with an in-house MPI-
parallel code developed within the Dedalus spectral
framework [41] on a rectangular domain [0, Lx]× [−1, 1],
where Lx = 10; periodic-boundary conditions are ap-
plied in the x-direction. All physical fields are repre-
sented by a spectral decomposition [42] with 256 Fourier
and 1024 Chebyshev modes. We checked that this resolu-
tion is sufficient to achieve numerical convergence. Time-
iteration uses a four-stage, third-order implicit-explicit
Runge-Kutta method [43] with the timestep dt = 5·10−3.

The conformation diffusion term, κ∇2c, with κ =
5 · 10−5, is added to Eq.(1) of the main text to stabilise

the numerics. Its presence is motivated by kinetic the-
ories of dilute polymer solutions, where it stems from a
mean-field approximation of Brownian diffusion of indi-
vidual polymer molecules [44], and is required to ensure
the formal existence of solutions to polymeric equations
of motion [45]. In the past, this term was often employed
with a value of κ that was orders of magnitude larger
than the values predicted by kinetic theories [46], thus
calling into question the validity of their results. We
stress that the value of κ used in this work does not suf-
fer from this drawback. It was selected to be sufficiently
large to stabilise the dynamics against short-wave-length
numerical instabilities [47], yet small enough to be con-
sistent with the kinetic theory values. Indeed, re-casting
the kinetic theory prediction in terms of our dimension-
less parameters yields κ = Dλ/d2Wi, where D is the dif-
fusion coefficient of a polymer molecule in equilibrium.
Using D ∼ 1µm2/s, λ ∼ 10s, and d ∼ 100µm, typical for
the microfluidic experiments of Pan et al. [34], and set-
ting Wi ∼ 30, corresponding to the onset of sub-critical
solutions reported below, yields κ ∼ 3 · 10−5. While this
estimate can yield smaller values of the dimensionless
diffusivity for other fluids and wider channels, we have
confirmed that our value of κ can be further decreased by
using higher resolutions and smaller values of dt without
altering the results. Similar values of κ were previously
shown [48] to yield results indistinguishable from the ones
obtained with κ = 0.

All simulations are started from an initial condition
comprising the laminar profile and a small localised per-
turbation [49] to the xx-component of the conformation
tensor in the following form:

∆ exp

[
−25

8

{(
2x

Lx
− 1

)2

+ y2

}]
, (4)

where the amplitude ∆ is fixed to be 1% of the maximum
value of cxx in the laminar state. We have verified that
other initial conditions, including small random pertur-
bations added to the laminar profile, lead to the same
ultimate steady state; however, we found that perturba-
tions in the form presented above are the most efficient
in triggering TWS. Simulations were stopped when the
absolute value of the time derivative of the kinetic energy
stayed below 10−10 for more than 10 time units.

Above a critical value of the Weissenberg number, we
observe the appearance of purely elastic flow structures
that are different from the laminar flow. In Figs.1a-
c we present examples of such structures for β = 0.8
and Wi = 26, 40, and 80. The distinctive features of
these states are the thin, filament-like arrangements of
the polymer stretch, which is proportional to the trace
of the conformation tensor c. While at lower values of
Wi, the maximum polymer extension occurs at the chan-
nel walls, as in the laminar profile, at higher Wi, it is
localised around the centre of the channel. The arrange-
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FIG. 1. Exact travelling-wave solutions. The trace of the conformation tensor (colour) and the flow streamlines (solid lines)
for β = 0.8 and Wi = 26 (a), Wi = 40 (b), and Wi = 80 (c). The mean flow is from left to right. The streamlines represent
velocity deviation from the mean streamwise profile vx(y). d, The speed of the travelling wave solutions determined by tracking
the position of the maximum of Tr c as a function of time. e, The relative kinetic energy of the travelling wave solutions tracing
the upper branch of the corresponding bifurcation from infinity. f, The saddle-node values Wisn (black symbols) and their

rheological counterparts Wi
(rheo)
sn (red symbols) determined as the lowest value of the Weissenberg number at which the solution

can be sustained.

ments of the stress and velocity profiles in these states
move downstream with a constant velocity, i.e. they are
steady-states in a co-moving frame and, thus, represent
travelling-wave solutions to the equations of motion. In
Fig.1d, we present their downstream speed c, measured
by tracking in time the streamwise position of max(Tr c).
Similar to their Newtonian counterparts [50], purely elas-
tic TWS move slower than the laminar velocity profile.

Since the laminar flow is linearly stable for the param-
eters considered here, TWS appear through a sub-critical
bifurcation from infinity [51]. Our direct numerical simu-
lations resolve the upper branches of the bifurcation dia-
gram (Fig.1e) that we report in terms of the total kinetic
energy of the flow compared to its laminar value at the
same Wi (see [39] for details). Lower branches, which
determine the strength of a finite-amplitude perturba-
tion necessary to destabilise the laminar flow [30], are
usually linearly unstable and cannot be determined by

direct numerical simulations. The bifurcation diagrams
terminate at the saddle-node value of the Weissenberg
number, Wisn, determined as the lowest value of Wi for
which TWS were observed. In Fig.1f we map the region
of existence of TWS for various values of β.

To facilitate comparison with experiments, we ex-
press Wisn in terms of the rheological Weissenberg num-

ber Wi
(rheo)
sn often used to report the results of exper-

iments dealing with shear-thinning fluids (see, for in-
stance, [34, 52, 53]). Since the relaxation time and the
viscosity of such fluids change with the local shear rate,
the nominal value of Wi, which is based on the relaxation
time λ measured at a single (low) shear rate, is an over-
estimate of the strength of the elastic stresses. Instead,
the rheological Weissenberg number provides an estimate
of the value of the Weissenberg number in an Oldroyd-
B fluid that would generate elastic stresses of the same
magnitude; here, we employ the definition as used by Pan
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FIG. 2. Characterisation of the TWS velocity field for β = 0.8 and Wi = 80. a, The velocity deviation from the mean profile
(vx(x, y)− vx(y), vy(x, y)) (vectors), and the out-of-plane component of the vorticity ∂xvy(x, y)− ∂y(vx(x, y)− vx(y)) (colour).
b, Comparison between the laminar and the mean streamwise velocity profiles.

et al. [34] (see also [39]). In Fig.1f, we report the onset
of TWS in terms of the rheological Weissenberg number

Wi
(rheo)
sn . In the experiments of Pan et al. [34], a sud-

den onset of large velocity fluctuations was observed for
Wi(rheo) > 5.4; at those flow rates, the total viscosity of
the solution was measured to be ηs+ηp ∼ 0.35Pa·s, while
the solvent viscosity ηs ∼ 0.2Pa·s, yielding β ∼ 0.57 (see
Supplemental Material for [34]). As can be seen from
Figs.1f and 1e, the sub-critical nature of the transition,
the value of Wisn, and the amplitude of the jump of the
velocity fluctuations around Wisn reported by Pan et al.
[34], are consistent with the onset of TWS found here.

The exact solutions reported in our work resemble the
‘arrowhead’ structures [48, 54–57] found in elasto-inertial
(Re � 1 and Wi � 1) pressure-driven channel flows.
There, they originate from a linear instability recently
discovered for 1 − β � 1, and extend sub-critically to
lower values of Re and Wi [48, 57]. This linear insta-
bility can be continuously traced to the purely elastic
regime [57, 58], where, similar to its elasto-inertial ana-
logue, it exists only in a narrow range 1− β � 1. While
such a linear instability is probably not directly relevant
for experiments with dilute polymer solutions, as it is
difficult to simultaneously achieve Re� 1, Wi� 1, and
1 − β � 1, we speculate that the non-linear state that
originates from it directly connects to TWS discovered
here. Importantly, our results demonstrate that no lin-
ear instability is required to sustain travelling waves in
dilute polymer solutions at experimentally relevant val-
ues of β, and that their origin is purely elastic in nature.

Several prominent features of TWS are good poten-
tial candidates for experimental detection. The veloc-
ity field associated with TWS is dominated by a soli-
tary pair of counter-rotating vortices arranged symmet-
rically around the centreline of the channel, see Fig.2a.
Such structures resemble ‘diwhirls’ previously reported in
Taylor-Couette flows of dilute polymer solutions [59, 60].
In the absence of other prominent velocity structures,
they might be directly observable in particle image ve-
locimetry, although their magnitude is quite low when
compared to the mean profile. The latter, defined as

vx(y) =
∫ Lx

0
vx(x, y)dx/Lx, appears to be the most

promising for experimental observation feature of the ve-
locity field, and is the main observable used by Pan et
al. [34]. However, its deviations from the laminar profile
are localised around the centreline and are weak (Fig.2b).
This is in contrast with Newtonian parallel shear flows,
where turbulent production is largely associated with the
walls [14, 50]. The associated stresses, on the other hand,
are about 10% of their laminar values, have a distinc-
tive, filament-like spatial distribution, and should be de-
tectable in birefringence measurements. Finally, a more
pronounced, though less specific, signature of TWS is the
pressure drop along the channel that can become compa-
rable to its laminar value (see Fig.S2 in [39]).

Two-dimensional TWS presented here are steady-
states in a co-moving frame and do not lead to time-
dependent fluctuations associated with elastic turbu-
lence. To be relevant to the latter, they are expected to
lose their stability for sufficiently high Wi. While we have
verified numerically that TWS are stable with respect
to small two-dimensional perturbations, their stability
with respect to three-dimensional ones is yet unknown.
There are two possible scenarios. First, the upper branch
solutions in Fig.1e can be linearly stable up to Wi3D,
which would mark the appearance of three-dimensional
coherent structures. In this scenario, TWS should be
directly observable for Wisn < Wi < Wi3D, and their
properties can be tested against our predictions reported
in Fig.1. Alternatively, the whole upper branch can
be unstable with respect to three-dimensional perturba-
tions. This scenario would mirror the transition to New-
tonian turbulence in plane channel flows. There, two-
dimensional Tollmien-Schlichting TWS originate from a
linear instability at Re = 5772 and extend sub-critically
to lower values of Re [61], while the corresponding upper
branch is unstable towards three-dimensional perturba-
tions for any value of Re [62]. The close agreement be-
tween the onset of velocity fluctuations reported by Pan
et al. [34] and the onset of two-dimensional TWS dis-
covered here suggests that Wi3D is either close or equal
to Wisn. In this case, the flow properties would be de-
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termined by three-dimensional structures that are yet to
be discovered. Recent studies of elasto-inertial turbu-
lence suggest that such structures are only weakly three-
dimensional [17, 22, 24, 54–56], and we could expect the
two-dimensional flow features discussed above to be ob-
servable in three-dimensional channel flows.

Finally, we note that a series of recent experiments
from the Steinberg’s group [37, 63–65] has suggested a po-
tentially different transition scenario that is rationalised
in terms of elastic Alfvén waves[66]. While our results are
consistent with our earlier proposal [30, 31], and with the
experiments of the Arratia’s group [34–36], further ex-
perimental and numerical work is required to understand
the transition to elastic turbulence in parallel shear flows.
We note that some of the discrepancies between the two
sets of observations can be resolved if the aformentioned
elastic waves are interpreted as TWS discussed here.
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Laminar profile and kinetic energy

The laminar state is defined by vlam = (Ulam(y), 0, 0)
and

clam =

(
axx(y) axy(y)
axy(y) 1

)
, (S1)

where the velocity profile Ulam(y) and the components
of the conformation tensor satisfy the one-dimensional
version of Eqs.(1)-(3):

axx − 1

Wi

[
ε (axx − 1) + 1

]
− κa′′xx = 2axyU

′
lam, (S2)

axy
Wi

[
ε (axx − 1) + 1

]
− κa′′xy = U ′lam, (S3)

βU ′′lam +
1 − β

Wi
a′xy + 2 = 0. (S4)

The velocity profile satisfies Ulam(±1) = 0, while
axx(±1) and axy(±1) are set to their corresponding
values obtained by solving Eqs.(S2)-(S4) with κ = 0.

The ratio of the instantaneous and laminar kinetic en-
ergies is defined as

E

Elam
=

1
Lx

∫ Lx

0
dx
∫ 1

−1 dy
(
v2x + v2y

)
∫ 1

−1 dy U
2
lam

. (S5)

Linear stability analysis

Stability of the laminar flow is determined by studying
time evolution of infinitesimal disturbances. To this end,
we introduce a perturbation to the laminar profile in the
following form

(c,v, p) (x, y, t) = (clam,vlam, 0) (y)

+ eikxeσt (δc, δv, δp) (y), (S6)

where k sets the perturbation’s periodicity in the x-
direction, and σ is a yet to be determined temporal
eigenvalue. To first order, the perturbation obeys the
linearised Eqs.(1)-(3) that we solve numerically using a
spectral method based on Chebyshev polynomials [1].

For all values of Wi and β, we find that the real part
of σ is always negative, i.e. the laminar flow is linearly
stable (Fig.S1), confirming the bifurcation-from-infinity
scenario for the appearance of the travelling-wave solu-
tions reported in the main text. These results are in line

with the previous work on linear stability of the Oldroyd-
B [2, 3] and FENE-P [2, 4] models; the latter is particu-
larly relevant to this work due to the intrinsic relationship
between the simplified PTT and FENE-P models [5].

Rheological Weissenberg number

To assess the relative strength of the polymeric stresses
at a particular shear rate γ̇, we introduce the rheological
Weissenberg number Wi(rheo). As mentioned in the main
text, it provides an estimate of the value of the Weis-
senberg number in an Oldroyd-B fluid that would gener-
ate elastic stresses of the same magnitude and serves as
a phenomenological way of factoring the shear-rate de-
pendence of the fluid properties out of the definition of
the Weissenberg number. Here, we employ the definition
used by Pan et al. [6]:

Wi(rheo) =
N1(γ̇)

2 [τxy(γ̇) + ηsγ̇]
, (S7)

where N1 and τxy are the polymeric contributions to the
first normal-stress difference and shear stress in simple
shear flow, respectively. When used for an Oldroyd B
fluid, this definition gives Wi(rheo) = Wi. When in-
stead adapted for the linear Phan-Thien-Tanner model,
it yields

Wi(rheo) =
c2xy

cxy + β
1−βWi

, (S8)

where cxy in simple shear is given by

cxy
[
1 + 2 ε c2xy

]
= Wi. (S9)

For Wi � (2ε)−1/2, Wi(rheo) ∼ Wi, while for Wi �
(2ε)−1/2, Wi(rheo) ∼ Wi−1/3, indicating the shear-
thinning induced weakening of the elastic stresses at large
Wi.
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FIG. S1. The results of linear stability analysis for k = 2π/Lx. a, The eigenvalue spectrum for β = 0.8 and Wi = 80 at
two Chebyshev resolutions, showing numerical convergence. The leading eigenvalue is denoted by σ∗. b, The real part of the
leading eigenvalue as a function of Wi for various values of β calculated with 250 Chebyshev modes. No linear instability is
found.

FIG. S2. Normalised pressure profile pRe of the travelling wave solution for β = 0.8 and Wi = 80. In these units, the laminar
pressure gradient along the channel is 2.
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