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Abstract

We explore how children and adults actively experiment within the physical world to
achieve different epistemic goals. In our experiment, 101 4–10-year-old children and 24
adults either passively observed or used a touchscreen interface to actively interact with
objects in a dynamic physical microworld with the goal of inferring one of two latent
physical properties: relative object masses or local forces of attraction and repulsion. We
find an age improvement in judgments as well as an advantage for active over passive
learning. With the help of Bayesian statistics and a computational modeling framework for
the quantitative analysis of participants’ actions, we show that children’s and adults’
actions are equally successful in targeting their goal-relevant uncertainty, but that adults
and older children are better able to use this information to respond correctly. We further
unpack children’s and adults’ experimental strategies qualitatively, finding adults more
likely to use a “deconfounding” strategy to isolate properties of interest, potentially
creating evidence less susceptible to cognitive and perceptual errors.

Keywords: active learning; intuitive physics; Bayesian statistics; mental simulation;
cognitive development; action
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Children’s active physical learning is as effective and goal-targeted as adults’

“The secrets of nature reveal themselves more readily under vexations of the art than when
they go their own way.” — Francis Bacon (1620)

Introduction

The word ‘learning’ may conjure images of textbooks and bored students slumped
behind desks, yet in its most elemental form, human learning is self-directed, active and
interactive, taking place outside the classroom in the real and wild physical world.
Children take control of their experiences almost from birth, spending much of their early
years pushing, pulling, prodding, chewing and grasping the objects around them, but also
actively deciding what is interesting enough to be pushed and grasped, what is worth being
chewed. It would be very surprising if these early behaviors were not playing an important
role in development. One idea is that these actions are kinds of proto-experiments
(Bramley, Gerstenberg, Tenenbaum, & Gureckis, 2018; Brewer & Samarapungavan, 1991)
that help reveal the deep causal structure and hidden properties of the physical world that
are rarely or never revealed by passive observation (Bacon, 1620/1878; Gopnik et al., 2004;
Pearl, 2000). In this way, our physical actions may serve the general epistemic goal of
building a causal world model that accurately reflects natural laws (Hohwy, 2013) and
empowers us to predict, plan and pursue future goals (Friston, FitzGerald, Rigoli,
Schwartenbeck, & Pezzulo, 2017). As adults, we probe task-relevant physical properties of
objects almost unconsciously — rock a table to gauge its stability, slide a glass across its
surface to gauge its friction, or waft a metal object near a radiator to gauge its magnetism.
These actions seem to combine an intuitive understanding of how the physical world works,
with expertise in ways to exaggerate, isolate, or bring into sharper relief familiar properties
of novel objects (Bramley et al., 2018). However, when this expertise emerges, how it
develops, and what qualitative differences there could be in how children and adults probe
the world are all open questions.

The goal of this paper is to explore the development of active physical inference by
directly comparing children’s and adults’ behavior when learning about objects in a
simulated physical “microworld” setting. To foreshadow, we find that both children and
adults produce actions that provide information specific to their learning goals, while
minimizing confounding evidence about other non-goal properties. However, older children
and adults are more likely to make accurate judgments on the basis of the resultant
evidence. Adults also show clearer hallmarks of controlled experimentation (Kuhn &
Brannock, 1977), performing more actions that minimize the confounding influence of
distractors compared to children.
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Despite its complexity, even young children seem to be able to navigate and interact
with the physical world far more successfully than cutting-edge AI technology. One line of
work argues that this competence stems from the development of a generative model — or
‘intuitive theory’ — of everyday physics (Gerstenberg, Goodman, Lagnado, & Tenenbaum,
2021). The idea is that learners bootstrap via a general theory of everyday physics, which
allows them to work back from observations to infer the particular latent properties and
phenomena needed to make mental simulations match specific observations (Ullman,
Spelke, Battaglia, & Tenenbaum, 2017), although there is debate over how much intuitive
theory is learned versus innate (Stahl & Feigenson, 2015). Such an approach would allow
cognizers to use mental simulation to make predictions, imagine hypothetical and
counterfactual situations and pursue arbitrary goals (Battaglia, Hamrick, & Tenenbaum,
2013; Smith, de Peres, Vul, & Tenenbaum, 2017). Another line of work has emphasized
human limitations in physical reasoning and argued that judgments often reflect
application of context-specific rules and heuristics rather than online simulations
(Ludwin-Peery, Davis, Bramley, & Gureckis, 2021; McCloskey, 1983; Smith et al., 2017).

Active physical learning is one particular domain in which we might expect cached
or heuristic solutions to be important. Active learning research studies how people use
their actions to gather evidence and shape their learning (Coenen, Nelson, & Gureckis,
2018). An important subset of this field studies how learners probe the causal structure of
the environment through actions or interventions (Pearl, 2000) that take control of
variables of interest and may reveal the underlying causal structure (Bramley, Lagnado, &
Speekenbrink, 2015; Coenen, Rehder, & Gureckis, 2015; Coenen, Ruggeri, Bramley, &
Gureckis, 2019). Calculating the most informative action to take to resolve one’s
uncertainty is generally prohibitively expensive outside of toy experimental settings, and
this is compounded when actions must be chosen, performed, and potentially adjusted in
real time (Davis, Bramley, & Rehder, 2020). However, the laws of nature are broadly
universal, meaning there is a good degree of stability in what behaviors are likely to be
effective for a generic physical enquiry goal. For instance, if an action such as “lifting”
reveals the mass of one object, is also likely to reveal the mass of another, and so on,
making the caching of general heuristics for identifying particular properties a
computationally sensible idea (cf. Gershman, Horvitz, & Tenenbaum, 2015). Crucially, the
relevant evidence for learning about physics is not the state of the world at a particular
moment in time, but rather how its state evolves over time.

Ullman, Stuhlmüller, Goodman, and Tenenbaum (2018) explored adults’ inferences
about relative masses, local (magnet-like) and global (gravity-like) forces, and friction from
video clips of simulated 2D physics. They found that participants struggled to identify
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masses, and were better at detecting local attraction than repulsion. These patterns were
partly captured by the evidence available from an idealized simulation-based inference
model. Until colliding with another dynamic object, an object’s motion provided no
evidence about its mass, and even collisions revealed only the relative masses of the relata.
For the local (magnet-like) forces, objects that repelled one another would rarely stay long
enough close together to exhibit strong evidence of their repulsion, while attracting objects
would rapidly approach one another and stick together offering stronger extended displays
of their attraction.

In the current paper we extend this work to the active setting, adapting the
paradigm from Bramley et al. (2018) to investigate the developmental trajectory of active
physics learning. In our task, participants can drag objects around using touch control on a
tablet screen (see Figure 1a). While this is admittedly far simpler than real world control,
such “billiard worlds” (Fragkiadaki, Agrawal, Levine, & Malik, 2015) have proven to be
valuable for exploring intuitive judgments about physics (cf. Bramley et al., 2018; Smith et
al., 2017). Action planning in physics learning tasks is particularly challenging (Li et al.,
2019). Indeed, for learning to succeed, the right kind of dynamics have to be observed or
brought about through control, and for this to happen, the learner must not only choose
where (i.e., on which object), but also how and when to intervene (Gerstenberg et al., 2021).

Using a similar paradigm, Bramley et al. (2018) found that adults tailored their
active intervention strategies to maximize the informativeness of the actions performed
depending on their given learning goal. For example, participants with a goal of identifying
the heavier of two objects would frequently knock them together or take turns shaking
them from side to side. Likewise, participants with a goal of identifying the nature of a
local force between two objects would frequently hold them close together.

Previous work on children’s active learning indicates that even toddlers and
preschoolers spontaneously make informative interventions to disambiguate the causal
structure of a system, both in experimental settings and during spontaneous play (Cook,
Goodman, & Schulz, 2011; Kushnir & Gopnik, 2005; L. E. Schulz & Bonawitz, 2007; Sim &
Xu, 2017), and that the efficiency of these interventions increases with age (McCormack,
Bramley, Frosch, Patrick, & Lagnado, 2016). In causal learning, younger learners
(4-year-olds) are more flexible than older learners (6-year-olds; Gopnik & Bonawitz, 2015)
and even adults in correctly drawing inferences about unusual causal relationships from
observation (Lucas, Bridgers, Griffiths, & Gopnik, 2014). Moreover, preschoolers’ causal
learning performance bears hallmarks of Bayesian learning by age 4 (Sobel, Tenenbaum, &
Gopnik, 2004), although children sometimes can perform informative interventions yet fail
to integrate the evidence correctly (Meng, Bramley, & Xu, 2018). More recent work shows
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that while even 3- and 4-year-olds can rely on different exploratory strategies depending on
the statistical structure of a task, selecting the most efficient strategy from among the
given options (Ruggeri, Swaboda, Sim, & Gopnik, 2019), only by 7 years of age do children
start to be able to generate informative actions from scratch (Ruggeri & Lombrozo, 2015;
Ruggeri, Lombrozo, Griffiths, & Xu, 2016). Together, these findings suggest that children,
just like adults, may be able to tailor their actions to provide information specific to their
learning goals and make accurate judgments on the basis of the observed evidence. In fact,
it is plausible that because physical active learning is more developmentally basic
compared to the tasks used in much of the previous literature on active learning —
involving the objects of perception more directly and depending less on maintenance and
application of linguistic concepts — children would excel.

In the current work, we contrast passive learning participants who observe
simulated natural dynamics with active learning participants can additionally interact with
the simulated objects. As recent developmental studies suggest that the advantage of
active control over the learning experience are fairly stable across the lifespan (see Ruggeri,
Markant, et al., 2019), we predict a similar performance boost for active over passive
learning as was found in adults by Bramley et al. (2018).

Experiment

Methods

Participants

In total, we recruited 125 participants in museums around Berlin including 101
children (45 female, M ± SD age 7.15± 1.58, range: 4.6–10.2 years, completion time
12.8±0.90 minutes) and 24 adults (12 female, 37.7± 8.62, range: 25.2–56.4 years, taking
11.9±0.81 minutes).1 Participants were predominantly white Europeans from diverse social
classes and were native German speakers or fluent in German. IRB approval was obtained
from the ethics committee of the Max Planck Institute for Human Development, Berlin
(protocol: “Active Physics Learning”), and parents gave informed consent for their children
to participate before the study. The study was not preregistered.

Some trial information was incorrectly stored for early participants resulting in
slightly smaller sample of 105 participants for whom we could perform detailed action and

1 Our sample size plan was originally based on a G*power calculation seeking ≥80% power to detect a
moderate (0.3) continuous effect of age, the variable we were most interested in, yielding a required sample
size of 82 (Faul, Erdfelder, Buchner, & Lang, 2009). Eventually though, as this was just one of a number of
data-dimensions we evaluated, we opted to use Bayesian statistics for all primary analyses, to better
capture the relative strengths of our various conclusions.
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Figure 1
(a) Visualization of task: 2 colored “target” objects and 2 gray “distractor” objects move
around, colliding and affecting one another with local (magnet-like) forces. A participant
(Active condition) grabs object “A” (active condition only) by hold-pressing on it on touch
screen and drags it upward and right (“+” symbol shows final position of touch control).
(b–c) Response buttons displayed at end of the force-focused and mass-focused trials
respectively.

information-based analyses. The smaller sample included 82 Children (37 female,
7.15± 1.56, range: 5, oldest 10.2 years) and 23 adults (11 female, 37.5± 8.77, range:
25.2-56.4 years, 12.6±1.00 minutes).

Stimuli, Design and Procedure

The experiment was administered on a 10 inch Android tablet as a full screen web
app, programmed in Javascript using a port of the Box2D physics game engine and
optimized for tablet screens and touch control. Complete specification of the settings of the
Box2D simulator is available in the Supplement and a source code for the experiment are
available in the OSF Repository (https://osf.io/v9fk2/).

Participants were first introduced to the task. They were shown four objects of
different colors moving around the screen bounded by solid walls with high elasticity (see
Figure 1a), and were told that their task was to learn about physical properties of some of
the objects. Participants were pseudo-randomly assigned to one of two experimental
conditions, passive or active. In the passive condition, participants had to infer the objects’
physical properties by merely observing them moving around. In the active condition,
participants could also interact with them on the screen using their finger to grab and drag
them around, so creating different and potentially more or less informative dynamics.
Participants in both conditions completed a practice trial to familiarize themselves with

https://osf.io/v9fk2/
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the game procedure either observing four unlabeled objects moving around for 45 seconds
(passive condition), or moving the objects with their finger (active condition) for 45
seconds before moving to the experimental session.

The experimental session then consisted two blocks, presented in pseudo-random
order: (1) A force-focused block, in which participants were told they had to find out
whether two “target” objects attracted or repelled each other, and (2) A mass-focused
block, in which participants had to find out which of the target objects was heavier. Each
block included 4 trials in random order in which the target properties were varied
systematically so as to counterbalance the goal with two possible settings for each target
property (see Table 1). Targets were labelled as “A” and “B”, while distractor objects were
unlabeled (see Figure 1a). A fixed sequence of color pairs were used for the Target objects
across the 8 trials. These were matched for saturation and lightness and spread
pseudorandomly around the hue wheel. This was done to ensure participants differentiated
clearly between different target objects both within and across trials. Distractor objects
were always light and dark gray. At the beginning of each trial the learning goal was
displayed and read out by the experimenter. At the end of each trial, the objects froze in
position and the response options appeared on top (see Figure 1b–c). The experimenter
read out the question again and, if necessary, explained to the participant that they should
select the option they thought was true of the environment they had just observed or
interacted with.

The target objects always either attracted or repelled one another, and one was
always heavier than the other.2 Additionally, the specific behavior of the objects differed
substantially in every trial because we independently drew distractor forces for the other
five combinations of target and distractor objects (uniformly from {attract, none, repel})
and independently randomized the initial locations and velocities of all objects. For active
participants, the dynamics they observed also critically depended on whatever control they
exerted using their finger on the touch screen. Concretely, taking control of an object made
it temporarily elastically attracted to the position of the participant’s finger on the touch
screen. In this sense, the object was moved by the finger, while being able to participate
realistically in reciprocal physical interactions with the other objects, such as in collisions.
Each trial lasted 45 seconds during which the physics simulator updated the positions of
the objects 60 times per second for a total of 2700 frames of evidence. Video replays of all
participants and trials are available in the OSF Repository (https://osf.io/v9fk2/).

At the end of the experimental session, the interface showed the participant which

2 Pairwise forces were ±3 Newtons. The heavier object weighed 2kg while the other objects weighed 1kg.

https://osf.io/v9fk2/
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and how many of the 8 trials they had answered correctly and had the experimenter enter
their basic demographics. Children were rewarded with one sticker per correct trial.

Table 1
Experiment Design

Block 1. 2.
Goal: Identify force Identify mass
Trial 1. 2. 3. 4. 1. 2. 3. 4.

True force: attract attract repel repel attract attract repel repel
True mass: A heavy B heavy A heavy B heavy A heavy B heavy A heavy B heavy

Results

We first analyze participants’ performance by age-group, continuous age, condition
and block. We then turn to analysis of the actions of participants in the active learning
condition. Our Performance level analyses use our full sample (n = 125), but for the more
detailed Information and Actions analyses we use the smaller sample for which we have
complete records (n = 105, see Participants). We analyze the data primarily with Bayesian
mixed-effects regressions. We include 95% posterior credible intervals for each parameter.
Note that whether the interval for a given parameter includes the null value of zero is a
common statistical decision criterion, and perhaps the closest analog to frequentist
decisions about whether one should rejecting the null of no effect (Kruschke, 2013). We
also use prior and posterior samples from each model to compute Bayes Factors (BF) for
each parameter of interest, allowing us to assess the strength of the evidence favoring either
the existence of the effect or the null. We additionally include a posterior probability of
direction statistic for all primary results. This captures the proportion of the posterior
density that lies on the favored side of the null, essentially measuring how confident we can
be about the direction of the effect, conditional on the effect existing (Makowski,
Ben-Shachar, Chen, & Lüdecke, 2019). In the Supplement, we detail our choice of priors,
full result tables and repeat all analyses with a standard maximum likelihood mixed-effects
analysis, demonstrating a close correspondence.

Performance

We first performed a Bayesian mixed-effects regression, with fixed effects of learning
condition, age-group (between subject) and block (within subject) and a random intercepts
for each participant, predicting percentage correct judgments. This revealed significant
main effects of all three factors, with active learners making more accurate inferences
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(M±SD = 78.7±16.6%) than passive learners (68.9±18.9%; M±SE β = 9.88± 3.36, 95%
Credible Interval [95%CI]=[3.3,16.4]%, P direction [PD] = .998, Bayes Factor [BF]=4.05),
adults making more accurate inferences (81.8±16.1%) than children (72.0±20.2%;
β = 9.86± 4.24, 95%CI=[1.52,18.2]%, PD = 0.99, BF=1.28), and force judgments
(81.0±23.6%) being more accurate than mass judgments (66.8±27.2%; β = 14.1± 2.92,
95%CI=[8.34,19.9]%, PD>.999, BF>1000; Figure 2a, Supplemental Table S2). Repeating
the analysis including all potential interaction terms suggested the lack of any two- or
three-way interactions between these factors (all posterior 95% credible intervals including
zero, all Bayes factors between 0.23 and 0.46, indicating anecdotal to moderate evidence for
the null Jeffreys, 1961). For the 101 children, we additionally ran a Bayesian mixed-effects
regression predicting accuracy by continuous age, condition and block, again with a
random intercept per participant. This revealed a linear age improvement M±SE
βage = 3.8± 1.2%/year, 95%CI= [1.45, 6.15]%/year, PD = .999, BF=3.0 alongside main effects
for active over passive learning children βcondition = 10.6± 3.74%, 95%CI=[3.2,17.9]%,
PD=.998, BF=4.1, and on the force over the mass block βblock = −11.8± 3.41%,
95%CI=[-18.5,-5.04]%, PD>.999, BF=17.8 (see Figure 2b, Supplemental Table S3).
Repeating the analysis including interaction terms found support for nulls of no two- or
three-way interactions (all 95% posterior CIs including zero, all BFs between 0.062 and
0.58), the data also supported the null of no quadratic effect of age (−0.82± 0.86,
95%CI=[-2.52,0.88], PD = 0.83, BF = 0.027).

Finally, we used a logistic mixed-effect regression to assess accuracy differences
depending on the ground truth in force and mass blocks respectively (Figure 2c–d,
Supplemental Tables S3&S4). For force responses, as predicted, this suggested an
interaction with learning condition, such that participants in the active condition were
more accurate on repel trials (log odds ratio = 1.41± 0.46, 95%CI=[.5,2.33], PD =0.999,
BF=53). Response type did not appear to interact with age-group in predicting accuracy
on the force questions (log odds ratio = 0.432± 0.692, 95%CI=[-0.898,1.82], PD = 0.73,
BF=0.825). For the mass question there is no reason to expect a difference between “A
heavy” and “B heavy” trials, since the goals are qualitatively identical. Accordingly, the
data supported the null of no main effect of ground truth nor interaction with condition
nor age-group (all CIs include zero, all BFs between 0.28 and 1.01).

In sum, we found that children’s accuracy improved with age, that adults were more
accurate than children overall, and that active learners were more accurate than passive.
As predicted, this was driven by an active learning accuracy boost on the mass block and
on repulsion trials on the force block. However, perhaps surprisingly given mixed active
learning efficiency in past developmental work, these active learning effects did not differ in
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Figure 2
(a) Mean accuracy (± bootstrapped SE) by block (panels Force goal vs. Mass goal), learning
condition and age-group. Points (jittered in y axis) show individual participants’ averages.
(b) Accuracy by age and learning condition for children. Lines show linear best fit and
shaded areas show 95% confidence intervals. Proportion correct by ground truth on (c)
Force trials and (d) Mass trials. Dotted black lines in all plots indicate chance performance.

magnitude between 4-10-year-olds and adults.

Information

We now use an Ideal Observer (IO) model to better understand why active
participants generally outperformed passive participants, and whether differences in active
learning can explain children’s lower accuracy relative to adults. Our IO model assumes
learners begin each trial maximally uncertain about the target and distractor properties
within their support3 and update their beliefs based on the evidence available throughout

3 For the two target objects followed by the two distractor objects, these are mass∈ {[2, 1, 1, 1], [1, 2, 1, 1]},
force∈{attract,repel} between target objects and ∈{attract,repel,none} for the other five pairwise
combinations of target and distract objects, leading to a nominal hypothesis space of 972 microworld
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Figure 3
(a) Mean posterior entropy by age-group and condition (± bootstrapped SE) according to
Ideal Observer account. Lower means more useful information was gathered. Points
(jittered in y axis) show individual trials. (b) Peak predictive divergence for the averaged
profiles of each action type (see Table 3). Higher is more informative. (c) Coded action
type frequencies by age-group and condition.

the clip, using a simulation-based inference procedure detailed in Bramley et al. (2018) to
approximate the likelihood of the evidence under different parameter settings. The model

settings.
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takes the dynamics of the scene on a frame-by-frame basis as its input, but also uses its
own physics simulator to generate many hypothetical forward simulations, using
discrepancies between these simulations and future observations to drive inferences about
the true environment settings. This procedure results in a joint posterior over the unknown
properties of the objects in the trial based on all the evidence revealed by the object
dynamics on each trial. This can then be marginalized over to produce specific posteriors
for the target mass, target force (or equally for any of the distractor force properties). The
entropy of these posteriors gives a measure of the total evidence available to the
participant (Shannon, 1951) where lower values indicate more information was produced.
The accuracy of such an ideal observer depends on the degree of sensory precision we
assume and consequently the quality and quantity of the dynamics it would need to
observe to form a reliable preference for the true property. Therefore, we are not interested
in comparing participants and models in terms of absolute uncertainty but rather, in
assessing the extent to which the model’s notion of relative strength of evidence lines up
with differences in children’s and adults’ judgments.

Our IO analysis reveals that the amount of evidence participants gathered about
the target properties is dynamically related to their learning condition and block but that
it does not depend significantly on age-group (see Figure 3a). Critically, posterior force
uncertainty was lower for active participants on force-focused trials (M±SD .45± .38 bits)
than mass-focused trials (0.68± 0.31 bits) while mass uncertainty was likewise lower for
active participants’ mass-focused trials (0.16± 0.21 bits) than force-focused trials
(0.31± 0.26). This was true for both Children (Force: 0.46± 0.37 vs. 0.68± 0.30, Mass:
0.13± 0.19 vs. 0.29± 0.26) and Adults (Force: 0.42± 0.40 vs. 0.65± 0.34, Mass:
0.26± 0.23 vs. 0.40± 0.26) taken separately. This shows that Active participants took
actions that dynamically and successfully targeted their learning goals. Somewhat
unexpectedly, force uncertainty was lower on average for passive than for active
force-focused trials (0.447± 0.06 and 0.56± 0.13 bits respectively). However, mass
uncertainty was lower for active (.23± 0.15 bits) than passive mass-focused trials
(0.47± .11 bits). To unpack the full pattern of results, we ran a Bayesian mixed-effects
regression predicting posterior entropy by condition, age-group (between subject) and
dimension plus whether the learners’ goal matched that dimension (within subject),
including random intercept terms per participant as above. This is summarized in Table 2.

This confirms that target-specific IO uncertainty was substantially lower in the
active condition (row 2), lower for mass than force (row 3) but critically also lower on the
dimension matching the block goal (row 4). There was also a condition×dimension
interaction (row 7) indicating that the participants in the active condition saw more
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advantage on the mass than the force dimension, condition×match interaction (row 9)
indicating that condition differences were driven by the active condition. Strikingly, this
analysis reveals “very strong evidence” (BF< 1

30 , Jeffreys, 1961) against a direct effect of
age-group (row 1), and “strong” evidence against the existence of an interaction between
age-group and any other design dimension (BFs<0.1) in shaping the evidence participants
produced with their actions.

Table 2
Bayesian Mixed-Effects Regression Predicting Posterior Entropy

Effect M ± SE 95%CI PD BF

Main effects only model
1. Age-group (B.S. Children=.425, Adults=.444 ) 0.020± 0.021 [-0.02, 0.06] .824 0.033
2. Condition (B.S. Passive=.459, Active=.399 ) −0.06± 0.018 [-0.095, -0.026]* >.999 5.54
3. Dimension (W.S. Force=.506, Mass=.352 ) −0.15± 0.017 [-0.19, -0.12]* >.999 >1000
4. Match (W.S. True=.380, False=.478 ) 0.098± 0.018 [0.06, 0.13]* >.999 >1000

Full interaction model
5. Age-group:Condition −0.028± 0.079 [-0.18, 0.13] .64 0.0839
6. Age-group:Dimension 0.017± 0.080 [-0.15, 0.18] .582 0.0806
7. Condition:Dimension −0.37± 0.053 [-0.48, -0.27]* >.999 >1000
8. Age-group:Match 0.032± 0.080 [-0.13, 0.19] .655 0.0853
9. Condition:Match 0.20± 0.052 [0.10, 0.31]* >.999 127
10. Dimension:Match −0.023± 0.052 [-0.13, 0.08] 0.667 0.0579
11. Age-group:Condition:Dimension 0.16± 0.11 [-0.059, 0.38] .924 0.319
12. Age-group:Condition:Match −0.022± 0.11 [-0.24, 0.19] 579 0.111
13. Age-group:Dimension:Match −0.051± 0.11 [-0.27, 0.17] .674 0.123
14. Condition:Dimension:Match −0.039± 0.075 [-0.19, 0.11] .703 0.0853
15. Age-group:Condition:Dimension:Match 0.017± 0.16 [-0.29, 0.32] .544 0.154

Note: Marginal means provided for factor levels in Effect column. Match: True = Dimension for which
uncertainty is calculated matches the learners’ goal. Intercepts and main effect terms for interaction model
omitted from table for brevity. * indicates the 95%CI excludes zero (no effect). See Supplement for
comparison with maximum likelihood mixed-effects fit.

Extending this, across the 41 children in the active condition for whom we have
complete action data, we found evidence in support of the null of no relationship between
continuous age and posterior goal-specific entropy (β = 0.00174± 0.0066,
95%CI=[-0.011,0.014], PD = .61, BF = 0.0067, Supplemental Table S7).

Finally, we can ask whether these evidence quality patterns are directly associated
with accuracy at the trial level. Bayesian logistic mixed-effects model predicting
P (Correct) by entropy and including age-group, condition and block as covariates, suggests
this is not the case (βEntropy = −0.17± 0.24, 95%CI=[-0.65,0.30], PD = .75, BF=0.32,
Supplemental Table S8).

In sum, we found that children and adults were similarly able to use touch control
to gather evidence targeted to their learning goal. As expected and consistent with the
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accuracy patterns, active learners substantially increased their evidence about masses,
while, for force, there was an effect of learning goal in the expected direction but an overall
decrease in the strength of evidence relative to passive observation. Most interestingly,
children’s actions were as informative and reactive to the learning goal as adults’ and
appeared stable across the 4-10 age range. Within the child sample, informativeness of
actions did not improve across the age range we tested despite the fact that older children
went on to make more accurate judgments about the properties. Thus, in this setting, and
distinct from some classic findings in higher-level cognition settings, 4-10-year-olds appear
to be at least as capable as adults at probing latent physical properties in goal directed
ways, yet less reliable than adults at using this evidence in explicit judgments.

Actions

Since children’s actions are as informative as adults’, a remaining question is
whether there are systematic differences in the specific types of actions children and adults
performed in service of learning. To explore this question, we now classify each of the
actions that children and adults performed using their touch screen control. We used the
seven qualitative categories of “micro strategy” detailed in Table 3, using the protocol
developed in (Bramley et al., 2018). We then analyze how frequently these categories of
action were used depending on age-group and learning goal. We recorded 4412 instances in
which a participant in the active condition took control of an object for at least 1/6th of a
second.4 We had two independent coders, blind to our experimental hypotheses and
condition, watch video replays of each of each trial, pausing at each action and classifying
them according to our coding scheme using video coding software DataVyu
(Datavyu Team, 2014). We were able to identify a primary category for 84% of
participants actions (see Supplementary materials for full coding resources, checks and
merging). Taking these classifications as labels, we then created average informativeness
“profiles” for each type of action using the Predictive Divergence quantity developed by
(Bramley et al., 2018). Conceptually, Predictive Divergence measures how strongly
informative the instantaneous dynamics are about each physical property, providing an
online “timeline” measure of strength of evidence. For instance, an action that brings
about a situation in which the subsequent direction and velocities of the objects is
expected to be very different if there is a repulsive rather than an attractive relationship
has a high Predictive Force Divergence and similarly for actions whose outcomes depend a
lot on mass have high Predictive Mass Divergence. We compare these against a Predictive

4 We excluded 341 extremely short actions on the basis that they are likely to have been accidental and are
too short to meaningfully categorize.
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Table 3
Strategies observed in Experiment 1.

Strategy Schematic Profiles: Children Adults

a) Encroaching: Grabbing one target
object and moving it close to the other.

B

B

A

PD

Baseline

O
ns

et

Time (s)0 4
0

0.6

Mass

Force

O
ffs

et

b) Launching: Grabbing one of the
target objects and “throwing it” against
the other target object.

B

A

B

B

PD

Time (s)0 4
0

0.6

c) Deconfounding: Grabbing a dis-
tractor object and moving it away from
the target objects (e.g. into a corner). B

A

PD

Time (s)0 4
0

0.6

d)Controlling: Briefly grabbing a fast
moving object and releasing it to slow
it down.

A

B

PD

Time (s)0 4
0

0.6

e)Knocking: Grabbing one of the tar-
get objects and knocking it against the
other (without letting it go)

B BA

PD

Time (s)0 4
0

0.6

f)Throwing: Grabbing a target object
and throwing it, avoiding collision with
any of the other objects. B

A

A

BB

PD

Time (s)0 4
0

0.6

g) Shaking: Grabbing a target object
and rapidly shaking it from side to side. B B

A A

PD

Time (s)0 4
0

0.6

Schematic: Target objects are labeled A or B, and distractor objects are unlabeled. Profiles: Predictive
divergence profiles for coded actions smoothed using a GAM (Hastie & Tibshirani, 1990), with fills showing
99% confidence intervals. Black vertical lines mark onset of control. Shaded horizontal fills and gray vertical
lines respectively indicate range and median time after onset at which the participant let go of the object.
Children (N=44; actions=3115). For comparison, final column shows action profiles from Bramley et al.
(2018) (top; N=40; actions=1829); and for Adults (bottom; N=12; actions=1297).
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Baseline Divergence which is averaged across all six varied target and non-target properties
of the worlds. These smoothed information profiles are shown in Table 3, separated by
age-group and also compared to the Adult sample in (Bramley et al., 2018). This analysis
reveals that all of these actions generally produce more information about target than
non-target properties (colored lines are clearly above the black baseline) but that some are
better at revealing force than mass and visa-versa. Figure 3b shows the peak PD for each
strategy profile. On the basis of this we classified “Encroaching”, “Launching”,
“Deconfounding”, “Controlling” as primarily force-revealing, and “Knocking”, “Throwing”
and “Shaking” as primarily mass-revealing. Figure 3c then shows the frequency of of the
different action labels by age-group and learning goal. A Bayesian mixed-effects beta
regression predicting proportion of force-revealing actions by block and age-group,
including random effects of participant ID confirms that participants performed far more
mass-revealing actions in the mass block (log odds ratio 1.12± 0.16, 95%CI=[0.813, 0.155],
PD>.999, BF>1000), and that children performed a slightly greater proportion of mass
revealing actions than adults (log odds ratio, = −0.428± 0.22, 95%CI=[-0.85,-0.007], PD =
0.977, BF=1.49). There was anecdotal evidence also for an interaction between block and
age-group (log odds ratio 0.585± 0.339, 95%CI=[-0.0754, 1.25], PD = 0.959, BF=1.49).
Finally, to compare individual strategy prevalences, we performed Bayesian mixed-effect
Poisson regressions predicting the count for each strategy type by block and age-group,
with an without interaction term, again including participant ID as a random effect. As
above, we include full results and equivalent maximum likelihood regression with
Bonferroni correction in the Supplement (Table S9). Frequency of encroaching, launching,
deconfounding, throwing and shaking all differed substantially between blocks in the
expected directions (BFs > 29.1). Deconfounding and throwing were more common in
adults (log count ratio for deconfounding = 1.43± 0.44, 95%CI=[0.57,2.3], PD = .999,
BF=63.6 and throwing = 0.94± 0.34 [0.27,1.59], PD = 0.995, BF = 11.5) and shaking was
more common in children (−2.25± 0.57, 95%CI=[-3.4,-1.16], PD >.999, BF>1000).

Thus, we see children and adults apply broadly similar strategies to active learning
with the frequency of performing different actions clearly related to learning goal in ways
that line up with their information content. This analysis revealed differences between
children’s and adults’ actions, with adults more likely to perform deconfounding actions.
Conceptually, these served to reduce the influence of distractor objects and provided
clearer evidence about force particularly as the PD profiles show (Table 3), thus we might
link this kind of behaviour with a kind of “control of variables” approach (Kuhn &
Brannock, 1977). Shaking turned out to be one of the most effective ways to reveal an
objects mass, yet curiously our sample of adults essentially never performed “shaking”
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(1/12 in active condition) while most of the children did (31/41).

Discussion

Our results show that children’s active physical learning is as effective and
goal-adaptive as adults’, and suggests that age differences in performance arise only in the
ability to use the information generated to make accurate inferences. Although we
expected children to perform meaningful interventions, it was striking to find 4-year-olds
already exhibiting adult levels of sophistication and goal-specificity in probing the
properties of the objects in our simulated physical microworlds. This suggests that mastery
in active physical learning emerges earlier in development than in any other context
studied so far, where adult levels of performance can be found only in late childhood or
even later (e.g., question asking or exploration, see Ruggeri & Lombrozo, 2015; E. Schulz,
Bertram, Hofer, & Nelson, 2019).

Our measures of information were based on tracking a set of objects’ trajectories
simultaneously and comparing these against counterfactual simulations that each resolve
the multi-body interactions without fault (Ludwin-Peery et al., 2021). While this provides
a valuable benchmark, examining more computationally frugal and fallible models of
physical reasoning has the potential to add nuance to our notions of about what
constitutes informative dynamics for bounded learners (cf. Bass, Smith, Bonawitz, &
Ullman, 2021; Ullman et al., 2017). That is, it is interesting to consider how computational
limitations might shape what constitutes a physically informative action for human
learners. For instance, according to our Ideal Observer, participants produced more
evidence about mass than about force, yet both children and adults were more accurate in
their force than in their mass judgments. This discrepancy is surprising considering that
people have well-calibrated intuitions about Michottean collisions (Vicovaro, 2018), and
these provide one of the key sources of mass evidence for the Ideal Observer. On the other
hand, the ways that dynamics reveal force and mass may be differentially robust to
perceptual, attentional and computational limitations. Our predictive divergence measure
shows that mass evidence was low most of the time, but spiked briefly whenever the target
objects collided — because the angle of reflection of objects in collisions depends on their
relative masses — and also, in the active condition, when target objects were moved
rapidly under control—because heavier objects react more sluggishly to control than lighter
objects. It will be familiar to anyone who has spent time playing bar billiards that the
angle of exit from collisions between spherical objects is sensitive to their exact angle of
impact — a few millimeters’ imprecision will generally result in a missed pocket. This
implies that even modest sensory imprecision in tracking such objects through collisions
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will dramatically degrade the quality of predicted post-collision trajectories, concomitantly
reducing the quality of the resulting inferences (cf. Smith et al., 2017). In contrast,
characteristically force-related dynamics seem more easily recognizable under perceptual
uncertainty, and presumably are also more robust to uncertainty about the other latent
physical properties (including object masses). Most of the time, attractive objects will
swerve toward one another while repulsive objects will swerve away from one another.5 The
angle of the curvature depends on latent properties including objects’ masses, but the type
of force is recognizable even without accurately predicting the path. According to our
predictive divergence measure, force evidence was more consistently present than mass
evidence. This may have also made force judgments more robust to limited attention,
making it less critical to be looking in the right place at the right moment.

These considerations suggest that process-level accounts of active physical inference
might model people as learning to perform actions that they expect will produce dynamics
that are robust to uncertainty imprecision but also depend strongly on the latent property
of interest. One avenue for future lo investigation is to explore to what extent children’s
and adults’ epistemic actions in the physical world are shaped by their perceptual and
computational limitations (Gong, Gerstenberg, Mayrhofer, & Bramley, Submitted). In the
current context, this might shift the balance away from curating highly sensitive
“Michottean” multi-object interactions towards repeating more robust and stereotyped
actions (such as shaking or lifting) in the case of mass identification. Along these lines we
saw, anecdotally, that participants would often perform the same kind of action repeatedly,
e.g. shaking or launching both targets with a similar motion (e.g. see video replays included
in the OSF Repository (https://osf.io/v9fk2/). We might understand these behaviors
as proto-experimental, facilitating aggregation of summary-statistics (Ullman et al., 2018),
using repetition to average out sources of inferential noise stemming from both perceptual
and computational limitations. Interestingly, this appears to be as much a feature of
children’s active physics learning as adults’. However, adults were more likely than children
to perform deconfounding actions: moving non-target objects out of the way, so reducing
their influences on the dynamics. We expect both children and adults to struggle to
simulate all the objects and forces simultaneously (Ludwin-Peery et al., 2021; Ullman et
al., 2017). Thus, adults’ tendency to deconfound may be indicative of a better awareness of
the need to minimize influence of confounds and so reduce the chance of attribution errors.

It is worth noting that, while the simulated environments were more physically
realistic compared to other active learning tasks from the previous literature, they are still

5 Provided the objects are free to move, not too far apart, and their force is not systematically
counteracted by those of the distractor objects.

https://osf.io/v9fk2/
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a substantial departure from the real world. One basic limitation of touchscreen control is
that it lacks haptic feedback. For example, if interested in the mass of an object in the real
world, one might test how difficult it is to move by monitoring the degree of pushback
when attempting to move it, rather than monitoring how far it moves when given a fixed
impulse. Despite this basic physical information channel being absent in this task, adults
and children were still able to adjust and interact with the environments in epistemically
valuable ways, quickly settling on goal-specific strategies and applying these consistently.
We found no evidence for accuracy improvement or strategy change across trials in either
age group. As another marked departure from the real world, our birds-eye “billiard world”
scenarios eliminate the normal role of gravity. In everyday life, one can use gravity as a
familiar constant to help investigate other properties. For example one might use the effort
required to lift something off the ground as a generic way to estimate its mass, or use a
hanging object’s deflection from vertical to measure its susceptibility to a magnet-like
force. Indeed, everyday mechanisms, from scales to wind socks, use gravity as an indirect
means to measure another property. It would be possible to probe the role of these
remaining dimensions of real-world learning through increasingly immersive virtual reality
learning tasks, e.g. where simulated objects move in three dimensions and haptic gloves
simulate pushback from contact. Alternatively, one could record children or adults’
interactions with real environments using sensors (cf. Kretch & Adolph, 2017). However,
crossing the “reality gap” too quickly runs the risk of losing the computational framework
we are able to apply here to benchmark performance and closely examine the information
produced by actions in a virtual setting.

The fact that we were able to categorize the large majority of participants’ actions
into a small set of proto-experiment strategies, and that these were distributed similarly for
children and adults, speaks to a broader idea that generic investigative action schemata for
probing the physical world coalesce surprisingly early in development. This is an extension
of the familiar idea of learning to learn (Kemp, Goodman, & Tenenbaum, 2010), but goes
beyond the application of domain priors for inference into the application of action priors
for learning in familiar domains conditional on particular epistemic goals. It may be that
both simulation-based and heuristic camps are half right about human physical reasoning.
Identifying latent properties from dynamics does depend on comparing simulation-driven
expectations against observations, but learning of generic action schemata with established
expectations under different properties may go a long way to bootstrap and streamline this
process, such that little new simulation needs to be done online (cf. Ludwin-Peery et al.,
2021). In this sense, one of the most striking results of our experiment was participants’
flexibility. Both children and adults were able to adapt to a dynamic environment that,
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while familiar in some respects, was deeply unreal other respects, lacking basic properties
like a third dimension, gravity, and haptic feedback.

In conclusion, our major finding was that real-time active physical learning is
mastered surprisingly early in development, with children as young as four interacting with
simulated physical objects in ways that are just as goal-specific and informative as the
actions of older children and adults. However, there were still important differences
between children’s and adults’ behavior. Adults made more accurate judgments and were
more likely to take actions that ostensibly made the dynamics simpler and easier to
interpret, such as controlling for the confounding influence of distractor objects by moving
them out of the way. This work provides new insight into the developmental roots of the
human ability to interrogate the physical world and actively drive learning.

Supplemental Material

Additional supporting information is provided in the Supplementary Information.
Data, code and movies of all individual trials can be found in the in the OSF Repository
(https://osf.io/v9fk2/).
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