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Abstract

Inspired by how certain proteins “sense” knots and entanglements in DNA molecules,

here we ask if there exist local geometric features that may be used as a read-out of the

underlying topology of generic polymers. We perform molecular simulations of knotted

and linked semiflexbile polymers and study four geometric measures to predict topo-

logical entanglements: local curvature, local density, local 1D writhe and non-local 3D

writhe. We discover that local curvature is a poor predictor of entanglements. In con-

trast, segments with maximum local density or writhe correlate as much as 90% of the

time with the shortest knotted and linked arcs. We find that this accuracy is preserved

across different knot types and also under significant spherical confinement, which is

known to delocalise essential crossings in knotted polymers. We further discover that
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non-local 3D writhe is the best geometric read-out of knot location. Finally, we discuss

how these geometric features may be used to computationally analyse entanglements

in generic polymer melts and gels.

Polymers; Entanglements; Topology; Knots; Links.

Introduction

Topological entanglements are ubiquitous, and an essential feature of everyday materials and

complex fluids, endowing them with viscous and elastic properties. Entanglements are often

poorly defined and their unambiguous identification and quantification remains elusive.? ?

For example, a knot is a well defined mathematical entity when tied on a closed curve, but

there are many examples in physics and biology, e.g. proteins and chromatin, where knots are

tied on open curves, rendering such “physical” knots much more difficult to define rigorously

and unambiguously.? ? ? ? ? More broadly, a long-standing goal in polymer physics and the

broader soft matter communities is to understand and control the topology of certain systems

from the geometry of (often entangled) 1D curves. This goal encompasses many fields, from

liquid crystals,? optics,? ? fluids,? DNA,? ? ? ? ? ? ? ? proteins,? ? polymers,? ? ? ? soap

films,? ? and soft matter in general.? ? At the same time, the unambiguous characterisation

of entanglements in these systems are often elusive, in turn begging for better strategies to

quantify entanglements in generic soft matter systems.

A striking example of the inherent difficulty in defining entanglements is seen in polymer

melts, whereby the close contact of two chains does not necessarily indicate that chains are

constraining each other’s motion. Instead, so-called “primitive” ? and “isoconfigurational” ?

mean path techniques are far better placed to separate relevant entanglements from irrel-

evant ones. Yet, even these sophisticated techniques often struggle when polymers display

non-trivial topology, e.g. rings.? ? ? Ring polymers are in fact not amenable for standard

primitive path analysis as they do not entangle in the traditional sense as linear polymers
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Figure 1: A. Snapshot of a trefoil knot during a molecular dynamics simulation. B-E.
Illustration of the four geometric descriptors considered in this work. B. Local curvature
(Eq. (3)), C. local density (Eq. (4)), D. 1D writhe (Eq. (5)), and E. 3D writhe (Eq. (6)).

do;? ? e.g. no “tube” can be defined around their contour and they do not “reptate”.? Rings

display architecture-specific topological constraints called threadings? ? which display the

puzzling property to reduce self-similarly over time.? ? Developing a method to robustly and

unambiguously quantifying entanglements in melts of ring polymers is still an open challenge

in the field of polymer physics.? ?

In parallel to these open questions, it is clear that the geometric design of systems with

specific entanglements in their microstructure could in principle allow for the control of

mesoscopic material properties.? ? ? The realisation of woven structures can now be achieved

at both micro- and meso-scales using synthetic chemistry? or 3D printing.? To bypass a

virtually endless trial-and-error approach, it is therefore important to be able to select the

entanglement motifs to embroider in the structures in such a way that they display the

desired mechanical properties.? Interestingly, this problem is not too dissimilar to that of

knitting socks: using solely two types of stitches (“knit” and “purl”), it is possible to create

many distinct motifs, and socks with distinctive elastic properties.? ?

Another example in which topological entanglements are abundant is in molecular biology

and genome organisation. Two meters of genome is packed in a 10 µm nucleus in human

cells. This extreme level of packaging leads to knotting and entanglement which are resolved

by Topoisomerase (Topo2) – a protein that is about 50 nm in size – which can identify
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topological knots from pure geometric entanglements in DNA molecules that are more than

a thousand times bigger.? By a still poorly understood “sensing” mechanism,? ? Topo2

is able to reduce the topological complexity of DNA in vivo? ? ? and in vitro? without

introducing more complex knots.

Inspired by Topo2’s topological sensing - which is necessarily local, unable to account for

the global topology of knotted DNA - here we investigate the possibility that there exist some

geometric descriptors that correlate with the underlying topology of generic closed curves

involved, for instance, in woven structures or polymer melts. To this end, we perform molec-

ular dynamics (MD) simulations of knotted and linked semiflexible polymers in equilibrium

and study the correlation between the position of the shortest knotted and linked arcs with

that of four geometric descriptors: (i) regions of maximum local curvature, (ii) regions of

maximum local density, (iii) regions with maximum local 1D writhe and (iv) regions with

maximum non-local 3D writhe. We note that while Topo2 works on a very specific polymer

- the DNA double-helix - here we are interested in exploring the relationship between local

geometry and global topology on generic polymers, with the hope that our results may be

helpful for better understanding entanglements in generic entangled polymer systems.

In this paper we discover that regions of maximum local density strongly correlate with

knotted and linked arcs and outperform regions of maximum curvature. Surprisingly, we

also find that this effect persists under strong confinement, where the knotted polymer is

confined within a sphere smaller than its size in equilibrium. Finally, we show that 3D writhe

is the best geometrical descriptors to recognise knotted arcs, and it performs consistently

better than other geometric predictors. We conjecture that these local geometric descriptors

could be employed to compute topological entanglements in more complex systems such as

polymer melts, networks, tangles and weavings.
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Figure 2: A. Snapshot of a simulated trefoil knot conformation, color coded in terms of the
bead index. The window lw = 50σ used for the 1D and 3D writhe and the sphere volume
VR of radius R = 30σ used for the local density are also shown. B-E. Curves obtained
via the calculation of the geometric descriptors defined in the text and computed on the
configuration in A: B. local curvature (Eq. (3)), C. local density (Eq. (4)), D. 1D writhe
(Eq. (5)) and E. 3D writhe (Eq. (6)). The beads (180 and 380) corresponding to peaks in
the local density and 3D writhe are highlighted in A-E.

Methods

Simulation details

We model knotted and linked curves as semiflexbile coarse-grained bead-spring polymers

with N = 500 beads of size σ. The beads interact with each other via a purely repulsive

Lennard Jones potential

ULJ(r) =


4ε

[(σ
r

)12

−
(σ
r

)6

+
1

4

]
r ≤ rc

0 r > rc

, (1)

where r denotes the separation between the beads and the cutoff rc = 21/6σ is chosen so

that only the repulsive part of the potential is used. Nearest-neighbour monomers along the
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contour of the chains are connected by finitely extensible nonlinear elastic (FENE) springs

as

UFENE(r) =

 −0.5kR2
0 ln (1− (r/R0)2) r ≤ R0

∞ r > R0

, (2)

where k = 30ε/σ2 is the spring constant and R0 = 1.5σ is the maximum extension of

the elastic FENE bond. This choice of potentials and parameters is essential to preclude

thermally-driven strand crossings and therefore ensures that the global topology is preserved

at all times.? Finally, we add bending rigidity via a Kratky-Porod potential, Ubend(θ) =

kθ

(
1− cos θ

)
, where θ is the angle formed between consecutive bonds and kθ = 20kBT

is the bending constant. We choose this value to mimic that of DNA, as for σ = 2.5 nm

the persistence length would be matched to lp = 50 nm, as known for DNA.? Each bead’s

motion is then evolved via a Langevin equation, i.e. by adding to the Newtonian equations

of motion a friction and stochastic term related by the fluctuation-dissipation relation, where

the amplitude of the stochastic delta-correlated force is given by
√

2kBT/γ, and γ is the

friction coefficient. The numerical evolution of the system is conducted using a velocity-

verlet scheme with dt = 0.01τLJ = 0.01σ
√
m/ε in LAMMPS.? In order to simulate knotted

chains, we initialise the chain of beads by using the well-known parameterisation for torus

knots: (x, y, z)(t) = (R(cos qt+ r) cos pt, R(cos qt+ r) sin(pt),−R sin(qt)) where p and q are

co-prime integers, R and r are two constants, and t ∈ (0, 2π).

In our paper, we want to compute the likelihood that some geometric features (to be

defined below) yield accurate predictions of where the shortest knotted or linked segments

are. To do this we typically consider 1000 configurations taken by dumping the coordinates of

the beads every 104 LAMMPS steps (or 102τLJ). From each simulation we obtain the fraction

of instances in which our predictors (described below) correctly identify the knotted or linked

arc. We then run 64 independent replicas (starting from different initial conformations) and

typically plot the distribution of this fraction in the form of boxplots (see below for details).
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Results

Geometric Descriptors

As mentioned above, we consider four geometric descriptors that allow us to map polymer

beads to a scalar quantity (see Fig. 1 for a visual representation). They are (i) local polymer

curvature (see Fig. 1B)

Γ(i) =
1

n

i+n/2∑
j=i−n/2

arccos

(
tj−1,j · tj,j+1

|tj−1,j||tj,j+1|

)
(3)

where tj,j+1 ≡ rj+1 − rj is the tangent vector at bead j and n = 20 an averaging window.

(ii) Local bead density (see Fig. 1C)

∆(i) =
1

VR

N∑
j 6=i

Θ(R− |ri − rj|) (4)

where Θ(x) = 1 if x > 0 and 0 otherwise. In this equation, VR = 4πR3/3 is the volume of a

sphere of radius R, and we take R = 30σ, slightly larger than a persistence length. We have

checked that other sensible choices of R give similar results. (iii) Local or 1D (unsigned)

writhe (see Fig. 1D) as

ω1D(i) =
2

4π

i∑
k=i−lw

i+lw∑
l=i

|(tk,k+1 × tl,l+1) · (rk − rl)|
|rk − rl|3

(5)

where lw = 50σ is the window length over which the calculation is performed. Finally (iv)

non-local or 3D (unsigned) writhe (see Fig. 1E) as

ω3D(i) =
2

4π

i+ lw
2∑

k=i− lw
2

N∑
l=0

|(tk,k+1 × tl,l+1) · (rk − rl)|
|rk − rl|3

(6)

7



which measures the (unsigned) entanglement of a polymer length centred at bead i against

the rest of the polymer contour.

Eq. (5) is the local generalisation of the well-known “average crossing number” ? and has

been previously used to identify supercoiled plectonemes in simulated DNA,? ? branches in

ring polymers? and self-entanglements in proteins.? Eq. (6) is a generalisation of Eq. (5)

where we do not restrict the calculation of the (unsigned) writhe to occur between contiguous

polymer segments. Intuitively, Eqs. (5) and (6) effectively compute the average number

of times the contiguous (for 1D) and non-contiguous (for 3D) segments of the polymer

display crossings when observed from many different directions. Accordingly, we define the

beads at which our descriptors attain their maximum value as iX =i {X}, where X =

{∆(i),Γ(i), ω1D(i), ω3D(i)}.

Examples of typical curves that we get from the calculation of these observables on

simulated polymers are shown in Fig. 2. The snapshot in Fig. 2A has been color-coded from

red to blue to identify the bead index. Beads 180 and 380 are colored green and purple

to highlight the correspondence with the curves on the right of Fig. 2. One can appreciate

that the local curvature Γ (Fig. 2B) is rather noisy and does not seem to reflect an increase

in entanglements around beads 180 and 380. On the contrary, local density ∆ (Fig. 2C)

displays three local maxima corresponding to increased density of 3D proximal segments

around beads 180 and bead 380. Strikingly, 1D writhe ω1D and 3D writhe ω1D (Figs. 2D,E)

display the most intuitive and marked trends. The 1D writhe ω1D is best suited to detect

self-entanglements over short distances (around lw), while the 3D writhe ω3D is able to detect

self-entanglements over large distances. Intuitively, the peaks correspond to the location of

the essential crossings of the trefoil knot.

Knot Localisation

To identify knotted arcs in our simulated polymer we use Kymoknot,? a free and open-source

software to identify the topology and shortest knotted arcs of closed and open polymer chains.
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Figure 3: In this figure we report kymographs (the evolution of geometric and topological
observables over time). In A, we show in shaded blue the range of beads identified by
Kymoknot that form the shortest knotted arc during one simulation of a trefoil knot. The
inset shows a snapshot of the simulation, corresponding to an instantaneous conformation
with the shortest knotted arc color coded in blue. In B-E we show the argmax value of (B)
local curvature, (C) local density, (D) 1D writhe, and (E) 3D writhe at each time frame
during the molecular dynamics simulation.

The algorithm works by using a minimally interfering algorithm that (either in a top-down or

bottom-up direction) truncates the polymer conformation, computes the convex hull of the

remaining polymer segments, joins the termini outside the so-formed convex hull and then

calculates the Alexander determinant of the closed conformation.? The result of Kymoknot

is the interval within which the shortest knotted arc is located. For a polymer conformation

that evolves in time, we can visualise the output of Kymoknot in a so-called kymograph.

The blue shaded region in Fig. 3A represents the shortest knotted arc within the simulated

polymer as it fluctuates in time. For clarity, we also show a representative snapshot of the

polymer at a given time frame where we have color-coded the shortest knotted arc in blue.

We then directly use the Kymoknot output to count how frequently the iX ’s computed using

the geometric descriptors defined above fall within the shortest knotted interval. We call

this quantity the “colocalisation score”, ρX .
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Figure 4: A. Boxplots showing the colocalisation score of four different knot types using
the four geometric descriptors (plus a random control) over 64 replicas. Each point in the
boxplot represents the colocalisation score (i.e. how many times the geometric predictor is
contained within the Kymoknot-detected arc) computed over 1000 conformations in each
replica. B. Same as A, but accounting for a “buffer” of 10 beads on either side of the
boundaries detected by Kymoknot.

The key point of this work is that Kymoknot recognises the shortest knotted arc by

computing a global topological invariant (the Alexander determinant) of a suitably closed

open curve. On the contrary, the quantities defined in Eqs. (3)-(6) are purely geometric and

have no knowledge of the global topology of the chain. Additionally, 3 of them ∆, Γ, and

ω1D are purely local features that can be extracted from a short polymer segment, measuring

the surrounding segments in close 1D or 3D proximity.

Localisation of knotted arcs by geometric descriptors

Having described the topological and geometrical observables used in this work to identify

knotted and linked arcs, we now aim to address how well the geometric descriptors can

predict the location of knots along polymers. To achieve this, we first visually compare the

result from Kymoknot (Fig. 3A) to the ones obtained via the iX ’s of the geometric descriptors

(Fig. 3B-E). We first notice that the maximum of the local curvature Γ appears to be noisy

and randomly scattered along the contour. This is also the case if we do not perform

the window averaging of the local curvature or if we pick beads separated by a number of

beads. On the contrary, the maximum of local density, 1D writhe and 3D writhe appear to

locate near the boundaries of the shortest knotted arc identified by Kymoknot (Fig. 3A).

We hypothesise that this finding may be related to the concept of essential crossings? ? and

that our geometric predictors may thus be able to identify some of the essential crossings in

the knotted chain.

To more precisely quantify how well our predictors can identify the location of the shortest

knotted arc, we compute the “colocalisation score”, ρX . [We recall that this was defined as
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the number of times that the geometrically predicted iX falls within the shortest knotted

interval detected by Kymoknot.] Fig. 4A shows that for an unconfined, dilute polymer, ρΓ is

similar to one obtained by a random choice of bead, i.e. for a trefoil ρrand ' 50%. Notice that

a computed ρrand ' 0.5 means that, for our choice of parameters, the shortest knotted arc

occupies about half of the polymer contour; this is due to the large polymer stiffness chosen

to match that of DNA and the net effect is that the knot tends to delocalise.? Interestingly,

we observe a much larger colocalisation score for the other geometric descriptors. More

specifically, the local density descriptor i∆ colocalises with the knotted arc roughly ρ∆ = 70%

of the times for a trefoil and more than 80% for the other knot types (Fig. 4A). Additionally,

we find that the 3D writhe is the most accurate predictor, with ρω3D
' 80% for the trefoil

and ρω3D
> 90% for the more complex knots.

Interestingly, if we account for a “buffer”, i.e. an additional 10 beads on either side of

the knot boundaries identified by Kymoknot, we find a further increase in accuracy (see

Fig. 4B), with i∆ reaching more than 80% for all knot types and 3D writhe more than 90%

for all knot types, getting close to 100% for 51, 71 and 819. While local density improves

its predictive power when including the buffer, the 1D writhe does not. Perhaps the most

interesting observation from Fig. 4 is that even if more complex knots delocalise and take

up a larger fraction of the polymer contour (see the random value increasing up to ' 75%),

our geometric descriptors are still significantly more accurate than simply a random choice.

Localisation of knotted arcs under spherical confinement

Arguably, while the semiflexible nature of our chains renders knots rather delocalised over the

contour, considering chains that are more flexible would induce knot localisation,? ? which

is expected to facilitate their recognition by our geometric methods. Localised knots are

defined such that their subtended arc scales sublinearly with the length of the polymers, i.e.

lk ∼ Nα with α < 1. It was previously shown that knots in flexible chains display α ' 0.75.?

On the other hand, under spherical confinement knots are extremely delocalised and display
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Figure 5: A-B. Boxplots showing the colocalisation score for a trefoil (A) and pentafoil (B)
as a function of knot confinement, measured as Rc/Rg where Rg is the radius of gyration of
the polymer in equilibrium. As before, we compute the score over 1000 conformations and
make the boxplot using one value for each of the 64 independent replicas.

α ' 1.? Thus, we ask whether our geometric predictors (and in particular the local density

∆) remain good predictors of knot location under spherical confinement. To study this

regime, we enclose polymers in spherical shells with harmonic repulsive interactions with all

the beads. The radius of the shell Rc is slowly reduced until the desired confinement Rc/Rg

(with Rg being the equilibrium radius of gyration of the polymer in dilute conditions) is

attained. The polymer is then allowed to equilibrate. Finally, we measure the curves Γ(i),

∆(i), ω1D(i) and ω3D(i) as before and, in turn, the colocalisation score, ρX (Fig. 5). The

only change is that we now use R = Rc/8 to compute ∆(i). This is needed because under

confinement the radius of gyration becomes smaller than the original value R = 30σ we

set earlier for the dilute case. We have repeated this calculation for other sensible choices

of R and they produce qualitatively similar results. Interestingly, we observe that ∆ still

outperforms a random process even at values of confinement strength Rc/Rg = 0.25 for both

the trefoil and pentafoil knots (see Fig. 5). It is rather striking that i∆ colocalises with

the knotted arc more than ρ∆ > 95% of the time, meaning that even under these extreme

conditions of self-density, the presence of a knot can be identified via purely geometric

features.

Finally, we note that the accuracy trend displays a non-monotonic behaviour as a function

of confinement strength. In particular, we note a curious dip in accuracy for Rc/Rg = 1. It

would be interesting in the future to explore in detail the physical origin of this behaviour.

Link Localisation by geometric descriptors

In the last part of this paper we consider links as prototypical examples of generic entangled

chains. We perform MD simulations of two N = 500 beads-spring Kremer-Grest polymer
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Figure 6: A. Snapshot of a MD simulation of two rings, each N = 500 beads long, tied
in a Hopf link. Some beads are highlighted and made larger for visualisation purposes.
The algorithm introduced in Ref.? detected the shortest linked segments spanning beads
421 to 460 for chain 1 and 461 to 20 for chain 2 (across the periodic boundary). B. Local
density, ∆g, and C. 3D writhe, ω3D,g, computed considering all the beads in the system. D.
Colocalisation score for the single chain components and the overall link from the “global”
predictors, Xg. E. Local density, d∆, and F. 3D writhe, dω3D, computed from the difference
of global and self components of the predictors: dX(i) = Xg(i) −Xs(i). G. Colocalisation
score for the single chain components and the overall link from the differential predictors,
dX.

chains tied in a simple Hopf link. We then measure the shortest linked portion using the

method described in Refs.,? ? ? ? and compare the resulting segment with the ones given by

our geometric descriptors. Briefly, the algorithm works as follows: from a pair of linked curves

with topology τ computed using the two-variable Alexander polynomial,? it is possible

to obtain the shortest physical link by looking at all possible pairs of subchains (γ1, γ2)

conditional that they display the same topology as the original link. The algorithm employs

a top-down search scheme based on a bisection method and outputs the index of the beads

in chain 1 and chain 2. We then count how likely it is that the iX ’s obtained using the

geometric predictors fall within the shortest linked regions of the two chains.

We here compare the results from the link localisation algorithm with our two best per-

forming descriptors, i.e. the local density, ∆, and the 3D writhe, ω3D. Since we now consider

two chains, we can define ∆(i) and ω3D(i) as “self” (when computing them considering only

the chain that hosts the ith segment) or as “global” (when considering all beads in the system

in the calculation). The trend of Xs(i) reflect the entanglements of the chain with itself while

Xg(i) mirrors any entanglement segment i is subjected to. In Fig. 6A-C we show that for

a randomly chosen simulation snapshot, the global features Xg(i) display several maxima

and the higher ones correspond to the beads forming the link. For the particular snapshot

in Fig. 6A, the link localisation algorithm? detects the shortest linked arc in chain 1 (red

in the figure) to be 421-460 and the shortest linked arc in chain 2 (blue in the figure) to be

461-20 (through periodic boundary conditions at N = 500). We highlighted the positions of
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these beads in Figs. 6A-C, E and F, to show the agreement with ∆g and ω3D,g.

The colocalisation score calculated on the global geometric predictors (shown in Fig. 6D)

suggests that these features correlate well with the location of the link. As expected, we do

not see any significant difference when comparing the accuracy of chain 1 and chain 2, and we

observe that the colocalisation score for the total link, i.e. the conditional probability that

both linked segments contain iXg , appears to be roughly the product of the two colocalisation

scores for the single components. Importantly, Fig. 6D shows that the geometric predictors

significantly outperform the random prediction (even by a factor of 5 or more).

We then noted that the difference of the global and the self components of the geometric

predictors, defined as dX(i) = Xg(i) − Xs(i), significantly decrease the fluctuations of the

curves. Intuitively, dX(i) counts the contributions of inter-chain segments on the segment

i (see Fig. 6E,F). Strikingly, we find that idX , i.e. the bead hosting the maximum value

of the difference dX, yields an even better colocalisation score, with values around 90%

for the individual link components and 80% for the total link (Fig. 6G). The ratio of the

localisation accuracy of the geometric predictors and the random choice is now 10 or more.

Arguably, this means that the inter-chain correlations are the most important contribution

to entanglements. This is also in line with the situation in entangled polymer melts, where

total density fluctuations are typically small, while inter-chain density fluctuations are more

informative of the system dynamics.? ?

Discussion and Conclusions

What makes a curve knotted? Inside our cells, how do certain proteins recognise complex

topologies by scanning the DNA locally? How can we unambiguously identify relevant

entanglements in polymeric systems? In this work we started from the hypothesis that

knotted and linked curves in 3D may harbor some geometric features that correlate with the

underlying topology. To this end we have performed MD simulations of knotted and linked
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curves and have analysed four geometric predictors: (i) local curvature, (ii) local density,

(iii) 1D writhe and (iv) 3D writhe. We used the geometric predictors to locate the shortest

knotted and linked arcs and compared these predictions to the ones given by state-of-the-art

knot and link localisation algorithms (Refs.? ? ? ).

We discovered that local curvature is equivalent to randomly choosing a bead within

the contour. This is interesting as there are models arguing that Topoisomerase, a protein

involved in simplifying knots in DNA, may sense curvature to locate a knotted segment.?

Our work suggests that this would be a poor search strategy and would yield a rather

inefficient topological simplification pathway. Admittedly, our model does not capture the

torsional rigidity and the double-helical structure of DNA and we thus refrain from arguing

that our results clarify the search strategy of Topoisomerases on DNA. At the same time, our

results suggest that in polymer melts and other generic thermally-driven entangled systems,

such as weavings, the points of maximum curvature of the filaments are not necessarily the

most entangled.

On the other hand, we find that local density is a far better geometric predictor of

topologically complex states. In our simulations, the bead in the polymer with the largest

number of neighbours (largest local density) is often also part of the knotted or linked

segment (with accuracy ' 80% for simple knots and the Hopf link and up to 90% for more

complex knots or under confinement). This is rather striking in that the calculation of local

density is restricted to beads that are 3D proximal to bead i and there is no information

on the global topology of the curve. One consequence of our findings is that sensing the

local density of DNA segments could be a good strategy for Topoisomerase to quickly locate

knotted and entangled arcs. Such a binding strategy may be naturally realised by a protein

design that presents abundant positively charged amino acids on the surface of the protein,

in such a way as to maximise unspecific interactions with negatively charged DNA. Indeed,

Topoisomerases typically present a positively charged area in the region of DNA-binding

that is far larger than the one needed to bind DNA.? ? Again, we stress that our polymer
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model does not fully capture DNA’s complexity. In the future we aim to perform a similar

analysis on models that can capture twist? ? to quantify the impact of torsional rigidity on

these metrics. Furthermore, it has been suggested that in knotted and closed DNA there

may be an interplay of both knots and plectonemes; in this case the geometric descriptors

measured here may struggle to identify the essential crossings of the knot from the writhe of

the plectoneme. Future studies will illuminate this issue. In spite of the limitations of our

present model in modelling DNA, we conjecture that our results may be used to quantify

entanglement motifs in tangled and weaved structures.? ? For instance, we expect that the

pattern of local density along the entangled curves will be motif-dependent and that there

may be a relationship between these patterns and the corresponding mesoscopic elasticity.

Again, we hope that future work will explore this direction further.

Finally, we discover that 3D writhe is our best descriptor with a consistently high (& 90%)

accuracy in identifying the knotted and linked arcs. This observation is less striking than the

one for the local density as 3D writhe is not (strictly speaking) a local geometric predictor.

In other words, the calculation of 3D writhe has to scale as N2 while the local curvature,

density and 1D writhe scale as N . We note that local density can make use of neighbour

lists, hence why we claim it could scale faster than N2.

In line with this, we note that state-of-the-art algorithms that search for knotted and

linked segments on polymeric systems? ? ? or proteins,? ? ? require a considerable amount

of computational time. For instance, when run on a single CPU, knot localisation on our

N = 500 chain in dilute conditions takes about 2 milliseconds but under confinement takes

up to 300 milliseconds per conformation. On the other hand, the calculation of the local

density profile takes on average 0.3 milliseconds. Similarly, link localisation for our two

N=500 chains takes up to a minute even in dilute conditions on a single conformation. On

the contrary, the calculation of the local density profile for the same link takes 30 milliseconds

per conformation. For this reason we argue that adding a preliminary search step using

geometric predictors, before launching a full blown topological search scheme, could be a
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way to render search algorithms more efficient in the future.

It is appropriate here to highlight that entanglements are among the most elusive and

slippery topics in polymer science. Algorithms such as isoconfigurational mean path? and

primitive path analysis? are the “gold standard” to quantify relevant entanglements in poly-

meric systems and yet they fail in the case of ring polymers.? We hope that the geometric

descriptors proposed here may be a complement to these tools and could be used to identify

entanglements in complex polymeric systems. We speculate that (inter-chain) local density,

1D and 3D writhe as defined in this work may yield interesting results not only in melts of

ring polymers but also in molecular (and periodic) weavings.? ? ? ? We expect that different

entanglement motifs are associated with distinct patterns of our geometric observables. In

turn, they may be used to predict the global elastic response of the entangled network to

certain perturbations. To the best of our knowledge, these metrics have not yet been tried

on polymer melts or molecular weavings.

One intriguing application of our results is on Olympic gels.? ? ? ? Indeed, there is no

simple way to compute the extension of three or more components of the Gauss linking

number – known as the Milnor’s triple linking number? – on systems of ring polymers. This

means that it is extremely challenging to unambiguously discern three, physically insepara-

ble, Borromean rings from three unlinked, and physically separable, rings. Systems made

of interlinked “Olympic” rings,? such as the naturally occurring Kinetoplast DNA? ? or

synthetic equivalents,? are likely to display Borromean, and higher order Brunnian, con-

figurations of interlinked rings.? This means that computing the pair-wise (Gauss) linking

number between rings is likely not enough to predict the mesoscopic elasticity of Olympic

gels, as this metric completely neglects contributions from Brunnian links. We hope that our

geometric predictors may be able to offer an alternative to the lack of (simple) topological

invariants to characterise these elusive conformations. For instance, a step towards this goal

in the near future would be to study the behaviour of our geometric predictors in simple

Borromean rings in dilute conditions.
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Finally, we note that the data generated by our geometric predictors lend themselves

fittingly to be used as input features for machine learning algorithms, e.g. neural networks,

to identify knots and entanglements. This is because our predictors are invariant under

translations and rotations of the conformation and under relabelling of the beads. In the

future, we thus aim to couple our geometric observables to Machine Learning, as recently

done in Ref.,? to identify and localise knots and entanglements in more complex systems.
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