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Abstract 

Twin and adoption studies compare the similarities of people with differing degrees of 

relatedness to estimate genetic and environmental contributions to trait population variance. The 

analytic workhorse of these kinds of variance-focused designs is the intraclass correlation, which 

estimates similarity between pairs of individuals. Group means, by contrast, play no overt role in 

estimating genetic and environmental influences. Although this focus on variance has made very 

important contributions to understanding psychological characteristics, we contend that the 

exclusion of mean effects from behavioral genetic designs may have obscured key environmental 

influences and impeded full appreciation of the ubiquity and nature of gene-environment 

interplay in human outcomes.  We provide empirical examples already in the literature, as well 

as a theoretical framework for thinking through the incorporation of mean effects using largely 

forgotten, non-Mendelian theory regarding how genes influence human outcomes. We conclude 

that the field needs to develop models capable of fully incorporating mean effects into twin and 

adoption studies. 
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Psychologists seek to understand the origins and development of human behavior, 

addressing the question “Why do people behave/learn/emote as they do?”. They examine specific 

behaviors and mental activities ranging from emotional regulation to spatial reasoning, often in 

socially discernible lifespan periods such as infancy, adolescence, and ‘late life’. In the process, 

psychologists working in different content areas tend to ask somewhat different kinds of 

questions and apply different study designs and statistical techniques, almost always using either 

observational/correlational approaches or experimental approaches but not both. This is a 

reasonable approach to science if researchers in different topic areas ultimately collaborate to 

piece together their various close-up views of the human mind as a whole, but all too often, they 

remain too busy examining further details of their own ‘bits’ to benefit from or inform the work 

of others.  

Behavioral genetics is one such focal area. What distinguishes its approach from most 

other areas of psychology is explicit recognition that genetic influences need to be directly 

considered in approaching psychological questions.  This has been easier said than done, 

however, both because for many years it was not possible to observe the genome directly and 

because genotype-environment interplay appears to permeate nearly every aspect of life, even 

those seemingly “environmental”. In non-human animal research, genetic involvement has been 

addressed in many ways, including overt breeding, cross-fostering, cloning, and knockout 

experiments. Human experiments of this sort are obviously unethical, but it was recognized long 

ago (Burks, 1928; Galton, 1875) that so-called “experiments of nature” could provide 

information about the contributions of genetic and environmental influences to naturally-

occurring human behavioral differences. 
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These classical natural experiments compare similarities of people with differing degrees 

of relatedness (genetic and/or environmental) to estimate genetic and environmental 

contributions to the variance in given characteristics. Twin pairs have been the relationship of 

choice for much of this work because they offer a particularly sharp genetic relatedness contrast 

coupled with common age and prenatal experiences, as well as similar pair-by-pair rearing 

situations in most cases. When monozygotic co-twins are more similar to each other on a focal 

characteristic than are dizygotic co-twins, we infer the presence of genetic influence on the 

characteristic’s observed sample variance.  Larger differences in similarity with zygosity imply 

larger levels of genetic involvement of some kind (direct or via genotype-environment interplay). 

Similar inferences about population-level genetic variance can be drawn when adopted offspring 

are shown to be more similar to biological relatives (e.g., parents, siblings raised by the 

biological parents) than to adoptive relatives.  

Like all studies, twin and adoption studies rely on critical underlying assumptions, 

violations of which can distort study estimates (Falconer, 1960; Keller & Medland, 2008; Keller, 

Medland, & Duncan, 2010), and doubters of genetic influences on human behavior continue to 

criticize them on this basis (C. H. Burt & Simons, 2014).  Fortunately, in the past 20 years or so, 

behavioral geneticists have also developed/ leveraged technology enabling the tabulation of 

unrelated individuals’ molecular genetic variants (Visscher, Brown, McCarthy, & Yang, 2012; 

Yang, Lee, Goddard, & Visscher, 2011).  These molecular approaches have been used to 

successfully quantify associations between variants among people’s genomes and their 

psychological characteristics. In doing so, they have corroborated many conclusions from twin 

and adoption studies, and in particular the conclusion that polygenetic influences make 

substantial contributions to behavioral and psychological characteristics. 
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Twin and adoption designs thus allow researchers to simultaneously investigate genetic 

and environmental influences, and in doing so, offer key population-level information on how 

people behave/learn/emote they do. Conceptually, the analytic workhorse of these kinds of 

variance-focused twin-family studies is the intraclass correlation (ICC), which indexes similarity 

between paired entities such as twins (see Table 1).  Like the interclass (Pearson) correlation, the 

ICC is a covariance standardized on its respective variances that quantifies the degree to which 

mean deviations of the members of pairs (groups) within data co-vary systematically. The core 

observation that makes it possible to distinguish genetic from environmental variance in 

behavioral genetic studies is thus the relative extent of similarity in individual differences around 

a variable’s mean among pairs of individuals with specific amounts of genetic relatedness 

(monozygotic and dizygotic twins; full and half-siblings and cousins, etc.), with means 

themselves all but ignored. To estimate genetic variance, the basic formula is: A (‘additive’ 

genetic variance, assuming each genetic variant acts independently – itself a large and 

questionable assumption) = (rMZ-rDZ)*2, where r represents ICC (although in practice variance 

components are nearly always estimated using structural equation models of twin covariances). 

That is, we compute the similarity of MZ twins and that of DZ twins, respectively, and multiply 

the difference between their respective similarities by two (since DZ twins share an average of 

50% of their segregating genes, whereas MZ twins share 100%). Analogous formulae reflecting 

their proportions of shared segregating genes are used with other pairs of relatives.  

Group means thus play no overt role in traditional (or ‘simple’) behavioral genetic 

interpretations (see Table 1), which are instead focused on variances. Instead, means are usually 

presented as simple descriptive statistics to check the sample’s ability to represent its underlying 

population, and/or included in structural equation models to ensure identification. This is 
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unfortunate, since means and variances index different statistical properties of variables’ 

distributions, each with their own implications for interpretation. What’s more, means and 

variances are statistically independent of one another when data are normally distributed 

(DeGroot, 2012).   

The one exception to this lack of consideration of means in modern behavior genetics is 

seen in genotype-environment interaction (GxE) models (e.g., Purcell, 2002), which test whether 

one variable moderates another’s variance components. Even here, however, researchers model 

means only to regress any covariance between the moderator and the outcome from the outcome. 

This is done to circumvent genotype-environment correlational confounds, in the same way that, 

for example, age or sex are removed from consideration in regressions by placing them in 

equations before the focal variables and examining the significance of change-in-F statistics. As 

a consequence, the moderator’s influence in these GxE models is thus estimated exclusively on 

the variance unique to the outcome variance. The core interpretive focus is still centered on the 

variance, with means effectively ignored. This treatment “throws the baby out with the 

bathwater” in many respects. That is, what typically motivates people to apply GxE moderation 

models is awareness of association between the two variables, such that mean levels of the 

variable termed ‘DV’ vary systematically from one moderator interval level to the next. 

Whatever drives this is inevitably bound up in the two variables’ covariance – with DV mean 

levels that vary systematically from one IV interval to the next – which the model explicitly 

regresses away to streamline interpretation of the interaction term.   

In sum, twin models (both simple and GxE) are focused almost exclusively on 

understanding the origins of variance around the mean, with next to no attention given to the 

mean itself. We argue below that this exclusion of mean effects from behavioral genetic 
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interpretations may have obscured key environmental influences and impeded full appreciation 

of the ubiquity and nature of gene-environment interplay in human outcomes.  We begin by 

providing concrete examples in the literature. We then discuss prior work attempting to reconcile 

considerations of means and variance. We close by providing a broader framework for 

conceptualizing the different implications of means and variance for our understanding of 

genetic and environmental influences. 

How our statistical focus constrains our causal inferences: Some concrete examples 

To make abstract topics less esoteric, concrete examples are often helpful. There are 

many from which to choose. As discussed in Burt et al. (2019), biological males engage in 

significantly more aggression and antisocial behavior than do biological females across the 

lifespan, with typical Cohen’s d effect sizes ranging from .4 to .8 (Archer, 2004). This male 

preponderance persists across numerous human societies and across most mammalian species, 

including humans’ nearest phylogenetic cousins, the chimpanzee and much more peaceful 

bonobo (Archer, 2004). Despite this, variance decompositions in twin-family studies have nearly 

all indicated that 1) the same genetic and environmental influences underlie antisocial behavior 

in males and females, and 2) these genetic and environmental influences are equally influential 

in males and females (S. A. Burt, Slawinski, et al., 2019). Findings like these pose a conundrum: 

how do we make sense of pronounced mean differences if not via differences in the underlying 

genetic and environmental influences?  One factor may well lie in the fact that behavioral genetic 

analyses have been restricted to decompositions of the variance around means without 

considering or interpreting the mean differences themselves. This matters since broad-scale 

underlying influences that do not differ in within-sample groups – for example, cultural norms 

for girls against aggression and greater male exposure to prenatal testosterone – are not 
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detectable in decompositions of variance, but may contribute to mean differences across sex.  

Focusing only on variances thus limits our interpretations in ways we may not realize. Focusing 

only on mean differences and ignoring the variance would be just as problematic, albeit in the 

other direction, since it is extraordinarily doubtful that all girls in the sample are socialized 

identically against aggressive behavior and that all male fetuses receive identical exposure to 

testosterone and/or are identically sensitive to it.  

However, the effects in question may be more subtle as well. Consider poverty and 

environmental disadvantage, which predict many negative outcomes, including physical health 

problems, antisocial behavior, depression, anxiety, ADHD, poor academic performance, school 

delay/dropout, and low occupational attainment (Brooks-Gunn, Duncan, Klebanov, & Sealand, 

1993; Holz, Laucht, & Meyer-Lindenberg, 2015; Leventhal & Brooks-Gunn, 2000; Lynam et al., 

2000). Although correlations/regression coefficients/structural equation model parameters of this 

kind are often interpreted as if the two variables are moderately associated in everyone, it is in 

fact the case that the links between environmental disadvantage and deleterious outcomes are not 

observed in everyone to the same degree, and outcomes overlap considerably between them. 

Indeed, even the most cursory examination of the data scatterplot of a rather typical .35 

correlation (see Figure 1; reprinted with permission from Turkheimer et al., 2017) makes clear 

that many points lie rather far from the correlation line, and quite a few of those points suggest 

no association at all between the two variables. The cases lying on or very close to the regression 

line thus compensate for these ‘wonky’ cases to generate the correlation (effectively the mean of 

the individual points’ indicated associations, assuming all else equal, which it rarely is).  

Perhaps even more importantly, the amount of variance around the regression line can 

also vary with particular environmental features. Several studies (S. A. Burt, Pearson, Carroll, 
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Klump, & Neiderhiser, 2020; Hanscombe et al., 2012; Johnson et al., 2010; Eric Turkheimer, 

Beam, Sundet, & Tambs, 2017) have observed more outcome variability (and often considerably 

more variability) in disadvantaged contexts (or low levels of advantaged contexts, depending on 

how environmental quality is operationalized). This can also be seen clearly in Figure 1 – in fact, 

the figure’s original point was that both the mean and the variance in offspring cognitive ability 

clearly co-varied with parental education. That is, parents with more education tended to have 

offspring with higher cognitive ability scores, but this association was also “visibly 

heteroscedastic, with reduced variation around the regression line at higher levels of parental 

education…” pg. 509, Turkheimer et al., 2017).  Subsequent biometric analyses, which attempted 

to control censoring in the data to mitigate the effects of the heteroscedasticity, further suggested 

that the reduction in variance with greater parental education could be attributed to greater 

additive genetic variance, less shared/family-level environmental variance, or both.  In other 

words, offspring cognitive ability appeared to be significantly more genetic and/or less shared 

environmental when parents were better educated.  Other studies in the US have observed similar 

patterns when examining associations between parental SES and offspring cognitive ability (see 

meta-analysis by Tucker-Drob & Bates, 2015).  

Samuelsson and colleagues (2008) also observed a disambiguation of means and 

variances, although there were in a different direction and were in response to at least partially 

distinct environmental experience (i.e., the onset of formal reading instruction). The authors 

longitudinally examined the heritability of reading ability at the ends of both Kindergarten and 

first grade in Australia, the United States, and Scandinavia (Samuelsson et al., 2008).  Their 

reported means, standard deviations, and heritability estimates are presented in Table 2. As 

shown, mean reading skills increased dramatically during the one-year study period in all three 
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counties, although the magnitude of this increase varied by country (i.e., it was 4-fold in 

Scandinavia, 3-fold in the United States, and 2-fold in Australia). The variances in reading skills 

also increased during the one-year study period, but these increases were far less dramatic.  

Finally, although genetic influences were already proportionately important in Australia during 

Kindergarten, this was specific to that cultural context; genetic influences during kindergarten 

were less salient in Scandinavia (33%) and the United States (68%). A year later, however, 

heritabilities were high in all three countries (79-83%). Shared environmental influences 

displayed the opposite pattern. These findings were thought to have reflected the timings and 

intensities of early reading instruction in those countries: children in Australia receive 

compulsory reading instruction in kindergarten and first grade, whereas it does not begin until 

first grade for children in Scandinavia.  This was interpreted to suggest that genetic influences on 

reading ability may be ‘activated’ by the onset of reading instruction.  Unlike the Turkheimer, et 

al. (2017) example, however, in this case the greater genetic variances corresponded with greater 

mean reading skills and less so with greater total variances.  

Adoption studies approaching similar etiological questions by evaluating mean 

differences between siblings raised in separate households have had an entirely different analytic 

and interpretative focus (Capron & Duyme, 1989; Schiff, Duyme, Dumaret, & Tomkiewicz, 

1982; van IJzendoorn & Juffer, 2005).  Schiff et al. (1982), for example, obtained indices of 

cognitive ability (IQ) in 32 children of unskilled workers who had been adopted away at an 

average age of 4 months into wealthy families, and compared their IQ scores and academic 

progress to those of children who had remained in their birth families. Among these were 

biological half-siblings of some of the adopted children who had remained with at least one 

biological parent. The adopted children scored on average 14 points higher than did their 
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biological half-siblings and were only 25% as likely to be required to repeat a grade. Consistent 

with these results, a meta-analysis of the few available studies on this topic (Van Ijzendoorn, 

Juffer, & Poelhuis, 2005) suggested that mean IQ differences between adopted children and their 

non-adopted biological siblings or same-aged peers (who stayed in the institutions in which all 

were initially placed) were very large, on the order of 1.17 standard deviations.   

Although fascinating, none of these experimental studies examined sibling similarities in 

individual differences around the means, restricting their focus to the means themselves. Put 

another way, their research focus was on ‘main effects’, or those involved in mean differences 

between groups, which were interpreted as if they operate uniformly causally on everyone – all 

else assumed equal – despite omnipresent variance around the category means and virtually 

always substantively overlapping group distributions. In other words, these kinds of 

experimentally-based studies typically interpreted the unmeasured variance as if it were simply 

noise (rather than evidence of individual genetic influences). 

In short, both means and variances clearly vary with particular exposures but do so in 

different ways. Despite this, twin-family studies restrict their analytic focus to variance 

differences alone, evaluating the extent to which variance around a variable’s mean in pairs of 

individuals grouped by extent of familial relationship fall short of completely randomly 

occurring expectations, without regard for its mean or potential systematic differences in the 

means among either pair members or pair groups.  This focus differs entirely from that in 

traditional experimental studies, which center on the extents of difference among the means of 

condition-manipulated groups, with little or no regard for the variances around those means. 

Learning from our scientific history 
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Current behavioral genetic theory is silent on the possibility that we may be able to obtain 

additional information from means, but this has not always been the case. Decades ago, during 

the height of the nature-nurture debate, the different inferences obtained from evaluations of 

mean differences and those of correlations formed the empirical core of the Two Realms 

Hypothesis (E. Turkheimer, 1991). Under this proposal, mean developmental functions and 

individual differences around the mean were conceptualized as causally independent phenomena, 

such that the environment accounts for group differences (as captured by mean differences 

across reared-apart relatives) and genotype accounts for individual differences (as captured by 

correlations between reared-apart and reared-together relatives). In this view, group differences 

were viewed as highly malleable whereas individual differences were less so. By making space 

for both the ‘nature’ and the ‘nurture’ sides of the debate, the Two Realms hypothesis effectively 

provided an “escape from the dilemma presented by individual- and group-difference results of 

adoption studies” (Turkheimer,1991; pg. 393).   

Although emotionally appealing, the Two Realms theory was quickly shown to be 

implausible on both statistical and conceptual grounds.  Turkheimer (1991) astutely noted that 

mean ‘outcome’ differences can be represented just as easily by dichotomous group membership 

(or environmental feature) variable that is regressed on the outcome. What’s more, Turkheimer 

(1991) argued that it was not feasible for group means to be inherently more malleable than 

individual differences among the members of those groups, since both types of studies measure a 

single etiologic process – namely, the influences of genotypes and environments on individual 

outcomes. So convincing were Turkheimer’s arguments that the Two Realms Hypothesis has 

since faded into the annals of history.  
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But, as also noted by Turkheimer (1991) and as demonstrated in the examples above, the 

discrepancy between the two types of studies very much remains – mean differences between 

reared-apart relatives are routinely larger than would be expected based on the very small within-

group environmental relations observed in correlational data from adoption studies. Such 

observations, point to very different kinds and extents of environmental impacts. We thus agree 

with Turkheimer (1991) that a more complete understanding of causality requires analyses that 

incorporate and analyze both mean differences and correlations/variance decompositions.  

However, we further argue that although both variance decompositions and studies of means are 

measuring the influences of genotypes and environments on individual outcomes – the ‘single 

etiologic process’ outlined by Turkheimer (1991) – the two statistical moments are in fact 

capturing different elements and levels of causal impacts.  Namely, ‘cause’ is inferred via 

sources of individual differences in variance-based studies, but by experimentally-manipulated 

environmental sources of relative group similarities in means-based studies.  The focus on 

variance among individuals in the former ignores intervention and macro-level environmental 

effects that could be important at a population level (e.g., effects of governmental policies, 

widespread pollutant exposures, climate change, epidemics, broad cultural forces, species-wide 

but sex-specific organizational effects of prenatal hormones, etc.). In sharp contrast, the means-

only focus relies on the assumption that all genetic influences have been randomized during 

sampling, and thus eliminated from consideration (which is extraordinarily doubtful since 

genetic and environmental influences are rarely independent in naturalistic settings and gene-

environment correlation is very common and socially powerful). In short, by restricting their 

examinations only to particular statistical moments and ignoring other statistical moments, we 
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contend that both variance-focused and means-focused studies can and probably often are 

interpreted in overly simplistic and sometimes misleading ways. 

Unravelling the etiologic implications of links between means and variances 

The differences in the respective analytic foci of behavioral genetic and experimental 

studies thus have potentially enormous consequences for their causal inferences regarding 

etiology.  Despite this, different patterns in the means and variances of a given set of data are 

rarely even noted in studies of genetic and environmental influences, much less considered 

important in understanding the development of associations in question. We suspect that this 

blind spot is made possible by the prevailing Mendelian/Fisherian view (Fisher, 1919), which 

assumes that (among other things) 1) genetic variants have direct effects independent of 

environments, and 2) heritability (the proportion of population variance attributable to genetic 

variance) is a reasonable indicator of the aggregate extent to which genes “matter” for a given 

trait.  Neither of these assumptions has stood the test of time.  It is now well known that gene-

environment interplay is a key contributing factor to psychopathology, psychological 

characteristics, and even physical features such as eye and hair color (Johnson, 2007; Ridley & 

Pierpoint, 2003; West-Eberhard, 2003). What’s more, there is no evidence that highly heritable 

traits are more likely to be directly and additively influenced by genes than are less heritable 

traits. Heritability estimates for breast cancer, for example, are only around 27% (Lichtenstein et 

al., 2000; Möller et al., 2016), yet particular genetic variants have been identified that appear 

strongly to predict breast cancer for the individuals who have them (i.e., BRCA1 and BRCA2). 

Even here, however, these variants are not ‘deterministic’ – not all carriers get breast cancer – 

and these variants are quite rare, so overall they account for very little population variance in 

breast cancer occurrence. A typical rationale for discrepancy between heritability ‘magnitudes’ 
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and ability to identify influential genetic variants is that some variants are more ‘penetrant’ (i.e., 

are more directly causal) than others.  

However, there are other possible explanations that rely on a developmental, non- 

Mendelian/Fisherian theory of genetic influences (Pigliucci, 2003, 2005; Schmalhausen, 1949). 

Ivan Schmalhausen was an ecological evolutionary geneticist who recognized that environments 

continuously change, both permanently (e.g., climactically, via earthquakes and volcanoes, via 

human actions such as deforestation for construction and/or agriculture) and cyclically (e.g., 

diurnally, seasonally, predator-prey imbalances), relative to organismic lifespans. These changes 

demand adaptations that all individual organisms must make or perish.  Organisms’ adaptations 

to permanent change stabilize in relatively few generations (as observed in Drosophila;  

Waddington, 1942) but do so to different degrees depending on relevant population 

genetic/environmental structure (e.g., gene-environment stratification), involved trait 

distributions (variances, skews, etc.), extents of change and potential for multiple ways of 

adapting, and relative frequencies of relevant genetic variants. For their part, many cyclical 

changes (e.g., seasonal, diurnal) are so common as to be pervasive facts of life. They tend to 

stabilize ecologies dynamically, in transactional equilibria between environmental cycles and 

population behavioral variations, separating the genetic variants underpinning them from these 

regular fluctuations and, in recompense, increasing regulatory complexity underlying those 

variants’ expression and its variability. 

 This ‘regulatory complexity’ consists, Schmalhausen (1946) suggested, of genetic 

‘redundancies’ – multiple genetic variants that can, together or alone – bring about emergence of 

‘typical’ developmental trajectories. From this perspective, our genes would be better 

conceptualized as toolboxes of rather non-descript, multiply combinable components that, like 
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houses built using Lego bricks, can be cobbled together in all kinds of different ways to bring 

about any one ‘outcome’ such as pubertal development, effective management or marketing 

skills, or ways to answer matrix reasoning problems. Evolutionarily, preserving many genetic 

variants that primarily regulate others’ expression is much more efficient than requiring 

environments to select out variants that disrupt critical development. Under Schmalhausen’s 

theory, the extreme polygenicity (Boyle, Li, & Pritchard, 2017) we now routinely observe in 

psychological and many physical characteristics (Chabris, Lee, Cesarini, Benjamin, & Laibson, 

2015) would thus be inevitable. 

Evolutionary and developmental genetic experiments with model organisms have long 

offered evidence that Schmalhausen (1946) was ‘on the right track’. Schmalhausen posited that 

apparent genetic variance in developmental characteristics important in survival and reproductive 

capacity can vary with environmental conditions such that harsh conditions demand larger 

“teams” of expressing variants to maintain normal development, and benign conditions allow 

more either to remain silent or to direct expression towards taking greater advantage of pre-

existing “outcome” opportunities via other characteristics. What’s more, Schmalhausen (1946) 

suggested that when populations face severe stresses such as war, economic crises, or epidemics, 

they become more vulnerable to small perturbations in other aspects of their environments. This 

occurs because putatively separate environmental contexts are often interrelated, and the 

developmental disturbances created by the major stress ripple through them all. This undermines 

their stability and recruits usually silent genes into expression to meet immediate coping needs 

and imminent developmental milestones, without regard for longer-term consequences of that 

expression. The new genetic ‘kludge’ destabilizes developmental mechanisms, which, in turn, 

creates its own vulnerabilities, launching a vulnerability cascade. Furthermore, individuals 
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within the population inevitably vary in vulnerability to the primary stress, and in extent and 

nature of their experiences of and responses to that stress. The end result is greater population 

variance in outcomes, a process later termed “Schmalhausen’s Law” (Lewontin & Levins, 2000). 

As indicated in the example below, however, this “Law” may not hold when sources of stress are 

so strong as to preclude genes’ ability to kludge together effective coping responses. 

Johnson (2012) further integrated Schmalhausen’s (1946) theory with modern 

understandings of genotype-environment interplay, proposing that, when the main effects of 

environmental conditions are strong enough across individuals, they act to both alter mean trait 

levels (increasing or decreasing, as the case may be) and to suppress genetic sources of variance 

in the population. The remaining variance would thus appear to be environmental in origin due to 

underlying gene-environment correlation (and resulting population genetic stratification).  When 

main environmental effects are less extreme or less consistent among organisms, however, they 

have weaker effects on the mean and release otherwise unexpressed population genetic variance.  

Viewed from Schmalhausen’s perspective, interpretations of Turkheimer et al.’s (2017) 

and Samuelsson et al.’s (2008) results are as follows: advantageous contexts such as high 

parental education and reading instruction released otherwise unexpressed genetic influences that 

fostered development of cognitive potential. Disadvantaged environments, in contrast, 

suppressed expression of fostering genetic influences. That is, the notion that genetic variance is 

greater when environments are uniform only goes so far for these outcomes: Relatively uniform 

disadvantage had strongly destructive social “force” on gene expression, but similarly uniform 

advantage did no more than offer expressive opportunity.  Even here, however, although both 

these studies indicated similar increases in genetic influences, the pattern of change in variance 
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differed across the environment in question (high parental education suppressed total variance 

whereas exposure to reading instruction released more variance).  

In sum, both similarities and differences in the social forces and structures affording and 

constraining environmental exposures and opportunities were indicated. Moreover, there clearly 

was covariance – otherwise, moderators and outcomes would not have been correlated – but this 

covariance was not modeled, and the authors did not offer any empirically-based measure of 

total outcome variance along the moderating dimensions. Thus, although Schmalhausen’s (1946) 

perspective offers a much richer interpretation than the standard Fisher-Mendel genetic 

framework, we do not yet have the statistical tools needed to fully model such processes.  

Statistical techniques that can accommodate this duality to some degree 

Current approaches to evaluating etiology focus almost exclusively on only means or 

only variances – but not both – to make their causal inferences, potentially hamstringing our 

etiologic conclusions. There is thus a clear need for novel design and analytic strategies that 

leverage information from both means and variances simultaneously.  One design already 

available (but still underutilized) is the yoked adoption study. Such studies assess adoptive 

children and their adoptive and biological family members, and are effectively natural 

experimental interventions (van IJzendoorn & Juffer, 2005). One child is reared by the biological 

mother, while a biological sibling is adopted and raised by different parents, in a different 

neighborhood, with different siblings and different schools. These differences are augmented by 

the fact that adoptive and biological families tend to differ quite a bit from one another in many 

ways. Adoptive parents are often highly selected (via both niche-picking and adoption agencies) 

relative to the general population of parents, and tend to be older, married, better-educated, and 

earning higher income (McGue et al., 2007).  This point has been frequently noted to highlight 
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potential problems with range restriction (McGue et al., 2007; Stoolmiller, 1999), which can 

blunt statistical associations between adoptive family members (although they did not do so in 

McGue et al., 2007) or can exaggerate them in some cases; (Johnson, Deary, & Bouchard Jr, 

2018).  What is less frequently observed, however, is that adopted children’s birth parents are 

also selected relative to the general parental population. They tend to be younger, unmarried, less 

educated, and/or to come disproportionately from disadvantaged backgrounds (Leve et al., 

2019).  In short, the yoked adoption design is well-suited both for incorporating considerations of 

advantage/disadvantage into behavioral genetic studies, and for studies of mean effects more 

generally (see Figure 2). 

Kendler et al. (2015) offered a peek as to what might be accomplished by incorporating 

mean differences into standard adoption analyses. They linked multiple Swedish nationwide 

registries to identify 436 full-sibling pairs in which only one of the two siblings was adopted. 

They observed that the adopted siblings had on average 4.4 additional IQ points relative to their 

reared-apart full siblings.  They then replicated these observations in 2,341 half-sibling pairs.  In 

both cases, however, these IQ differences varied with the extents of educational differences 

between the adoptive and biological parents, such that larger differences in parental education 

were associated with larger differences in offspring IQ. Moreover, adoptive offspring IQ 

continued to be correlated with both the non-rearing biological parents and the adoptive parents 

(correlations ranged from .18 to .20), and with those of their reared-apart biological siblings (.30 

for full siblings and .27 for half-siblings). As Kendler, et al. noted (p. 4616), such observations 

provided evidence that, “despite being demonstrably related to genetic endowment, cognitive 

ability is environmentally malleable, and the malleability shows plausible dose-response 

relations with the magnitude of the environmental differences”.   
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The kind of yoked adoptive- and biological-family sample Kendler et al. (2015) used can 

be even more valuable when household and individual psychological characteristic information 

is available. Burt and colleagues did just this, adding specific measures of the adoptive and 

biological home literacy environments to estimate environmental effects with more precision (S. 

A. Burt et al., submitted). They found that birth mothers’ academic achievement scores were as 

similar to their adopted children as they were to the adopted child’s biological siblings, despite 

the fact that birthmothers were raising the latter and not the former.  By contrast, there was little-

to-no evidence for rank-order similarity between adopted children’s academic achievement and 

that of their adoptive mothers.  They also observed small-to-modest zero-order correlations 

between measures of the adoptive home literacy environment and adopted children’s 

achievement, tentatively suggesting that environmental influences on standardized achievement 

tests may be marginally linked to homes’ literacy-promotive features.  Such interpretations are 

consistent with the last several decades of behavior genetic studies in this area, indicating robust 

genetic influences and smaller, less durable environmental influences (Tucker-Drob, Briley, & 

Harden, 2013).   

Once Burt and colleagues also considered mean differences among reared-apart relatives, 

however, their interpretation changed rather considerably. They observed moderate-to-large 

mean differences between adopted children’s academic achievement and their reared-apart 

family members, as high as 15+ points (just over one SD; represented in Figure 2). Furthermore, 

multilevel modeling analyses indicated that both birth mothers’ cognitive ability and the 

availability of reading materials in rearing homes accounted for a significant proportion of these 

mean differences in standardized achievement test scores.  They thus concluded that, while 

genetic influences were present regardless of how the analyses were done, environmental 
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influences on achievement were more clearly revealed when analyzing mean differences across 

reared-apart relatives alongside intraclass correlations.     

In short, it is certainly possible (and in our view, likely) that we can extract additional – 

and potentially quite different – information about underlying etiologic processes by 

incorporating the mean into traditional correlation- and variance-focused behavioral genetic 

studies of etiology. And although the yoked adoption design described above moves closer to 

this ideal for adoption studies, we are not yet able to analytically incorporate the mean into 

variance-focused twin studies in any meaningful way.  Indeed, the most that twin researchers can 

do as of this publication is 1) explicitly identify heteroscedasticity in associations between 

moderators and ‘outcomes’ (although as noted, very few studies do even this; for a rare 

exception, see Johnson, Kyvik, Skytthe, Deary, & Sørensen, 2011), and 2) discuss how this 

heteroscedasticity affects interpretations of specific sets of GxE results. These most valuably 

center around interplay between population-level social forces/structures and individual 

characteristics that constrain and afford opportunities – the very patterns of environmental 

movement Schmalhausen (1946) outlined. For example, a standard GxE analysis might indicate 

that the magnitude of genetic variance in X outcome was greater at the low end of environment 

Y than at its high end. Mean levels of X could be lower or higher at the low end of Y, which 

could have different implications for policy involving X.   

While these kinds of discussions would enrich current research considerably, what is 

really needed is a formal analytic model and/or additional sorts of quasi-experimental designs 

that can fully leverage changes in both means and variances to illuminate individual etiologies 

and population forces/structures better. These advances would have several positive downstream 

implications.  First and foremost, as argued throughout this article, it seems likely to improve 
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(perhaps substantially) our understanding of gene-environment interplay. This would be 

especially important since, as argued here, gene-environment interplay is both so complex and 

yet so common and widespread that the current (simplistic) models of gene-environment 

interplay are likely only scratching the surface. 

Second, traditional behavior genetics’ correlational approach to science also constrains 

the field’s focus to examining currently existing population situations. The field thus has 

virtually nothing to say about etiology in environments that could exist (perhaps following 

successful interventions, cataclysmic events, or implementation of new governmental policies), 

but do not (see Burt et al., 2019). As such, traditional behavioral genetic approaches provide no 

actionable information about how society might intervene to change a given outcome, nor how 

unforeseen natural events might alter population characteristics (Lewontin, 1974a, 1974b).  

Adding a focus on what could be (rather than what is) would allow behavioral genetics to better 

inform efforts to change behavior or social inequalities, and to illuminate how unforeseen natural 

events might alter population characteristics (Lewontin, 1974a, 1974b).   

Genetically-informed studies that explicitly incorporate interventions (e.g., Burgoyne et 

al., 2020; S. A. Burt, Plaisance, & Hambrick, 2019) or leverage naturally-occurring cultural 

innovations over time (e.g., the recent introduction of the internet and social media; S. A. Burt, in 

press) would likely get us far closer to this lofty ideal.  For example, we might experimentally 

manipulate technological features of the online environment (e.g., anonymity) and evaluate both 

differences in means and decompositions of variance, which could greatly enrich inferences for 

further testing. Alternately, we might ask whether and how the origins of a given outcome vary 

before and after naturally occurring treatments. We could also leverage natural experiments and 

providential occurrences to assess whether and how a given outcome and its etiology have 
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changed over the last 20-30 years. Several twin studies have been conducted in ongoing fashions 

across the last few decades, collecting both cross-sectional and longitudinal data on many 

thousands of twins, and are thus ripe for this kind of analysis. The core challenge to this work 

would center on disambiguating age, cohort, and period effects. Such analytic techniques are 

certainly available for phenotypic data, although they have never been applied to behavioral 

genetics analyses to our knowledge. Finally, researchers could link twin data to broad-scale 

cultural shifts (e.g., introduction of social media into popular culture), which may well have 

altered how adolescents manifest many outcomes (e.g., shifting away from in-person aggression 

and towards online aggression). In sum, joint considerations of mean changes (e.g., before and 

after interventions or introduction of novel cultural forces) alongside individual differences is 

poised to make incredibly provocative and important advances in understanding.   

Finally, incorporation of means into novel or traditional behavioral genetic designs could 

inform our conceptual understanding of genetic influences more broadly – starting with, are they 

Fisherian or Schmalhausian?  Statistical methods that can leverage both the first and second 

statistical moments in the data may be able to test competing theories of how and when social 

forces constrain and liberate gene-environment interplay of various kinds and when and to what 

degree genes act more like Schmalhausen or Mendel proposed, with downstream implications 

for (or against) Fisherian and Schmalhausian models of gene-environment interplay.  Ultimately, 

such work could offer foundationally important contributions to the literature. 
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Table 1. Core statistics and their use in traditional behavioral genetic studies of etiology 

Statistic Formula What it measures Common usage in family-based studies 

Mean 𝑋𝑋 = ∑x/N 
 

The average value in a given dataset; 
indexes the central tendency of the 
data 

None; usually presented to describe the 
observed raw data and address its 
normativity 

Variance s2 = ∑(x- 𝑋𝑋)2/N-1 
 

The average amount of variability 
around the mean; indexes the data’s 
range and extent of clustering 

The overall observed variance is 
decomposed into its genetic and 
environmental components based on 
patterns of similarity (as indexed via twin 
covariances in structural equation models) 
in pairs with differing degrees of genetic 
and environmental relatedness  

Covariance/ 
Correlation 

CovXY =  
∑(x- 𝑋𝑋)(y-𝑌𝑌)/N-1 
 
rXY = CovXY/√(s2

X*s2
Y) 

 

The extent to which individual 
differences in variable X covary with 
those in variable Y. A correlation is 
simply a standardized version of the 
covariance. ICCs index the 
standardized covariance on pairs of 
individuals on the same variable 

Studies leverage interclass 
covariances/correlations and intraclass 
ICCs/twin covariances as the central 
measures in their analytic approach 
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Table 2.  Reading skill results from Samuelsson et al., 2008. 

Country Grade 
Observed Modelled proportionate variance 

components 
Mean SD % A % C % E 

Australia 

End of 
Kindergarten 14.2 10.7 84* 9 8* 

End of first 
grade 31.4 14.1 80* 2 18* 

United 
States 

End of 
Kindergarten 8.6 9.1 68* 25* 07* 

End of first 
grade 27.7 13.3 83* 7 11* 

Scandinavia 

End of 
Kindergarten 5.3 9.2 33* 52* 15* 

End of first 
grade 21.1 13.1 79* 7 14* 

 

Note. Reprinted with permission from Samuelsson et al. (2008). %A, %C, and %E indicated the 
proportion of additive genetic variance, shared environmental variance and nonshared 
environmental variance, respectively.  The phenotypic mean and standard deviation (SD) of 
reading skill measures are presented, separately by country and grade level, in the middle 
columns.  The univariate heritabilities are presented on the right side of the table.  
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Figure 1.  

 

Note. Reprinted with permission from Turkheimer et al. (2017). Scatterplot of jittered conscript 
general ability (GA) scores plotted against jittered mid-parent education level with fitted 
ordinary least squares regression line.  
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Figure 2. Schematics of current and fully realized adoption designs (reprinted with permission 
from Burt et al., submitted) 

1a) Traditional adoption design, focused on patterns of correlations 

 

1b) Fully realized adoption design, focused on patterns of means and correlations 
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