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Fine-scale spatial patterns of wildlife 1 

disease are common and understudied 2 

Abstract 3 

1. All parasites are heterogeneous in space, yet little is known about the prevalence and 4 

scale of this spatial variation, particularly in wild animal systems. To address this 5 

question, we sought to identify and examine spatial dependence of wildlife disease 6 

across a wide range of systems.  7 

2. Conducting a broad literature search, we collated 31 such datasets featuring 89 8 

replicates and 71 unique host-parasite combinations, only 51% of which had 9 

previously been used to test spatial hypotheses. We analysed these datasets for spatial 10 

dependence within a standardised modelling framework using Bayesian linear 11 

models, and we then meta-analysed the results to identify generalised determinants of 12 

the scale and magnitude of spatial autocorrelation.  13 

3. We detected spatial autocorrelation in 48/89 model replicates (54%) across 21/31 14 

datasets (68%), spread across parasites of all groups. Even some very small study 15 

areas (under 0.01km2) exhibited substantial spatial variation. 16 

4. Despite the common manifestation of spatial variation, our meta-analysis was unable 17 

to identify host-, parasite-, or sampling-level determinants of this heterogeneity across 18 

systems. Parasites of all transmission modes had easily detectable spatial patterns, 19 

implying that structured contact networks and susceptibility effects are potentially as 20 

important in spatially structuring disease as are environmental drivers of transmission 21 

efficiency.  22 

5. Our findings demonstrate that fine-scale spatial patterns of infection manifest 23 

frequently and across a range of wild animal systems, and many studies are able to 24 

investigate them – whether or not the original aim of the study was to examine 25 

spatially varying processes. Given the widespread nature of these findings, studies 26 

should more frequently record and analyse spatial data, facilitating development and 27 

testing of spatial hypotheses in disease ecology. Ultimately, this may pave the way for 28 

an a priori predictive framework for spatial variation in novel host-parasite systems. 29 

Keywords: Wildlife disease; parasite transmission; spatial analysis; meta-analysis 30 



Introduction 31 

The maintenance and spread of parasites are inherently spatially structured (Cross, Lloyd-32 

Smith, Johnson, & Getz, 2005; Kirby, Delmelle, & Eberth, 2017; Pullan, Sturrock, Soares 33 

Magalhaes, Clements, & Brooker, 2012), which holds important ramifications for 34 

epidemiological dynamics and disease control efforts (Becker et al., 2020; Cross et al., 2005; 35 

Plowright, Becker, McCallum, & Manlove, 2019). Spatial structure can arise through a wide 36 

variety of processes (Albery, Kirkpatrick, Firth, & Bansal, 2021): for example, many 37 

parasites are transmitted from one host individual to another via direct contact, which 38 

requires a degree of spatiotemporal coincidence between individuals (Manlove et al., 2018), 39 

so that infections are spatiotemporally staggered in waves of transmission across the 40 

population. Other parasites transmit through persistent environmental stages or arthropod 41 

vectors whose viability depends on spatially varying abiotic conditions, creating spatial 42 

patterns of exposure and therefore of infection (Altizer et al., 2006; Jamison, Tuttle, Jensen, 43 

Bierly, & Gonser, 2015; Patz, Graczyk, Geller, & Vittor, 2000). Finally, host immunity and 44 

susceptibility can be influenced by environmentally varying factors like resource availability 45 

and climatic conditions, with knock-on impacts on parasite burden and transmission (Becker 46 

et al., 2020, 2018). These diverse processes should produce spatial patterns of infection 47 

across a wide range of wildlife systems, yet many wildlife disease studies examine coarse 48 

spatial scales or assume that spatial patterns will be negligible compared to other 49 

hypothesised drivers. As such, it is unclear how often infection is spatially structured in these 50 

systems, at what range this variation can manifest, and how host and parasite traits might 51 

alter its manifestation. 52 

 53 

For logistical reasons, many studies of spatial drivers of infectious disease focus on discrete 54 

between-population differences across large distances, often using a limited number of 55 

discrete sampling locations rather than distributing their sampling locations continuously in 56 

space (Plowright et al., 2019). Nevertheless, some work suggests that spatial patterns of 57 

infection may manifest at surprisingly fine spatial scales, within kilometres or even metres 58 

(Abolins et al., 2018; Albery, Becker, Kenyon, Nussey, & Pemberton, 2019; Brooker et al., 59 

2006; Wood et al., 2007). This observation begs the question: what is the lower bound for the 60 

range at which spatial effects can act? Identifying the range of spatial dependence (or 61 

autocorrelation, meaning that data points that are closer together in space tend to be more 62 

similar) is important for many reasons, including designing sampling regimes (Nusser, Clark, 63 



Otis, & Huang, 2008; Plowright et al., 2019; Vidal-Martínez, Pech, Sures, Purucker, & 64 

Poulin, 2010), building mechanistic models of parasite evolution over space (Best, Webb, 65 

White, & Boots, 2011; Débarre, Hauert, & Doebeli, 2014), examining how disease risk 66 

responds to anthropogenic activities like urbanisation (Saito & Sonoda, 2017), and directing 67 

public health and conservation schemes (Brooker et al., 2006; Gilbertson et al., 2016).  68 

 69 

Identifying the range of spatial dependence can also help to examine how parasites spread 70 

over landscapes and to determine their transmission mechanisms (Reynolds, 1988). For 71 

example, spatial dependence across large distances might suggest the influence of major 72 

climatic correlates, while spatial dependence between nearby locations implies a highly 73 

localised infection process (Pullan et al., 2012). In human disease systems, such work has 74 

shown that neighbouring districts of Thailand have more similar human malaria incidence, 75 

suggesting local similarities in abiotic conditions or vector control programs that could limit 76 

mosquito survival (Zhou et al., 2005). Similar analyses of wildlife disease could help pinpoint 77 

transmission routes and guide disease control efforts: for example, if researchers find that a 78 

zoonotic disease has a long range of dependence in its wildlife reservoir, this could motivate 79 

the use of widely placed sampling locations when trying to identify environmental drivers 80 

(Becker, Crowley, Washburne, & Plowright, 2019; Plowright et al., 2019). Lastly, the scale 81 

of spatial dependence has implications for more general theoretical understanding of 82 

infectious disease dynamics. For example, links between biodiversity and disease dynamics 83 

(e.g. “dilution effects”) are dependent on the spatial scale of sampling (Cohen et al., 2016; 84 

Rohr et al., 2020), and several rodent systems have identified contrasting spatial trends for 85 

zoonotic diseases dependent on sampling scale (Luis, Kuenzi, & Mills, 2018; Morand et al., 86 

2019). 87 

 88 

The strength and range of spatial dependence are also likely to depend on the traits of the 89 

hosts and parasites involved. For example, parasites that persist for longer in the environment 90 

are likely to experience stronger influences of environmental gradients than directly 91 

transmitted counterparts (Satterfield, Altizer, Williams, & Hall, 2017). Similarly, highly 92 

mobile species such as large carnivores or nomadic bats may more efficiently disseminate 93 

parasites through the environment, reducing spatial autocorrelation (Gilbertson et al., 2016; 94 

Peel et al., 2013). The range of spatial dependence is most commonly identified using spatial 95 

autocorrelation models (e.g. Albery et al., 2019; Becker, Nachtmann, et al., 2019; Brooker et 96 

al., 2006; Gilbertson et al., 2016; Wood et al., 2007) or analyses that quantify the spatial 97 



buffer regions in which environmental variables are best-correlated with disease (e.g. Saito & 98 

Sonoda, 2017). Unfortunately, these approaches are almost always reactive rather than 99 

proactive, and they occur on a case-by-case basis rather than being founded on general rules 100 

or a priori understanding. As such, the relative contribution of host and parasite traits to 101 

shaping spatial variation in infection remains unknown. To establish general factors 102 

influencing the scale of spatial dependence in wildlife disease, a variety of host-parasite 103 

systems must be analysed using comparable techniques and then synthesised. As well as 104 

revealing fundamental drivers of spatial heterogeneity, identifying general rules in this way 105 

could facilitate the development of predictive models for spatial structuring in host-parasite 106 

systems with relatively poorly understood epidemiology. Researchers could then predict how 107 

within- and between-population processes will differ a priori, before using empirical methods 108 

such as long-term studies at multiple scales (e.g. Luis et al., 2018; Morand et al., 2019). 109 

 110 

Prescriptive rules for examining geographic variation in wildlife disease are rare and hard to 111 

generalise, partly due to the analytical complexity of identifying them. For example, a recent 112 

systematic review of ecoimmunology studies uncovered a surprising lack of spatial methods, 113 

with most studies fitting discrete fixed or random effects to control for spatial autocorrelation 114 

rather than directly examining continuous patterns in space or using spatially explicit 115 

statistics (Becker et al., 2020). Nevertheless, the statistical competence of ecologists is high 116 

and increasing, particularly with regards to areas like movement ecology and network 117 

analysis (Albery et al., 2021; Dougherty, Seidel, Carlson, Spiegel, & Getz, 2018; Jacoby & 118 

Freeman, 2016; Webber & Vander Wal, 2019). The increase in such studies over time has led 119 

to a few general rules to guide spatial sampling: for example, where studies seek to quantify 120 

the impact of environmental drivers on parasitism, larger study extents may allow sampling 121 

the widest range of different environmental factors and thus increasing spatial variation 122 

(Becker et al., 2020; Cohen et al., 2016). Nevertheless, no standardised empirical framework 123 

yet exists for identifying and comparing the presence or range of spatial variation across 124 

wildlife disease systems. Establishing such a framework could help to identify general factors 125 

shaping spatial variation across systems, improving mechanistic understanding of parasite 126 

transmission, spatial sampling designs, and control efforts. 127 

 128 

Here, we conducted a synthesis of spatially distributed wildlife disease datasets across a wide 129 

range of different host and parasite taxa, geographic contexts, and sampling regimes. We 130 

analysed these datasets individually using a standardised modelling procedure, identifying 131 



how generalised host-, parasite-, and sampling-level factors affect the prevalence and range 132 

of spatial dependence. Specifically, we expected that studies would be most vulnerable to 133 

strong spatial effects in larger study areas, with greater sampling efforts, and when parasites 134 

exhibit indirect transmission mechanisms with extended environmental stages. We aimed to 135 

provide important general estimates for the range of spatial autocorrelation from a wide range 136 

of different host-parasite systems, laying the groundwork for a priori predictions about host-137 

parasite systems with unknown spatial properties. 138 

Materials and methods 139 

Data collection 140 

To obtain a wide variety of raw datasets we carried out a literature search, emailed authors to 141 

request data, and searched data repositories for publicly available datasets (Supplementary 142 

Figure 1). Our literature search used Web of Science to identify potential datasets published 143 

between 2009 and 28th August 2019, with the following terms: “(parasit* OR infect* OR 144 

disease) AND (wild OR natural) AND (mammal)”. We restricted the search to mammals to 145 

increase the generalisability of our findings within this group of animals, and because of their 146 

importance for human and livestock health (Han, Kramer, & Drake, 2016). 147 

We screened a random subset of studies based on their abstracts, excluding studies of captive 148 

animals, review papers, and meta-analyses; publications without parasite data; studies 149 

without hosts (i.e., only sampling parasites in the environment); and studies of non-mammals. 150 

Because our downstream analyses relied upon a standard spatial modelling procedure, we 151 

also excluded studies with few samples (N<35), very low prevalence (<10%), or very high 152 

prevalence (>90%), owing to likely failure in model convergence. 153 

If a study had openly available datasets we downloaded them, and for those that included 154 

binary infection data in map figures, we derived approximate spatial locations and associated 155 

infection status (i.e., “heads up digitisation”, HUD). We also searched the Dryad data 156 

repository (https://datadryad.org) using the same search terms to find publicly available 157 

datasets. 158 

For all other studies, we contacted corresponding authors using a standardised email template 159 

in September-December 2019 to request data. We classified the authors’ responses into the 160 

following categories (Supplementary Figure 1): System not suitable: the system was poorly 161 



suited to our questions (e.g., migratory host population). No parasitology: the system did not 162 

include disease measures. No spatial data collected: no sources of spatial data (grid 163 

references, GPS locations) were collected and associated with individuals or samples. Privacy 164 

concerns: researchers were unable to share the data because they were collected on private 165 

land. Data not suitable: once data were inspected, the genre of spatial data was found to be 166 

unsuitable (e.g. too few spatial replicates), or it was deemed unlikely that models would run 167 

(e.g., points very unevenly distributed, sample sizes too low). 168 

Some of the datasets contained multiple spatial sites that were each defined as a distinct 169 

population. Therefore, within the datasets, each replicate was defined as a unique host-170 

parasite-locality combination examining a contiguous population. We excluded replicates 171 

with under 100 samples, to ensure convergence of our standardised spatial models (see 172 

below).  173 

Although we principally aimed to quantify fine-scale, within-population spatial effects, we 174 

included several studies employing continuous or semi-continuous sampling at county and 175 

national levels, to investigate whether the methods we used would operate well at these scales 176 

and to establish an upper bound for sampling effects. 177 

 178 

Statistical Analysis 179 

Data standardisation 180 

Data were manipulated and analysed using R version 3.6.3 (R Development Core Team, 181 

2011). All code is available at github.com/gfalbery/libra. Our data cleaning procedure aimed 182 

to minimise the probability of false positives and to restrict the data pool to a continuous 183 

spatial distribution of samples. All spatial coordinates were converted to the scale of 184 

kilometres or metres to allow comparison across systems. We removed spatial outliers and 185 

parasite count outliers; if parasite counts were very overdispersed and/or highly zero-inflated 186 

they were analysed as binomial (0/1) infection data rather than negative binomial. Categories 187 

with low replication (generally <10 samples) were removed. We removed specific classes 188 

that exhibited very low prevalence: e.g., adult Soay sheep and red deer had a very low 189 

prevalence of Nematodirus sp., which is primarily a parasite of young ungulates (Hoberg, 190 

Kocan, & Rickard, 2001); hence only lambs/calves were analysed. Individual identity was 191 

fitted as a random effect if the dataset involved repeat measurements of the same individuals. 192 

http://www.github.com/gfalbery/libra


 193 

INLA Models 194 

We based our analysis on a framework previously used in a study of spatial patterns of 195 

disease in wild red deer (Albery et al., 2019). Integrated Nested Laplace Approximation 196 

(INLA) models were fitted to each spatial dataset using the `inla` package. INLA is a 197 

deterministic Bayesian algorithm that allows fitting of a Stochastic Partial Differentiation 198 

Equation (SPDE) random effect to quantify and control for patterns of the response variable 199 

in space. This relies on detection of spatial autocorrelation, where samples closer in space are 200 

more similar than those further apart (Kirby et al., 2017; Tobler, 1970). The model estimates 201 

how much variance is accounted for by autocorrelation, and models with and without the 202 

SPDE effect can be compared to assess how it affects the fit of the model (Lindgren & Rue, 203 

2015; Zuur, Ieno, & Saveliev, 2017). The model also provides a “range” parameter, which 204 

estimates the distance at which samples are autocorrelated. We took this parameter to 205 

represent a combination of sampling, transmission, and immune processes determining the 206 

scale of spatial variation in the focal population. 207 

 208 

We first fitted a “base” model with parasite burden (Gaussian or negative binomial) or 209 

presence/absence (binary) as a response variable and with any fixed and random covariates. 210 

To simplify our analyses, covariates usually included only temporal variables (month, year, 211 

both as categorical variables), age category, and sex. We then fitted a model featuring an 212 

SPDE random effect, with a penalised complexity prior (Fuglstad, Simpson, Lindgren, & 213 

Rue, 2019). We compared the base model with the SPDE model, identifying whether the 214 

latter had a lower Deviance Information Criterion (DIC), indicating improved model fit. We 215 

took a change in DIC (ΔDIC) of 2 to distinguish between the two models and calculated the 216 

DIC weight for the base and SPDE model, giving a proportion (0-1) that can be 217 

conceptualised as “confidence that the spatial model was the best-fitting” (Wagenmakers & 218 

Farrell, 2004). We also extracted the INLA range parameters. In total, we fitted INLA models 219 

to 89 spatial replicate, each of which comprised a different host-locale-parasite combination, 220 

generated from 31 different study systems. 221 

 222 

Meta-analysis of INLA models 223 

To identify factors driving general trends of spatial variation, we conducted a meta-analysis 224 

treating each unique host-locale-parasite combination as a replicate, including parasite-, host-, 225 



and sampling-level traits as fixed effects. We constructed hierarchical models using the 226 

`metafor` package. Generally, meta-analyses typically focus on synthesizing effect sizes and 227 

their variances across multiple systems (e.g. Sánchez et al. 2018). However, as generalised 228 

spatial variation does not have a directional effect, we instead analysed measures of model fit, 229 

predictive capacity, and the autocorrelation range, which is bounded at 0 and infinity. To give 230 

a coarse measure of model predictive capacity that was easily standardised across all models, 231 

we calculated the Spearman’s Rank correlation between the observed and predicted values 232 

for the model, using only the SPDE effect to predict (henceforth referred to as R). The 233 

measures of model fit give an impression of the detectability and importance of spatial 234 

patterns, while comparisons of the range estimate across systems will inform whether 235 

different host and parasite traits cause spatial patterns to vary more sharply in space. We used 236 

the escalc function to derive sampling variances for DIC weight and the INLA range (using 237 

the point estimate and 95% confidence interval).  238 

Our hierarchical models included each replicate as a random effect to account for within- and 239 

between-study heterogeneity (Konstantopoulos, 2011). We also included a random effect for 240 

host family, for which the covariance structure used the phylogenetic correlation matrix 241 

(Nakagawa & Santos, 2012); we obtained our phylogeny from the Open Tree of Life with the 242 

rotl and ape packages (Michonneau, Brown, & Winter, 2016; Paradis, Claude, & Strimmer, 243 

2004). All models used the `rma.mv` function and weighting by sampling variance. We first 244 

assessed heterogeneity in each of our response variables by fitting a random-effects model 245 

(REM; intercept only) with restricted maximum likelihood and then used Cochran's Q to test 246 

if such heterogeneity was greater than expected by sampling error alone (Borenstein, Hedges, 247 

Higgins, & Rothstein, 2009).  248 

We next used mixed-effects models (MEMs) to test how sampling-, host-, and parasite-level 249 

factors affected our INLA model outputs. Sampling variables included: Number of samples; 250 

Sampling area (total rectangular extent between the furthest points on the X- and Y-251 

coordinates, in km2); Sampling method (3 levels: trapping, censusing, and 252 

necropsy/convenience sampling); Spatial encoding method (4 levels: GPS; trapping grid; 253 

locality; Easting/Northing); Spatial hypothesis testing (binary – i.e., did the study aim to 254 

quantify spatial variation in some way?). We interpreted this latter variable as a combination 255 

of study design and publication bias, where studies that are intended to pick up spatial 256 

variation are both more likely to identify spatial patterns because of their sampling design, 257 

and then more likely to be published if they do. Parasite traits included Transmission mode (4 258 



levels: direct; faecal-oral; vector-borne; environmentally transmitted) and Taxon (8 levels: 259 

arthropod, nematode, trematode, cestode, protozoan, bacterium, virus, other). Host traits 260 

included: Home Range size (in km2; log-transformed); Body Mass (in grams; log-261 

transformed); Host order (5 levels: Carnivora, Chiroptera, Ungulates, Glires, Proboscidea). 262 

There was only one lagomorph, so rodents and lagomorphs were lumped together into the 263 

“glires” clade. The same was true of odd-toed ungulates (Perissodactyla), so they were 264 

lumped with Artiodactyla into an “ungulates” clade. For species for which a phenotypic 265 

measure (e.g. body mass) was unavailable, we used the value for the closest relative for 266 

which the data were available, according to a mammalian supertree (Fritz, Bininda-Emonds, 267 

& Purvis, 2009). 268 

To identify important drivers among these many correlated drivers, we conducted a model 269 

addition process using maximum likelihood and Akaike Information Criterion corrected for 270 

sample size (AICc) to determine model fit. Each of our meta-analytical explanatory variables 271 

was added in turn, and the best-fitting variable (i.e., the one that most decreased AICc) was 272 

kept for the following round. This process was repeated with the remaining variables, until no 273 

variables improved model fit by more than 2 AICc. We report the final model, with the 274 

minimal number of variables that improved model fit. 275 

Spatiotemporal INLA models 276 

Finally, we constructed spatiotemporal INLA models to assess the consistency of spatial 277 

hotspots from year to year, and to investigate evidence of ephemeral waves of transmission 278 

across the study systems. Of our 89 replicates, 44 replicates had more than one year of 279 

sampling, with more than 100 spatial points per year, facilitating fitting spatiotemporal 280 

models. For these replicates, we first reran the original models with the reduced dataset that 281 

only included years with more than 100 replicates. We then fitted a spatiotemporal model 282 

with a different spatially distributed effect (i.e. “spatial field”) for each year, with no 283 

autocorrelation between the fields. Improved model fit for this model would imply that the 284 

spatial distribution of the parasite varied notably from year to year. Second, we fitted a similar 285 

spatiotemporal model with an “exchangeable” autocorrelation specification between years. 286 

This model format allows correlation between spatial fields, but without enforcing a time 287 

sequence: that is, all fields were correlated by the same parameter (“Rho”) regardless of how 288 

far apart in time they were. The Rho parameter, which is bounded between -1 and 1, was then 289 

interpreted to give an impression of the spatiotemporal consistency of the parasite distribution. 290 



Parasites with high rho coefficients had very similar hotspots from year to year, while those 291 

with low coefficients did not.  292 

Results  293 

Our literature review returned 3399 studies, and we screened a random selection of 1993 294 

abstracts (over two weeks) to expedite data collection. 1151 of these were unsuitable because 295 

they were in the wrong environment, host, or subject area, or had no data. This left 496 296 

studies, for which we assessed data availability. Very few studies publicly archived 297 

continuous, within-population spatial data. Only 3/496 studies (0.6%) had such data ready to 298 

download, and 4 further studies had maps of samples from which we could easily digitise 299 

sufficient data (Supplementary Figure 1). We also already owned 3 datasets. We then emailed 300 

432 authors to request data if unavailable (Supplementary Figure 1). When we emailed them, 301 

92 responded, 22 of which (23.9%) indicated that they had not collected any within-302 

population spatial data as part of their study (Supplementary Figure 1). After navigating a 303 

number of other obstacles to data sharing, followed by initial data triage, 26 authors kindly 304 

offered to provide us with spatial data, resulting in 36 total viable datasets. Of these 36 305 

datasets, 31 had at least one continuous spatial population with >100 samples to which we 306 

could apply INLA models. 307 



 308 

Figure 1: The geographic and taxonomic distribution of the 31 datasets that we included in 309 

our final meta-analysis. Our data were evenly spread across the earth (Panel A), although 310 

with a notable cluster in Western Europe (see inset map in pink rectangle, Panel B). Sampling 311 

areas greater than 5000 km2 are displayed as rectangles; smaller sample areas are represented 312 

by dots. Study system names correspond to the names in Supplementary Table 1. The 313 

datasets also included a wide range of different mammal orders and families (Panel C). The 314 

inset phylogeny represents order-level summaries for studies that were not carried out at the 315 

species level. Dots next to species’ names in the phylogenies denote that multiple datasets 316 

included samples from that species. Different colours correspond to different taxonomic 317 

groups used for meta-analysis: ungulates, carnivores, glires, elephants, and carnivorous 318 

marsupials.  319 

 320 

Most authors that responded (and had collected spatial data) were happy to share data with 321 

us, and the vast majority of studies for which we did not receive data were due to a lack of 322 



response or secondary response (Supplementary Figure 1). 15 authors responded but declined 323 

to share data due to privacy concerns, ongoing data usage, or authorship concerns. 324 

Comparing this to the 22 responders that had not collected spatial data implies that the main 325 

reason researchers do not share spatial data is that they did not collect it; however, given that 326 

>300 researchers did not respond (and they may not have been a random subset of the total), 327 

our ability to infer this confidently is diminished. Notably, studies that investigated spatial 328 

variation tended to be larger than those that did not (Supplementary Figure 2), implying that 329 

larger study areas motivate researchers to more often consider spatial variation in their 330 

analyses. 331 

 332 

We concluded data collection with 31 datasets, including 89 spatial replicates and 90 host 333 

species (Figure 1). 67 replicates were species-level; the rest were conducted on selections of 334 

species in the same order (e.g., rodent trapping, bat sampling, carnivore faecal sampling). The 335 

datasets were distributed across five continents (Figure 1), and included 7 different 336 

mammalian orders (Figure 1). The studies examined 41 different parasites, across a diverse 337 

selection including viruses (N=6), bacteria (N=10), helminths (N=25), arthropods (N=14), 338 

and one transmissible cancer (N=8). Infection measures included counts of parasites or 339 

immune markers (N=30), binary assessment of infection status using observation or 340 

seropositivity (N=52), and one study used parasite-associated mortality as a proxy (Myanmar 341 

elephants, Elephas maximus (Lynsdale, Mumby, Hayward, Mar, & Lummaa, 2017)). Study 342 

systems included, for example: rodent trapping studies examining flea burdens and flea-borne 343 

pathogens (e.g. rodents trapped in the Arizona hills (Kosoy et al., 2017) and chipmunks in 344 

Yosemite National Park (Hammond et al., 2019)); long-term studies with parasite data 345 

collected over the course of several decades (e.g. the Soay sheep of St Kilda (Hayward et al., 346 

2014), the Isle of Rum red deer (Albery et al., 2019), and the badgers of Wytham Wood 347 

(Albery et al., 2020)); and studies examining seropositivity of mammals across a geographic 348 

range to identify endemic areas (e.g. British otters infected with Toxoplasma gondii 349 

(Smallbone et al., 2017)). See Supplementary Table 1 for a description of each study system 350 

and the associated references and researchers that provided us with the data. The area of the 351 

study systems varied widely, from 0.02 to 106 km2 (Figure 2A). 352 

 353 



 354 

Figure 2: The spatial autocorrelation term (SPDE) improved models across host-parasite 355 

systems and sampling regimes. The Y axis displays the degree of confidence that the spatial 356 

autocorrelation term improved model fit (Deviance Information Criterion weight), where 357 

models at the top of the panel fitted better than those at the bottom. The dashed line at DIC 358 

weight=0.5 denotes the point at which spatial and non-spatial models were equally supported. 359 

A: larger study areas more often revealed spatial patterns. B: most of our 31 study systems 360 

exhibited at least one spatially structured host-parasite combination. Study systems have been 361 

assigned arbitrary letters to anonymise them, and are arranged in order of increasing DIC 362 

weight. C: multiple mammalian host taxa exhibited spatial effects. D: multiple parasite taxa 363 

exhibited spatial effects. The points in panels C and D are sized according to the number of 364 

samples in the replicate. None of the terms displayed here had significant effects in our meta-365 

analysis.  366 

 367 



Our INLA models applied across datasets consistently revealed strong spatial patterns of 368 

disease (Figure 2-3). The mean DIC change across all study systems was -14.5 (median -3.3), 369 

and the spatial model fit better than the base model for 65/89 models (73%; DIC weight>0.5). 370 

Using a conventional change of 2ΔDIC as a cutoff for improved model fit, 54% of models 371 

across 21 study systems displayed detectable spatial patterns (Figure 2). Cochran’s Q 372 

revealed very low heterogeneity between systems in terms of their DIC weight (Q(df=86) = 373 

46.89, P=0.9998), but extreme heterogeneity in terms of the range of autocorrelation 374 

(Q(df=86) = 3823, P<.0001). 375 

 376 

Although half of the systems were spatially structured, our meta-analyses revealed that few 377 

host-, parasite-, or sampling factors were predictive of spatial effects (see Supplementary 378 

Table 2). The best-fitting model for DIC weight included only the study duration (years), 379 

revealing that long-term studies were slightly more likely to uncover spatial effects 380 

(ΔAIC=3.38; for all other variables ΔAIC<1.56). The INLA range parameter increased with 381 

study area (ΔAIC=74.44) but was not affected by any other variables (ΔAIC<0.09). No 382 

variation was accounted for by host or parasite taxon, host size, or host ranging behaviour. 383 

Most notably, there was no significant variation in spatial range or DIC changes across 384 

parasite transmission modes (Figure 3A-B). 385 



 386 

Figure 3: Parasites of diverse transmission modes exhibit spatial autocorrelation effects. We 387 

display A) spatial model DIC (deviance information criterion) weight, with points 388 

representing the outcome of each replicate INLA (integrated nested laplace approximation) 389 

model. Boxplots represent the range, interquartile range, and median for parasites of each 390 

transmission mode. The dashed line at DIC weight=0.5 denotes the point at which spatial and 391 

non-spatial models were equally supported; points above the line display host-parasite 392 

systems for which the spatial model was better supported than the non-spatial model. B) 393 

INLA autocorrelation ranges; each line represents the autocorrelation decay of a different 394 

replicate INLA model. The colours correspond to different transmission modes, 395 

demonstrating substantial mixing of the range estimates for parasites of different transmission 396 

modes. C) Temporal autocorrelation (Rho) component demonstrating inter-annual 397 

correlations between spatial fields, for the subset of model replicates that had multiple 398 

sampling years. Points represent a different replicate INLA model. The dashed line at Rho=0 399 

represents the point of no correlation; points above the line had a positive correlation, while 400 



points below the line had a negative correlation. D) Mosaic plot displaying the proportions of 401 

best-fitting models according to DIC changes, across our spatiotemporal replicates. 402 

 403 

Spatiotemporal models examining a subset of multi-year studies consistently improved model 404 

fit over static equivalents. The best-fitting model for many examined replicates was a 405 

spatiotemporal model, but the findings did not differ notably across transmission modes 406 

(Figure 3D). Rho (temporal autocorrelation of the spatial field) estimates for these models 407 

were moderate, and did not vary notably across transmission modes (Figure 3C). Most 408 

(36/44, 82%) had 95% credibility intervals that overlapped with zero, and 8 (18%) were 409 

significantly positive. 410 

Discussion 411 

We uncovered strong, pervasive spatial heterogeneity manifesting within an expansive 412 

diversity of mammal-parasite systems. Contrary to expectations, spatial heterogeneity was 413 

equally common and short-ranged for all transmission modes, despite our prediction that 414 

parasites with longer environmental stages would be more likely to exhibit spatial patterns. 415 

There are therefore three main takeaways from our findings: first, many study systems are 416 

spatially structured, likely by a combination of drivers, whether or not the study in question 417 

aims to quantify spatial variation or environmental drivers. Second, these drivers are 418 

relatively rarely investigated, but many systems currently have the spatial power and ability 419 

to investigate them if they wish, irrespective of the host-parasite system involved. Third, we 420 

were unable to develop a predictive framework for spatial dependence using the data 421 

available, but given more data across a wider range of host-parasite systems, such a 422 

framework may be possible to develop in the future. We therefore recommend that wild 423 

animal studies in disease ecology more regularly collect and share data on spatial behaviours 424 

and sampling locations where possible, regardless of host, parasite, or sampling regime. 425 

 426 

Our methodology differed from that used in many other studies by investigating generalised 427 

spatial dependence rather than by quantifying specific environmental drivers that might drive 428 

this dependence. The only similar study that we know of (Gilbertson et al., 2016) used 48 429 

parasite-locality replicates of cougar (Puma concolor) and bobcat (Lynx rufus) populations 430 

and found little evidence of spatial autocorrelation in parasite infection. In contrast to their 431 

approach, we used a wide set of different hosts, and our replicates all had between 100 and 432 



10,000 samples (Supplementary Table 1), whereas only a few of their replicates had >100 433 

samples, and none had >200 (Gilbertson et al., 2016). Additionally, they used Mantel tests, 434 

which do not account for fixed covariates, while the INLA analyses we employed are more 435 

suited to controlling for this variation. As such, we interpret our contrasting findings to 436 

represent a difference in the power of our analyses, and the absence of large carnivores from 437 

our dataset. Owing to its generality, similar methodology could be used in a range of 438 

ecological contexts as a useful hypothesis-generating exercise: after uncovering strong spatial 439 

structuring, researchers could follow up on this finding by investigating possible biotic or 440 

abiotic drivers. We hope that more disease ecology studies in wild animals will make use of 441 

similar methodology to ours to bolster our understanding of disease dynamics in wild 442 

settings. 443 

 444 

Surprisingly, neither larger study systems nor those that had previously been used to study 445 

spatial hypotheses were more likely to exhibit detectable spatial patterns. Some very small 446 

spatial replicates exhibited strong spatial effects, and the smallest area demonstrating a strong 447 

spatial trend was 0.002km2 (Figure 2). On the other hand, some very large, well-sampled 448 

areas showed no detectable spatial patterns: for example, anti-Toxoplasma gondii antibodies 449 

in almost 200 Pennsylvania black bears (Ursus americanus) were not autocorrelated (Dubey 450 

et al., 2016) even though the prevalence of T. gondii exhibited very strong spatial patterns in 451 

otters (Lutra lutra) across the United Kingdom (Smallbone et al., 2017), and in house mice 452 

(Mus musculus) within the Senegalese city of Dakar (Galal et al., 2019). However, larger 453 

study extents unsurprisingly exhibited more long-range spatial autocorrelation effects. These 454 

areas inevitably contain within them a multitude of smaller spatial effects and gradients, so 455 

the findings of a specific study will depend critically on the spatial sampling scale it employs 456 

(Cohen et al., 2016; Luis et al., 2018; Morand et al., 2019; Pullan et al., 2012). Notably, the 457 

studies that did attempt to quantify spatial variation tended to have substantially larger spatial 458 

extent than those that did not (Supplementary Figure 2); this may represent a perception bias, 459 

where researchers operating in larger study areas tend to anticipate spatial variation as being 460 

more important to account for – or, vice versa, researchers asking spatial questions tend to 461 

sample across a wider range to incorporate as much testable variation as possible (Becker, 462 

Nachtmann, et al., 2019). The finding that larger study systems do not tend to more 463 

commonly exhibit detectable spatial patterns in disease demonstrates that this perception bias 464 

is perhaps unwarranted, and researchers at all scales should be able to incorporate spatial 465 

components and hypotheses about infection processes. 466 



 467 

Despite the ubiquity of spatial effects, we discovered a very low frequency of spatial data 468 

collection and sharing: only 3 publicly available datasets included spatial data, and 22/92 469 

responders said they had not collected any spatial data. The responses that we received 470 

implied that, alongside concerns about privacy and the understandable desire to control the 471 

data associated with one’s study system, the main reason for not sharing spatial data was that 472 

the data were not collected in the first place. Location data may evade collection in some 473 

contexts where GPS signals are hard to receive, precluding spatial data collection and 474 

investigation of spatial questions. GPS instruments that function in remote environments can 475 

be expensive, and for studies that do not explicitly aim to identify spatial patterns this may 476 

seem an unnecessary expenditure. However, smartphones that can receive GPS data are now 477 

widely available and can be used in all but the most remote locations. As many researchers 478 

carry the means to collect spatial data in their pocket on a daily basis, it might take little 479 

alteration to collection protocols to include location data in many cases. Future studies should 480 

capitalise on the increasing availability of spatial telemetry and biologging technology, and 481 

associated analytical capacity (Kays, Crofoot, Jetz, & Wikelski, 2015; Long, Nelson, Webb, 482 

& Gee, 2014; Williams et al., 2020) to more frequently record, analyse, and share spatial data 483 

in disease ecology (Albery et al., 2019; Kirby et al., 2017). This practice will facilitate easier 484 

testing of the hypotheses that we outline above, as well as informing sampling regimes and 485 

mechanistic models of disease dynamics, and allowing a priori prediction of host-parasite 486 

systems’ spatial properties. Moreover, large-scale, integrative analyses of disease processes 487 

across systems are increasingly being used to inform on the epidemiological consequences of 488 

global change (e.g. (Cohen, Sauer, Santiago, Spencer, & Rohr, 2020); increased availability 489 

of geographically-tied disease samples could profoundly help our ability to carry out such 490 

analyses, perhaps ultimately moving us towards developing a “weather system” for infectious 491 

disease outbreaks. 492 

 493 

Privacy is an issue of considerable ethical concern in epidemiology (Kirby et al., 2017), and 494 

we contend that this concern may be contributing to a lack of open data sharing in wildlife 495 

disease ecology. Sharing spatial data risks connecting individuals with their disease status, 496 

which is particularly unwelcome in the case of stigmatised diseases such as HIV/AIDS; 497 

indeed, although we did not examine human diseases, several of the researchers we contacted 498 

opted not to share data because they were concerned that their results could be traced to 499 

specific households or individuals. Researchers could overcome this issue by jittering points, 500 



or by masking the actual GPS locations, replacing them with relative locations which are the 501 

same distance away (Kirby et al., 2017). Unfortunately, the first option will reduce precision 502 

and the latter may preclude investigation of specific geographic hypotheses or environmental 503 

drivers, but this is a small price to pay in the cases where data are potentially sensitive.  504 

 505 

We foresee a range of potential uses for curated datasets like ours. For example, further 506 

analysis on this dataset could investigate a number of general drivers such as population 507 

density or environmental heterogeneity, informing how they drive spatial patterns of infection 508 

within and across systems. Moreover, similar methodology could be applied to other animal 509 

groups such as birds and reptiles, whose nest and burrow locations offer ideal spatial context 510 

(e.g. Wood et al., 2007), or to marine mammals like dolphins that are regularly subject to 511 

behavioural censuses and disease surveillance (e.g. Leu, Sah, Krzyszczyk, Jacoby, & Mann, 512 

2020). This approach could also be applied to intensively and widely spatially distributed 513 

sampling locations, either for smaller animals such as insects (Wallace et al., 2021) or for 514 

immobile organisms like plants (Halliday et al., 2020). Finally, immunity is often quantified 515 

alongside parasite burden and prevalence, and it would be interesting to see whether spatial 516 

variation in immunity manifests on the same scale, and whether it predicts disease risk 517 

(Becker et al., 2020). Given these diverse and widespread opportunities, popularising the 518 

breadth and frequency of open spatial data sharing is likely to open the door to a wide range 519 

of interesting studies and, ultimately, to the development of predictive a priori frameworks 520 

for spatial processes in disease ecology. 521 
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