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Nearly Consistent Finite Particle Estimates
in Streaming Importance Sampling
Alec Koppel∗, Amrit Singh Bedi∗, Brian M. Sadler∗, and Vı́ctor Elvira†

Abstract—In Bayesian inference, we seek to compute infor-
mation about random variables such as moments or quantiles
on the basis of available data and prior information. When the
distribution of random variables is intractable, Monte Carlo
(MC) sampling is usually required. Importance sampling is a
standard MC tool that approximates this unavailable distribution
with a set of weighted samples. This procedure is asymptotically
consistent as the number of MC samples (particles) go to infinity.
However, retaining infinitely many particles is intractable. Thus,
we propose a way to only keep a finite representative subset
of particles and their augmented importance weights that is
nearly consistent. To do so in an online manner, we (1) embed
the posterior density estimate in a reproducing kernel Hilbert
space (RKHS) through its kernel mean embedding; and (2)
sequentially project this RKHS element onto a lower-dimensional
subspace in RKHS using the maximum mean discrepancy, an
integral probability metric. Theoretically, we establish that this
scheme results in a bias determined by a compression parameter,
which yields a tunable tradeoff between consistency and memory.
In experiments, we observe the compressed estimates achieve
comparable performance to the dense ones with substantial
reductions in representational complexity.

I. INTRODUCTION

Bayesian inference is devoted to estimating unknowns by
considering as them random variables and constructing a
posterior distribution. This posterior distribution incorporates
the information of available observations (likelihood function)
which is merged with prior knowledge about the unknown
(prior distribution) [3]. Its application is widespread, spanning
statistics [4], signal processing [5], machine learning [6],
genetics [7], communications [8], econometrics [9], robotics
[10], among many other examples. Bayesian inference is only
possible in a very small subset of problems (e.g., when the
underlying model between observations and the hidden state
is linear and corrupted by Gaussian noise [11]). In some cases,
it is possible to linearize nonlinear models and still obtain
closed-form (but approximate) solutions [12]. Beyond linear-
ity, Bayesian inference may be tackled by Gaussian Processes
when smoothness and unimodality are present [13]. However,
in most models of interest, closeed-form expressions are not
available, and the posterior distribution of the unknowns must
be approximated.

The standard approximation methodologies in Bayesian
inference are either (a) Monte Carlo (MC) algorithms [14],

A. Koppel and A.S. Bedi contributed equally to this work. A preliminary
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(heuristic) projection rule for quantifying the difference between distributions.
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Edinburgh, EH9 3FD United Kingdom: victor.elvira@ed.ac.uk

which include Markov chain Monte Carlo (MCMC) methods
[15], importance sampling (IS) [16], and particle filters (PFs)
[17]; or (b) variational algorithms [18]. The later approach
approximates the posterior by using an optimization algorithm
to select within a parametrized family (e.g., by minimizing
the KL divergence). Variational algorithms can optimize the
parameters sequentially via the solution of a stochastic opti-
mization problem [19]. In recent years, efforts to approximate
the expectation by sampling have been investigated, e.g., see
[20]. Unfortunately, unless the prior belongs to a simple
exponential family, the parametric update is defined by a non-
convex objective, meaning that asymptotic unbiasedness is
mostly beyond reach. Mixture models have been considered
[21], but their convergence is challenging to characterize and
the subject of recent work on resampling [22].

In contrast, MC is a general approach to Bayesian inference
based upon sampling (i.e., the simulation of samples/particles),
and is known to generate (weighted) samples that eventually
converge to the true distribution/quantity of interest [23],
[24]. However, the scalability of Monte Carlo methods is still
an ongoing challenge from several angles, in that to obtain
consistency, the number of particles must go to infinity, and
typically its scaling is exponential in the parameter dimension
[25]. These scalability problems are the focus of this work,
which we specifically study in the context of importance
sampling (IS), a very relevant family of MC methods. We
focus on IS, as compared with Markov chain Monte Carlo
(MCMC), due to advantages such as, e.g., no burn-in period,
simple parallelization [26], built-in approximation of the nor-
malizing constant that is useful in many practical problems
(e.g., model selection), and the ability to incorporate adaptive
mechanisms without compromising its convergence [27]. IS
methods approximate expectations of arbitrary functions of the
unknown parameter via weighted samples generated from one
or several proposal densities [28], [16]. Their convergence in
terms of the integral approximation error, which vanishes as
the number of samples increases, has been a topic of interest
recently [28], [23], and various statistics to quantify their
performance have been proposed [29].

Our goal is to alleviate the dependence of the convergence
rate on the representational complexity of the posterior esti-
mate. To do so, we propose projecting the posterior density
onto a finite statistically significant subset of particles after
every particle is generated.1 However, doing so directly in a
measure space is often intractable to evaluate. By embedding

1Doing so may be generalized to scenarios where projection can be
performed after generating a fixed number T of particles, a form of mini-
batching, but this is omitted for simplicity.
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this density in a reproducing kernel Hilbert space (RKHS) via
its kernel mean embedding [30], we may compute projections
of distributions via parametric computations involving the
RKHS. More specifically, kernel mean embeddings extend the
idea of feature mapping to spaces of probability distributions,
which, under some regularity conditions [30, Sec. 3.8], ad-
mits a bijection between probability distributions and RKHS
elements.
Contributions. Based upon this insight, we propose a com-
pression scheme that operates online within importance sam-
pling, sequentially deciding which particles are statistically
significant for the integral estimation. To do so, we invoke the
idea of distribution embedding [30] and map our unnormalized
distributional estimates to RKHS, in contrast to [31], [32].
We show that the empirical kernel mean embedding estimates
in RKHS are parameterized by the importance weights and
particles. Then, we propose to sequentially project embed-
ding estimates onto subspaces of the dictionary of particles,
where the dictionary is greedily selected to ensure compressed
estimates are close to the uncompressed one (according to
some metric). This greedy selection is achieved with a custom
variant of matching pursuit [33] based upon the Maximum
Mean Discrepancy, which is an easily computable way to
evaluate an integral probability metric by virtue of the RKHS
mean embedding. The underpinning of this idea is similar to
gradient projections in optimization, which has been exploited
recently to surmount memory challenges in kernel and Gaus-
sian process regression [34], [35].

We establish that the asymptotic bias of this method is
a tunable constant depending on the compression parameter.
These results yield an approach to importance reweighting that
mitigates particle degeneracy, i.e., retaining a large number of
particles with small weights [36], by directly compressing the
embedding estimate of the posterior in the RKHS domain,
rather than statistical tests that require sub-sampling in the
distributional space [27], [37]. The compression is performed
online, without waiting until the total number of samples
N are available, which is typically impractical. Experiments
demonstrate that this approach yields an effective tradeoff of
consistency and memory, in contrast to the classical curse of
dimensionality of MC methods.
Additional Context. Dimensionality reduction of nonparamet-
ric estimators been studied in disparate contexts. A number
of works fix the sparsity dimension and seek the best N -
term approximation in terms of estimation error. When a
likelihood model is available, one terms the resulting active set
a Bayesian coresets [38]. Related approaches called “herding”
assume a fixed number of particles and characterize the
resulting error in a kernel-smoothed density approximation
[39], [40], [41], [42]. In these works, little guidance is provided
on how to determine the number of points to retain.

In contrast, dynamic memory methods automatically tune
the number of particles to ensure small model bias. For
instance, in [43], a rule for retainment based on gradient pro-
jection error (assuming the likelihood is available) is proposed,
similar to those arising in kernel regression [35]. Most similar
to our work is the setting where a likelihood/loss is unavailable
and one must resort to metrics on density estimates, i.e., sta-

tistical tests, for whether new particles are significant. Specif-
ically, in particle filters, multinomial resampling schemes can
be used with Chi-squared tests to determine whether the cur-
rent number of particles should increase/decrease [44], [45].
The performance of these approaches have only characterized
when their budget parameter goes to null or sparsity dimension
goes to infinity. In contrast, in this work, we are especially
focused on finite-sample analysis when budget parameters are
left fixed, in order to elucidate the tradeoffs between memory
and consistency, both in theory and practice.

II. ELEMENTS OF IMPORTANCE SAMPLING

In Bayesian inference [46][Ch. 7], we are interested in
computing expectations

I(φ) := Ex[φ(x)
∣∣y1:K ] =

∫
x∈X

φ(x)p(x|y1:K)dx (1)

on the basis of a set of available observations y1:K :=
{y1:K}Kk=1, where φ : X → R is an arbitrary function, x
is a random variable taking values in X ⊂ Rp which is
typically interpreted as a hidden parameter, and y is some
observation process whose realizations y1:K are assumed to
be informative about parameter x. For example, φ(x) = x
yields the computation of the posterior mean, and φ(x) = xp

denotes the p-th moment. In particular, define the posterior
density2

p
(
x
∣∣y1:K

)
=
p
(
y1:K

∣∣x) p (x)

p (y1:K)
. (2)

We seek to infer the posterior (2) with K data points y1:K

available at the outset. Even for this setting, estimating (2)
has unbounded complexity [47], [48] when the form of the
posterior is unknown. Thus, we prioritize efficient estimates
of (2) from an online stream of samples from an importance
density to be subsequently defined. Begin by defining posterior
q(x) and un-normalized posterior q̃(x) as

q(x) = q̃(x)/Z , q̃(x):=q̃(x
∣∣y1:K)=p

(
y1:K

∣∣x) p (x) , (3)

where q̃(x) integrates to normalizing constant Z:=p (y1:K)3.
In most applications, we only have access to a collection of
observations y1:K drawn from a static conditional density
p(y1:K

∣∣x) and a prior for p(x). Therefore, the integral (1)
cannot be evaluated, and hence one must resort to numerical
integration such as Monte Carlo methods. In Monte Carlo, we
approximate (1) by sampling. Hypothetically, we could draw
N samples x(n) ∼ q(x) and estimate the expectation in (1)
by the sample average

Eq(x)[φ(x)] ≈ 1

N

N∑
n=1

φ(x(n)), (4)

but typically it is difficult to obtain samples x(n) from
posterior q(x) of the random variable. To circumvent this

2Throughout, densities are with respect to the Lebesgue measure on Rp.
3Note that q(x) and q̃(x) depend on the data {y1:K}k≤K , although we

drop the dependence to ease notation.
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issue, define the importance density π(x)4 with the same (or
larger) support as true density q(x), and multiply and divide
by π(x) inside the integral (1), yielding∫

x∈X
φ(x)q(x)dx =

∫
x∈X

φ(x)q(x)

π(x)
π(x)dx, (5)

where the ratio q(x)/π(x) is the Radon-Nikodym derivative,
or unnormalized density, of the target q with respect to the
proposal π. Then, rather than requiring samples from the true
posterior, one may sample from the importance density x(n) ∼
π(x), n = 1, ..., N , and approximate (1) as

IN (φ) :=
1

N

N∑
n=1

q(x(n))

π(x(n))
φ(x(n))

=
1

NZ

N∑
n=1

g(x(n))φ(x(n)), (6)

where

g(x(n)) ≡ q̃(x(n))

π(x(n))
, (7)

are the importance weights. Note that (6) is unbiased, i.e.,
Eπ(x)[IN (φ)] = Eq(x)[φ(x)] and consistent with N . Moreover,
its variance depends on the importance density π(x) approx-
imation of the posterior [16].

Example priors and measurement models include Gaussian,
Student’s t, and uniform. Which choice is appropriate depends
on the context [46]. The normalizing constant Z can be also
estimated with IS as

Ẑ :=
1

N

N∑
n=1

g(x(n)). (8)

Note that in Eq. (6), the unknown Z can be replaced by Ẑ
in 8. Then, the new estimator is given by

IN (φ) :=
1

NẐ

N∑
n=1

g(x(n))φ(x(n)) (9)

=
1∑N

j=1 g(x(j))

N∑
n=1

g(x(n))φ(x(n))

=

N∑
n=1

w(n)φ(x(n)),

where the normalized w(n) weights are defined

w(n) ≡ g(x(n))∑N
u=1 g(x(u))

, (10)

for all n. The whole IS procedure is summarized in Algorithm
1. The function IN (φ) is the normalized importance sampling
(NIS) estimator. It is important to note that the estimator IN (φ)
can be viewed as integrating a function φ with respect to
density µN defined as

µN (x) :=

N∑
n=1

w(n)δx(n), (11)

4In general, the importance density could be defined over any obser-
vation process π(x

∣∣ {yk}), not necessarily associated with time indices
k = 1, . . . ,K. We define it this way for simplicity.

Algorithm 1 IS: Importance Sampling with streaming samples

Require: Observation model p(y
∣∣x) and prior p(x) or target

density q(x) (if known), importance density π(x). Set of
observations {y1:K}Kk=1.
for N = 0, 1, 2, . . . do

Simulate one sample from importance dist. x(n) ∼ π(x)

Compute weight g(x(n)) [cf. (6)]
Compute normalized weights w(n) by dividing by esti-
mate for summand (8):

w(n) =
g(x(n))∑N
u=1 g(x(u))

for all n.

Estimate the expectation with the self-normalized IS as

IN (φ) =

N∑
n=1

w(n)φ(x(n))

The posterior density estimate is given by

µN =

N∑
n=1

w(n)δx(n)

end for

which is called the particle approximation of q. Here δx(n)
denotes the Dirac delta measure evaluated at x(n). This delta
expansion is one reason importance sampling is also referred
to as a histogram filter, as they quantify weighted counts of
samples across the space. Subsequently, we leave the argument
(an event, or measurable subset) of the delta δx(n) as implicit.

As stated in [28], [24], [23], for consistent estimates of (1),
we require that N , the number of samples x(n) generated
from the importance density, and hence the parameterization
of the importance density, to go to infinity N → ∞. There-
fore, when we generate an infinite stream of particles, the
parameterization of the importance density grows unbounded
as it accumulates every particle previously generated. We are
interested in allowing N , the number of particles, to become
large (possibly infinite), while the importance density’s com-
plexity is moderate, thus overcoming an instance of the curse
of dimensionality in Monte Carlo methods. In the next section,
we propose a method to do so.

III. COMPRESSING THE IMPORTANCE DISTRIBUTION

In this section, we detail our proposed sequential compres-
sion scheme for overcoming the curse of dimensionality in
importance sampling. However, to develop such a compression
scheme, we first rewrite importance sampling estimates in
vector notation to illuminate the dependence on the number
of past particles generated. Then, because directly defining
projections over measure spaces is intractable, we incorporate
a distributional approximation called a mean embedding [30],
over which metrics can be easily evaluated. This permits us
to develop our main projection operator.

Begin by noting the curse of dimensionality in importance
sampling can be succinctly encapsulated by rewriting the last
step of Algorithm 1 in vector notation. Specifically, define
gn ∈ Rn , wn ∈ Rn and Xn = [x(1); · · ·x(n)] ∈ Rp×n.
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Fig. 1: Approximating the distributions via kernel mean embedding.

Then, after each new sample x(n) is generated from the
importance distribution, we incorporate it into the empirical
measure (11) through the parameter updates

gn =[gn−1; g(x(n))] ,

wn =zngn , Xn = [Xn−1;x(n)], (12)

where we define zn := 1/(1Tngn) and 1n is the all ones
column vector with dimension n. The unnormalized posterior
density estimate parameterized by gn and dictionary Xn is
given by

µ̃n =

n∑
u=1

gn(u)δx(u), (13)

where we define gn(u) := g(x(u)) is the importance weight
(6) and δx(u) is the Dirac delta function, both evaluated at
sample x(u). Denote as ΩXn

the measure space “spanned” by
Dirac measures centered at the samples stored in dictionary
Xn. More specifically, given measurable space (Ω,Σ, λ),
where Ω is a set of outcomes, Σ is a σ-algebra whose elements
are subsets, and λ : Σ→ R denotes the Lebesgue measure, we
define the restricted σ-algebra as ΣXn

= {F ∩ {x(u)}u≤n :
F ∈ Σ}. The measure space associated with ΣXn

and the
Lebesgue measure λXn

over this restricted σ-algebra we
denote in shorthand as ΩXn

(see [49] for more details).
We note that the unnormalized posterior density in (13) is a

linear combination of (nonnegative) Dirac measures with mass
gn(u) for each sample x(u). The question is how to select a
subset of columns of Xn and modify the weights gn such
that with an infinite stream of x(n), we ensures the number
of columns of Xn is finite and the empirical integral estimate
tends to its population counterpart, i.e., the integral estimation
error becomes very small (or goes to zero) as n tends to infinity
[50]. Henceforth, we refer to the number of columns in matrix
Xn which parameterizes (13) as the model order denoted by
Mn.

A. Kernel Mean Embedding

In this subsection, we introduce kernel mean embedding
which maps the measure estimate in the measure space ΩXn

to the corresponding reproducing kernel Hilbert space (RKHS)
denoted by HXn

as shown in Fig. 1. There is a kernel
associated with with RKHS defined as κ : X × X → R and
κ(x, ·) ∈ HXn

. In order to appropriately select a subset of Xn

which would define an approximator for µ̃n in (13), we employ
the notion of kernel mean embedding [30] of Dirac measures,
and then perform approximation in the corresponding RKHS
HXn

. Doing so is motivated by the fact that operations involv-
ing distributions embedded in the RKHS may be evaluated in
closed form, whereas in general measure spaces it is often

intractable. The explicit value of the map for µ̃n to RKHS is
given by

βn =

n∑
u=1

gn(u)κ(x(u), ·), (14)

and βn ∈ HXn . We remark here that the associated kernel
κ with RKHS is assumed to be a characteristic kernel which
ensure that the mapping µ̃n → βn is injective [51, Def. 3.2].
A characteristic kernel is imperative to make sure that ‖βP −
βQ‖H = 0 if and only if P = Q for measures P and Q, i.e.,
that it satisfies the identity of indiscernibles. This makes sure
that there is no information loss by introducing the mapping
via kernel mean embedding.

For practical purpose, we are interested in obtaining the
value of the underlying posterior density associated with
the mean embedding, which necessitates a way to invert
the embedding. Doing so is achievable by computing the
distributional pre-image [52], which for a given βn ∈ HXn

is given by

g? := argmin
g∈Rn

∥∥∥βn− n∑
u=1

g(u)κ(x(u), ·)
∥∥∥2
H
, (15)

where
∑n
u=1 g(u)κ(x(u), ·) is the kernel mean embedding for

the Dirac measure
∑n
u=1 g(u)δdx(u)

and g = g? is obtained
as the solution of (15). Therefore, for a given βn ∈ HXn , we
could recover the corresponding distribution in the measure
space ΩXn

by solving (15). Note that (15) exhibits a closed
form solution with g? = gn, as the distributional measures
have a Dirac measure structure. This motivates us to perform
the compression in the RKHS HXn parameterized by Xn.

Specifically, given past particles collected in a dictionary
Xn, we seek to select the subset of columns of Xn to
formulate its compressed variant Dn. We propose to project
the kernel mean embedding βn onto subspaces HDn =
span{κ(du, ·)}Mn

u=1 that consist only of functions that can be
represented using dictionary Dn = [d1, . . . , dMn

] ∈ Rp×Mn .
More precisely, HDn

is defined as a subspace in the RKHS
HXn that can be expressed as a linear combination of kernel
evaluations at points {du}Mn

u=1. We enforce efficiency by
selecting dictionaries Dn such that Mn � n. The eventual
goal is to achieve a finite memory Mn = O(1) as n→∞ or
Mn

n → 0 as n → ∞, while ensuring the underlying integral
estimate has minimal bias, i.e., that we can obtain nearly
consistent finite particle estimates.

B. Greedy Subspace Projections

Next, we develop a way to only retain statistically sig-
nificant particles by appealing to ideas from subspace based
projections [53], inspired by [35], [34]. To do so, we begin by
rewriting the evolution of the mean embedding in (14) as

βn = βn−1 + gn(n)κ(x(n), ·). (16)

We note that the update in (16) can be written as

βn = argmin
f∈HXn

‖f −
(
βn−1 + gn(n)κ(x(n), ·)

)
‖2H , (17)
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Algorithm 2 Compressed Kernelized IS (CKIS)

Require: Unnormalized target distribution q̃(x), importance
distribution π(x).
for n = 0, 1, 2, . . . , N do

Simulate one sample from importance dist. x(n) ∼ π(x)

Compute the importance weight g(x(n)) ≡ q̃(x(n))
π(x(n))

Normalize weights w(n) by estimate for summand (8):

w(j) :=
w(j)

zn
, j = 1, ..., n. , zn =

n∑
u=1

w(u)

Update the mean embedding via last sample & weight
[cf. (16)]

β̃n = βn−1 + gn(n)κ(x(n), ·).

Append dictionary D̃n = [Dn−1;x(n)] and importance
weights g̃n=[gn−1; g(x(n))]
Compress the mean embedding as (cf. Algorithm 3)

(βn,Dn,gn) = MMD-OMP(β̃n, D̃n, g̃n, εn)

Evaluate the pre-image to calculate µ̂n using (15)
Estimate the expectation as În =

∑|Dn|
u=1 w(u)φ(x(u))

end for

where the equality employs the fact that βn can be represented
using only the elements in HXn = span{κ(x(u), ·)}u≤n.
Observe that (17) defines a projection of the update

(
βµ̃n−1 +

gn(n)κ(x(n), ·)
)

onto the subspace defined by HXn
, which

we propose to replace at each iteration by a projection onto a
subspace defined by dictionary Dn, which is extracted from
the particles observed thus far. The process by which we select
Dn will be discussed next. To be precise, we replace the
update (17) in which the number of particles grows at each
step by the subspace projection onto HDn

as

βn = argmin
f∈HDn

‖f −
(
βµ̃n−1

+ gn(n)κ(x(n), ·)
)
‖2H

:=PHDn
[βn−1 + gn(n)κ(x(n), ·)]. (18)

Let us define β̃n := βn−1+gn(n)κ(x(n), ·), which means that
βn = PHDn

[β̃n]. Let us denote the corresponding dictionary
update as

g̃n =[gn−1; g(x(n))] , D̃n = [Dn−1;x(n)]

wn =zngn , (19)

where Dn−1 has Mn−1 number of elements and D̃n has
M̃n = Mn−1 + 1. Using the expression for mean embedding
in (14), we may write the projection in (18) as follows

gn := argmin
g∈RMn

∥∥∥Mn∑
s=1

g(s)κ(ds, ·)−
M̃n∑
u=1

g̃n(u)κ(d̃u, ·)
∥∥∥2
H

(20)

= argmin
g∈RMn

(
gTKDn,Dn

g−2gTKDn,D̃n
g̃n+g̃nKD̃n,D̃n

g̃n

)
,

where we expand the square and define the kernel covariance
matrix KDn,D̃n

whose (s, u)th entry is given by κ(ds, d̃u).
The other matrices KD̃n,D̃n

and KDn,Dn
are similarly de-

fined. The problem in (20) may be solved explicitly by

Algorithm 3 MMD based Orthogonal Matching Pursuit
(MMD-OMP)

Require: kernel mean embedding β̃n defined by dict. D̃n ∈
Rp×M̃n , coeffs. g̃ ∈ RM̃n , approx. budget εn > 0
initialize β = β̃n, dictionary D = D̃n with indices I,
model order M = M̃n, coeffs. g = g̃n.
while candidate dictionary is non-empty I 6= ∅ do

for j = 1, . . . ,M do
Find minimal approx. error with dictionary element dj
removed

γj = MMD
[
β̃n,

∑
k∈I\{j}

g(k)κ(dk, ·)
]
.

end for
Find dictionary index minimizing approximation error:
j? = arg minj∈I γj

if minimal approx. error exceeds threshold γj?>εn
stop

else
Prune dictionary D← DI\{j?}, remove the columns

associated with index j?

Revise set I ← I \ {j?} and model order M ←
M − 1.

Update weights g defined by current dictionary D

g = argmin
w∈RM

∥∥β̃n − M∑
u=1

w(u)κ(du, ·)
∥∥
H

end
end while
Assign gn = g and Evaluate the projected kernel mean
embedding as βn =

∑M
u=1 gn(u)κ(du, ·)

return βn,Dn,gn of complexity M ≤ M̃ s.t.
MMD[β̃n, βn] ≤εn

computing gradients and solving for gn to obtain

gn = K−1Dn,Dn
KDnD̃n

g̃n. (21)

Then, the projected estimate of the mean embedding β̃n is
given by

βn =PHDn
[β̃n] =

Mn∑
s=1

gn(s)κ(ds, ·), (22)

where gn is obtained as a solution to (21). Now, for a given
dictionary Dn, we know how to obtain the projected version
of the mean embedding for each n. Next, we discuss the
procedure to obtain Dn at each n.

C. Dictionary Update

The selection procedure for the dictionary Dn is based upon
greedy sparse approximation, a topic studied in compressive
sensing [54]. The function β̃n := βn−1 + gn(n)κ(x(n), ·)
is parameterized by dictionary D̃n, whose model order is
M̃n = Mn−1 + 1. We form Dn by selecting a subset of Mn

columns from D̃n that are best for approximating the kernel
mean embedding β̃n in terms of maximum mean discrepancy
(MMD). As previously noted, numerous approaches are pos-
sible for sparse representation. We make use of destructive
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orthogonal matching pursuit (OMP) [55] with allowed error
tolerance εn to find a dictionary matrix Dn based on the one
that includes the latest sample point D̃n. With this choice,
we can tune the stopping criterion to guarantee the per-step
estimates of mean embedding are close to each other. We name
the compression procedure MMD-OMP and it is summarized
in Algorithm 3. From the procedure in Algorithm 3, note that
the projection operation in (18) is performed in a manner that
ensures that MMD[β̃n, βn] ≤ εn for all n, and we recall that
βn is the compressed version of β̃n.

IV. BALANCING CONSISTENCY AND MEMORY

In this section, we characterize the convergence behavior of
our posterior compression scheme. Specifically, we establish
conditions under which the asymptotic bias is proportional to
the kernel bandwidth and the compression parameter using
posterior distributions given by Algorithm 2. To frame the
discussion, we note that the NIS estimator (9) IN (φ), whose
particle complexity goes to infinity, is asymptotically consis-
tent [56][Ch. 9, Theorem 9.2], and that the empirical posterior
µN (·) contracts to its population analogue at a O(1/N) rate
where N is the number of particles. To establish consistency,
we first detail the technical conditions required.

A. Assumptions and Technical Conditions

Assumption 1 Recall the definition of the target distribution q
from Sec. II (following (2)). Denote the integral of test function
φ : X → R as q(φ).

(i) Assume that φ is absolutely integrable, i.e., q(|φ|) <∞,
and has absolute value at most unit |φ| ≤ 1.

(ii) The test function has absolutely continuous second
derivative, and

∫
x∈X φ

′′(x)dx <∞.

Assumption 2 The kernel function associated with RKHS is
such that

∫
x∈X κx(n)(x) = 1,

∫
x∈X xκx(n)(x) = 0, and σ2

κ =∫
x∈X x2κx(n)(x) > 0.

Assumption 3 Let IN (φ) and ÎN (φ) be the integral estima-
tors for test function φ associated with the uncompressed and
compressed posterior densities. We define the approximation
error for φ /∈ F where F := {f ∈ H | ‖f‖H ≤ 1}, as

I(φ, f)= sup
|φ|≤1

(
E[ÎN (φ)−IN (φ)]

)
− sup
f∈F

(
E[ÎN (f)−IN (f)]

)
,

(23)

We assume that I(φ, f) ≤ G, where G is a finite constant.

Assumption 1(i) is a textbook condition in the analysis of
Monte Carlo methods, and appears in [56]. Assumptions 1(ii)
and 2 are required conditions for establishing consistency of
kernel density estimates and are standard – see [57][Theorem
6.28]. We begin by noting that under Assumption 1, we have
classical statistical consistency of importance sampling as the
number of particles becomes large as stated in Lemma 2 in
Appendix A. This result enables characterizing the bias of
Algorithm 2, given next in Lemma 1. Assumption 3 is non-
standard and we use it to bound the error due to continuity

conditions imposed by operating in the RKHS. We note that if
φ ∈ F which is the case for most practical applications, then
G = 0.

Lemma 1 Define the second moment of the true unnormalized
density ρ as in Lemma 2. Then, under Assumptions 1-3, the
estimator of Alg. 2 satisfies∣∣ sup

|φ|≤1

(
E[ÎN (φ)− I(φ)]

)∣∣ ≤ N∑
n=1

εn +
24

N
ρ+G. (24)

where εn is the compression budget for each n.

Proof : Inspired by [23], begin by denoting ÎN (φ) as the
integral estimate given by Algorithm 2. Consider the bias
of the integral estimate ÎN (φ)− I(φ), and add and subtract
IN (φ), the uncompressed normalized importance estimator
that is the result of Algorithm 1, to obtain

ÎN (φ)− I(φ) =ÎN (φ)− IN (φ) + IN (φ)− I(φ). (25)

Take the expectation on both sides with respect to the popu-
lation posterior (2) to obtain

E[ÎN (φ)− I(φ)] =E[ÎN (φ)− IN (φ)] + E[IN (φ)− I(φ)].
(26)

Let’s compute the sup of both sides of (26) over range |φ| ≤ 1
and use the fact that a sup of a sum is upper-bounded by the
sum of individual terms:

sup
|φ|≤1

(
E[ÎN (φ)− I(φ)]

)
≤ sup
|φ|≤1

(
E[ÎN (φ)− IN (φ)]

)
+ sup
|φ|≤1

([E[IN (φ)−I(φ)]). (27)

Now add and subtract the supremum over the space F :=
{f ∈ H | ‖f‖H ≤ 1} to the first term on the right hand side
of (27) to write

sup
|φ|≤1

(
E[ÎN (φ)−I(φ)]

)
(28)

≤ sup
f∈F

(
E[ÎN (f)−IN (f)]

)
+ sup
|φ|≤1

([E[IN (φ)− I(φ)])

+ sup
|φ|≤1

(
E[ÎN (φ)−IN (φ)]

)
− sup
f∈F

(
E[ÎN (f)−IN (f)]

)
︸ ︷︷ ︸

I(φ,f)≤G

Observe that the last line on the right-hand side of the pre-
ceding expression defines the integral function approximation
error I(φ, f) defined in (23), which is upper-bounded by
constant G (Assumption 3). Now, compute the absolute value
of both sides of (28), and to the second term on the first line,
pull the absolute value inside the supremum. Doing so allows
us to apply (49) (Lemma 2) to the second term on the first
line, the result of which is:∣∣ sup

|φ|≤1

(
E[ÎN (φ)− I(φ)]

)∣∣ ≤ sup
f∈F

(
E[ÎN (f)−IN (f)]

)
+

24

N
ρ+G, (29)

where G is defined in Assumption 3 and note that G = 0
if φ ∈ H. It remains to address the first term on the right
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hand side of (29), which noticeably defines an instance of an
integral probability metric (IPM) [Muller 1997], i.e.,

sup
f∈F

(
E[ÎN (f)−IN (f)]

)
= sup
f∈F

(∫
f(x)dµ̂N −

∫
f(x)dµ̃N

)
, (30)

where µ̂N is the pre-image unnormalized density estimate
obtained by solving (15). The IPM in (30) is exactly equal to
Maximum Mean Discrepancy (MMD)[58] for test functions
in the RKHS f ∈ H. This observation allows us to write

sup
f∈F

(
E[ÎN (f)−IN (f)]

)
= ‖βN − γN‖H. (31)

where γN is the kernel mean embedding corresponding to the
uncompressed measure estimate µ̃N . Next, consider the term
‖βN −γN‖H and add and subtract the per step uncompressed
estimate β̃N [cf. (19)] to obtain

‖βN − γN‖H =‖(βN − β̃N ) + (β̃N − γN )‖H
≤‖βN − β̃N‖H + ‖β̃N − γνN ‖H
≤εN + ‖β̃N − γN‖H, (32)

where the last inequality holds from the fact that ‖βN −
β̃N‖H ≤ εN (cf. Algorithm 3). Now we substitute the values
of β̃N and γN using the update in (16), and we get

‖βN − γN‖H ≤εN + ‖βN−1 − γN−1‖H. (33)

Using the above recursion, we easily obtain

‖βN − γN‖H ≤
N∑
n=1

εn. (34)

Hence, using the upper bound of (34) in (31), and then
substituting the result into (29) yields

∣∣ sup
|φ|≤1

(
E[ÎN (φ)− I(φ)]

)∣∣ ≤ N∑
n=1

εn +
24

N
ρ+G. (35)

as stated in Lemma 1. �

With this technical lemma in place, we are ready to state
the main result of this paper.

Theorem 1 Define ρ = π(g2)
q(g2) as the variance of the unnor-

malized importance density with respect to importance weights
g as in Lemma 2. Then under Assumptions 1-3, we have the
following approximate consistency results:

(i) for diminishing compression budget εn = αn with α ∈
(0, 1), the estimator of Alg. 2 satisfies∣∣ sup
|φ|≤1

(
E[ÎN (φ)− I(φ)]

)∣∣ ≤ α

1− α
+O

(
1

N

)
+G.

(36)

To obtain a δ accurate integral estimate, we need at least
N ≥ O

(
1
δ

)
particles and compression attenuation rate

sufficiently large such that 0 < α ≤ 1/(1 + (2/δ)).

(ii) for constant compression budget εn = ε > 0 and memory
M := O

(
1

ε1/(2p)

)
∣∣ sup
|φ|≤1

(
E[ÎN (φ)− I(φ)]

)∣∣ ≤ O( N

M1/2p
+

1

N

)
(37)

and

O
(

1

δ

)
≤ N ≤ O

(
δM1/(2p)

)
, (38)

which implies that M≥ O
(

1
δ4p

)
.

Proof: Consider the statement of Lemma 24 and to proceed
next, we characterize the behavior of the term

∑N
n=1 εn since it

eventually determines the final bias in the integral estimation.
Theorem 1(i): Diminishing compression budget: Let us con-
sider εn = (α)n with α = (0, 1), which implies that

N∑
n=1

εn =
α(1− αN )

1− α
≤ α

1− α
. (39)

Substituting (39) into the right hand side of (35), we get∣∣ sup
|φ|≤1

(
E[ÎN (φ)− I(φ)]

)∣∣ ≤ α

1− α
+

24

N
ρ. (40)

To obtain a δ accurate integral estimate, we need N ≥ 48ρ
δ

and 0 < α ≤ 1/(1 + (2/δ)).
Theorem 1(ii): Constant compression budget: Let us consider
εn = ε, which implies that

N∑
n=1

εn = Nε. (41)

Using (41) in (35), we can write∣∣ sup
|φ|≤1

(
E[ÎN (φ)− I(φ)]

)∣∣ ≤ Nε+
24

N
ρ. (42)

For a constant compression budget ε, from Theorem 2, we
have

M∞ ≤ O
(

1

ε2p

)
:=M. (43)

If we are given a maximum memory requirementM, then we
can choose ε as

ε =
G

M1/(2p)
, (44)

where G is a bound on the unnomalized weight g(x(u)) ≤ G
for all u. Using this lower bound value of ε in (42), we get∣∣ sup

|φ|≤1

(
E[ÎN (φ)− I(φ)]

)∣∣ ≤ NG

M1/2p
+

24

N
ρ. (45)

0 2 4 6 8 10
x

0

0.05

0.1

p
(x
)

Fig. 2: Particle histogram for direct sampling experiment.
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Fig. 3: Simulation results for Alg. 2 run with Gaussian kernel (h = 0.01) and compression budget ε = 3.5 for the problem (48). The memory-
reduction scheme nearly preserves statistical consistency, while yielding reasonable complexity, whereas Alg. 1 attains exact consistency as
its memory grows unbounded with index n. All the plots are averaged over 10 iterations.

Note that the first term in the above expression increases
with N and the second term decreases with N , hence we
obtain a tradeoff between memory and accuracy for the
importance sampling based estimator. For a given memoryM
(number of elements we could store in the dictionary) and the
required accuracy δ, we obtain the following bound on the
number of iterations N

48ρ

δ
≤ N ≤ δM1/(2p)

2G
, (46)

which implies that for increased accuracy we need to run for
more iterations but need more memory, and vice versa. �

Theorem 1 establishes that the compressed kernelized im-
portance sampling scheme proposed in Section III is nearly
asymptotically consistent. Note that the right hand side in
(36) consists of three terms depending upon α, 1

N , and G. If
we ignore G, which actually depends upon the approximation
associated with function φ(·), the other two terms can be made
arbitrarily small by making α close to zero and a very high N .
Hence, the integral estimation can be made arbitrarily close
to exact integral. However, when these parameters are fixed
positive constants, they provide a tunable tradeoff between
bias and memory. That is, when the compression budget is a
positive constant, then the memory of the posterior distribution
representation is finite, as we formalize next.

Theorem 2 Under Assumptions 1-2 (in Section IV-A), for
compact feature space X and bounded importance weights
g(x(n)), the model order Mn for Algorithm 2, for all n is
bounded by

1 ≤Mn ≤ O
(

1

ε2p

)
. (47)

Theorem 2 (proof in Appendix B) contrasts with the classical
bottleneck in the number of particles required to represent an
arbitrary posterior, which grows unbounded [23]. While this
is a pessimistic estimate, experimentally we observe orders
of magnitude reduction in complexity compared to exact
importance sampling, which is the focus of the subsequent
section. Observe, however, that this memory-reduction does
not come for free, as once the compression budget is fixed,
the memory is fixed by the ratio 1

ε2p that eventually results in
a lower bound on the accuracy of the integral estimate.

V. EXPERIMENTS

A. Direct Importance Sampling

In this section, we conduct a simple numerical experiment
to demonstrate the efficacy of the proposed algorithm in terms
of balancing model parsimony and statistical consistency. We
consider the problem of estimating the expected value of
function φ(x) with the target q(x) and the proposal π(x) given
by

φ(x) = 2 sin

(
π

(1.5x)

)
, q(x)=

1√
2π

exp

(
− (x− 1)2

2

)
,

π(x)=
1√
4π

exp

(
− (x− 1)2

4

)
,

(48)

to demonstrate that generic Monte Carlo integration allows one
to track generic quantities of random variables that are difficult
to compute under more typical probabilistic hypotheses. For
(48), since q(x) is known, this is referred to as “direct impor-
tance sampling”. We run Algorithm 1, i.e., classic importance
sampling, and Algorithm 2 for the aforementioned problem.
For Algorithm 2, we select compression budget ε = 3, and
used a Gaussian kernel with bandwidth h = 0.01. We track
the normalized integral estimate (9), absolute integral approx-
imation error, and the number of particles that parameterize
the empirical measure (model order).

We first represent the histogram of the particles generated
in Fig. 2. In Fig. 3a, we plot the un-normalized integral
approximation error for Algorithms 1 - 2, which are close,
and the magnitude of the difference depends on the choice
of compression budget. Very little error is incurred by kernel
mean embedding and memory-reduction. The magnitude of the
error relative to the number of particles generated is displayed
in Fig. 3b: observe that the error settles on the order of
10−3. In Fig. 3c, we display the number of particles retained
by Algorithm 2, which stabilizes to around 56, whereas the
complexity of the empirical measure given by Algorithm 1
grows linearly with sample index n, which noticeably grows
unbounded.

B. Indirect Importance Sampling

As discussed in Sec. II, in practice we do not know the target
distribution q(x) and hence we use Bayes rule as described
in (7) to calculate q(x(n)) at each instant t. We consider
the observation model yt = b + sin(2πx) + ηt where ηt ∼
N (0, σ2). From the equality in (7), we need the likelihood
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Fig. 4: Simulation results for Alg. 2 with indirect IS, run with Gaussian kernel (h = 0.012) and compression budget ε = 10−3 for the
problem (48). The memory-reduction scheme nearly preserves statistical consistency, while yielding reasonable complexity, whereas Alg. 1
attains exact consistency as its memory grows unbounded with index n. All the plots are averaged over 10 iterations.

and a prior distribution to calculate q(x(n)) using Bayes Rule
[cf. (2)]. Here we fix the likelihood (measurement model) and
prior as P

(
{yk}k≤K

∣∣x(n)) = 1
(2πσ2

1)
K/2 exp

(
−‖y−x

(n)‖2
2σ2

1

)
,

P
(
x(n)

)
= 1

(2πσ2
2)

exp
(
− (x(n))2

2σ2
2

)
. We set K = 10, b = 5,

σ = 0.1, σ1 = 0.4, σ2 = 1.6, and compression budget
ε = 10−3. A uniform distribution U [3, 7] is used as the
importance distribution. The results are reported in Fig. 4. We
observe a comparable tradeoff to that which may be gleaned
from Section V: in particular, we are able to obtain complexity
reduction by orders of magnitude with extremely little integral
estimation error. This suggests the empirical validity of our
compression-rule based on un-normalized importance weights
operating in tandem with kernel smoothing.

C. Source Localization
In this section we present a sensor network localization

experiment based on range measurements.The results illustrate
the ability to succinctly represent the unknown distribution
of the source signal location, yielding a model that is both
parsimonious and nearly consistent. Consider the problem of
localizing a static target in two-dimensional space R2 with
range measurements from the source collected in a wireless
sensor network (WSN). Since the observation model is non-
linear, the posterior distribution of the location of the target
is intractable, and hence finding the least-squares estimator is
not enough. This problem is well-studied in signal processing
[59] and robotics [60]. Let x = [x, y]T denote the random
unknown target location. We assume six sensors with locations
{hi}6i=1 at locations [1,−8]T , [8, 10]T , [−15,−17]T , [−8, 1]T ,
[10, 0]T , and [0, 10]T , respectively. The true location of the
target is at [3.5, 3.5]T . The measurement at each sensor i is
related to the true target location x via the following nonlinear
function of range yi,j = −20 log(‖x− hi‖) + ηi for i = 1 to
6 and j = 1 to N , where Ni is the number of measurements
collected by sensor i. Here, ηi ∼ N (0, 1) models the range
estimation error. For the experiment, we consider a Gaussian
prior on the target location x with mean [3.5, 3.5]T and
identity covariance matrix. We use the actual target location
as the mean for the Gaussian prior because we are interested
in demonstrating that the proposed technique successfully
balances particle growth and model bias. In practice, for a
general possibly misspecified prior, we can appeal to advanced
adaptive algorithms – for example see [37], [27].

Fig. 5 shows the performance of the proposed algorithm
compared against classical (uncompressed) normalized impor-
tance sampling. Fig. 5a shows that the final estimated value of

the target location for compressed and uncompressed versions
of the algorithms are close. We plot the squared error in Fig.
5b and both algorithms converge with close limiting estimates.
Further, in Fig. 5c we observe that the model order for the
compressed distribution settles to 21, whereas the classical
algorithm requires its number of particles in its importance
distribution to grow unbounded. The memory-reduction comes
at the cost of very little estimation error (Fig. 5a).

VI. CONCLUSIONS

We focused on Bayesian inference where one streams
simulated Monte Carlo samples to approximate an unknown
posterior via importance sampling. Doing so may consistently
approximate any function of the posterior at the cost of
infinite memory. Thus, we proposed Algorithm 2 (CKIS) to
approximate the posterior by a kernel density estimate (KDE)
projected onto a nearby lower-dimensional subspace, which
allows online compression as particles arrive in perpetuity.
We established that the bias of CKIS depends on kernel band-
width and compression budget, providing a tradeoff between
statistical accuracy and memory. Experiments demonstrated
that we attain memory-reduction by orders of magnitude with
very little estimation error. This motivates future application
to memory-efficient versions of Monte Carlo approaches to
nonlinear signal processing problems such as localization,
which has been eschewed due to its computational burden.

APPENDIX A
PROOF OF CONSISTENCY OF IMPORTANCE SAMPLING

Here we state a result on the sample complexity and
asymptotic consistency of IS estimators in terms of integral
error. We increase the granularity of the proof found in the
literature so that the modifications required for our results on
compressed IS estimates are laid bare.

Lemma 2 [23][Theorem 2.1] Suppose π, the proposal distri-
bution is absolutely continuous w.r.t. q, the population poste-
rior, and both are defined over X . Then define their Radon-
Nikodyn derivative: dq

dπ (x) := g(x)∫
X g(x)π(dx)

, ρ := π(g2)
q(g2)

where g is the unnormalized density of q with respect to π.
Moreover, ρ is its second moment (“variance” of unnormalized
density). Under Assumption 1(i), Alg. 1 contracts to the true
posterior as

sup
|φ|≤1

|E[IN (φ)− I(φ)]| ≤ 12

N
ρ, E

[
(IN (φ)− I(φ))2

]
≤ 4

N
ρ ,

(49)
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Fig. 5: Simulation results for Alg. 2 run with Gaussian kernel (h = 0.0001) and compression budget ε = 0.002. Observe that the memory-
reduction scheme (compressed) nearly preserves statistical consistency, while yielding a finite constant limiting model complexity, whereas
the original uncompressed version (uncompressed) attains exact consistency but its memory grows linearly with particle index t.

and hence approaches exact consistency as N →∞.

Proof : This is a more detailed proof than given in
[23][Theorem 2.1] develop for greater completeness and co-
herence. Let us denote the empirical random measure by

πN as πN := 1
N

N∑
n=1

δx(n), and x(n) ∼ π, where πN is

the occupancy measure, which when weighted, yields the
importance sampling empirical measure (11). Note that the
integral approximation at N is denoted by IN (φ). With the
above notation is hand, it holds that

πN (g) =

∫
1

N

N∑
n=1

g(x)δx(n)(x)dx =
1

N

N∑
n=1

g(x(n)), (50)

and similarly

πN (φg) =

∫
1

N

N∑
n=1

δx(n)(x)φ(x)g(x)dx

=
1

N

N∑
n=1

φ(x(n))g(x(n)). (51)

From the above equalities, we can write the estimator bias as

IN (φ)− I(φ) =
πN (φg)

πN (g)
− I(φ) (52)

=
πN (φg)

πN (g)
−
(
I(φ)

πN (g)

πN (g)

)
(53)

=
1

πN (g)

[
πN (φg)− I(φ)πN (g)

]
(54)

=
1

πN (g)
πN ((φ− I(φ))g) . (55)

Let us define φ̄ := φ− I(φ) and note that

π(φ̄g) = 0. (56)

Rewriting the bias, we get

IN (φ)− I(φ) =
1

πN (g)
πN
(
φ̄g
)

=
1

πN (g)

[
πN
(
φ̄g
)
− π

(
φ̄g
)]
, (57)

where the second equality holds from (56). The first term in
the bracket is an unbiased estimator for the second one, so
that

E
[
πN
(
φ̄g
)
− π

(
φ̄g
)]

= 0. (58)

Taking the expectation on both sides of (57), we get

E [IN (φ)− I(φ)] =E
[

1

πN (g)

[
πN
(
φ̄g
)
− π

(
φ̄g
)]]

. (59)

Since it equals zero, we can add the expression in (58) to the
right hand side of (59) to obtain

E [IN (φ)− I(φ)] =E
[

1

πN (g)

[
πN
(
φ̄g
)
− π

(
φ̄g
)]]

+ E
[
πN
(
φ̄g
)
− π

(
φ̄g
)]

(60)

= E
[

1

πN (g)

[
πN
(
φ̄g
)
− π

(
φ̄g
)]]

+ E
[

1

π(g)

(
πN
(
φ̄g
)
− π

(
φ̄g
))]

. (61)

Taking the expectation operator outside, we get

E [IN (φ)−I(φ)] =E
[(

1

πN (g)
− 1

π(g)

)(
πN
(
φ̄g
)
− π

(
φ̄g
))]

= E
[

1

πN (g)π(g)

(
π(g)− πN (g)

) (
πN
(
φ̄g
)
− π

(
φ̄g
))]

.

(62)

Next, we split the set of integration to A = {2πNMC(g) >
π(g)} and its compliment using the property

E[f(X)] = E[f(X)1A(X)] + E[f(X)1Ac(X)],

where 1A the indicator function of the set A selecting A =
{2πNMC(g) > π(g)}, which takes value 1 if x ∈ A and 0 if
x /∈ A. We get

|E [IN (φ)− I(φ)] | ≤ |E [IN (φ)− I(φ)]1{2πN (g)>π(g)}|
+ |E [IN (φ)− I(φ)]1{2πN (g)≤π(g)}|. (63)

Consider the second term of (63), and use the fact that |φ| ≤ 1,
and so |µN (φ)|, |I(φ)| ≤ 1 since they are mean values w.r.t.
probability measures µN , q respectively. Then we use E[1A] =
P (A) and obtain

|E [IN (φ)− I(φ)] | ≤|E [IN (φ)− I(φ)]1{2πN (g)>π(g)}|
+ 2P

(
2πN (g) ≤ π(g)

)
. (64)

The constant 2 comes from the fact that |IN (φ) − I(φ)| ≤
|IN (φ)|+ |I(φ)| ≤ 2. For the first term on the right hand side
of (64), from the set condition (, it holds that

1

πNMC(g)π(g)
<

2

π2(g)
, (65)
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which implies that

|E [IN (φ)−I(φ)] | ≤ 2

π(g)2
E
[
|π(g)−πN (g)||πN (φ̄g)−π

(
φ̄g
)
|
]

+ 2P
(
2πN (g) ≤ π(g)

)
. (66)

Finally, to upper bound the first term on the right hand side of
(66), we first bound the expectation using Cauchy-Schwartz

E[|π(g)−πN (g)||πN (φ̄g)− π(φ̄g)|]
≤ E[(π(g)− πN (g))2]

1
2E[(πN (φ̄g)− π(g))2]

1
2

(67)

The first expectation on the right hand side of (67) is bounded
as follows: by definition of πN we have for xn ∼ π
independent that

E[(π(g)− πN (g))2] =E[(π(g)− 1

N

N∑
n=1

g(x(n))2)]

=
1

N2
E[(

N∑
n=1

g(x(n))−Nπ(g))2], (68)

which since E[g(x(n))] = π(g) and by independence of the
x(n) is equal to

=
1

N2
V ar(

N∑
n=1

g(x(n))) =
1

N2

N∑
n=1

V ar(g(x(n))),

and since x(n) is identically distributed, x(n) ∼ π, this is
equal to

N

N2
V aru∼π(g) =

1

N
(π(g2)− π(g)2) ≤ 1

N
π(g2).

The second expectation on the right hand side of (67) is
bounded in a similar way along with the fact that |φ| ≤ 1
so that |φ̄| ≤ 2. Then we utilize these upper bounds on the
right hand side of (63) to obtain

|E [IN (φ)−I(φ)] | ≤ 2

π(g)2
E
[
|π(g)−πN (g)||πN (φ̄g)−π

(
φ̄g
)
|
]

+ 2P
(
2πN (g) ≤ π(g)

)
(69)

≤ 2

π(g)2
1√
N
π(g2)1/2

2√
Nπ(g2)1/2

]

+ 2P
(
2πN (g) ≤ π(g)

)
(70)

where the inequalities follow from the fact that the test
function is bounded |φ|. Next, note that

P
(
2πN (g) ≤ π(g)

)
=P
(
2
(
πN (g)− π(g)

)
≤ −π(g)

)
≤P
(
2|πN (g)− π(g)| ≥ π(g)

)
, (71)

where the first equality is obtained by subtracting −2π(g)
from both sides inside the bracket. Next, we use the Markov
inequality, given by P (X ≥ a) ≤ E(X)

a . Utilizing this, we can
write

P
(
2|πN (g)−π(g)| ≥ π(g)

)
≤

2E
[
|πN (g)−π(g)|

]
π(g)

≤ 4

N

π(g2)

π(g)2
.

This implies that

P
(
2πN (g) ≤ π(g)

)
≤ 4

N

π(g2)

π(g)2
. (72)

Finally, using the upper bound in (72) in (70), we obtain

sup
|φ|≤1

|E [IN (φ)− I(φ)] | ≤12

N

π(g2)

π(g)2
(73)

which proves the result. �

APPENDIX B
PROOF OF THEOREM 2

We begin by presenting a lemma which allows us to relate
the stopping criterion of our sparsification procedure to a
Hilbert subspace distance.

Lemma 3 Define the distance of an arbitrary feature vector
x evaluated by the feature transformation ψ(x) := κ(x, ·)
to HD = span{ψ(dn)}Mn=1, the subspace of the real space
spanned by a dictionary D of size M , as

dist(ψ(x),HD) = min
y∈HD

|ψ(x)− vTφD| . (74)

This set distance simplifies to the following least-squares
projection when D ∈ Rp×M is fixed

dist(ψ(x),HD) =
∣∣∣ψ(x)− ψ(x)ψTDK−1D,DψD

∣∣∣. (75)

Proof: The distance to the subspace HD is defined as

dist(ψ(x),HDn) = min
y∈HD

|ψ(x)− vTψD|

= min
v∈RM

|ψ(x)− vTψD| , (76)

where the first equality comes from the fact that the dictionary
D is fixed, so v ∈ RM is the only free parameter. Now plug
in the minimizing weight vector ṽ? = ψ(xn)K−1Dn,Dn

ψDn

into (76) which is obtained in an analogous manner to the
logic which yields (15) - (21). Doing so simplifies (76) to the
following

dist(ψ(xn),HDn
) =
∣∣∣ψ(xn)− ψ(xn)[K−1Dn,Dn

ψDn
]TψDn

∣∣∣
=
∣∣∣ψ(xn)− ψ(xn)ψTDn

K−1Dn,Dn
ψDn

∣∣∣. (77)

�

Next, we establish that the model order is finite.
Proof : Consider the model order of the kernel mean em-
bedding βn and βn−1 generated by Algorithm 2 and denoted
by Mn and Mn−1, respectively, at two arbitrary subsequent
instances n and n−1. Suppose the model order of the estimate
βn is less than or equal to that of βn−1, i.e. Mn ≤ Mn−1.
This relation holds when the stopping criterion of MMD-OMP
( defined in Algorithm 2), stated as minj=1,...,Mn−1+1 γj > ε,
is not satisfied for the updated dictionary matrix with the
newest sample point x(n) appended: D̃n = [Dn−1;x(n)]
[cf. (19)], which is of size Mn−1 + 1. Thus, the negation of
the termination condition of MMD-OMP in Algorithm 2 must
hold for this case, stated as

min
j=1,...,Mn−1+1

γj ≤ ε . (78)

Observe that the left-hand side of (78) lower bounds the
approximation error γMn−1+1 for removing the most re-
cent sample x(n) due to the minimization over j, that
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is, minj=1,...,Mn−1+1 γj ≤ γMn−1+1. Consequently, if
γMn−1+1 ≤ ε, then (78) holds and the model order does not
grow. Thus it suffices to consider γMn−1+1. The definition of
γMn−1+1 with the substitution of βn in (78) allows us to write

γMn−1+1= min
u∈RMn−1

∣∣∣βn−1 + g(x(n))κx(n)(x)−
∑

k∈I\{Mn−1+1}

ukκdk
(x)
∣∣∣

= min
u∈RMn−1

∣∣∣ ∑
k∈I\{Mn−1+1}

g(x(k))κdk
(x) (79)

+ g(x(n))κx(n)(x)−
∑

k∈I\{Mn−1+1}

ukκdk
(x)
∣∣∣ ,

where we denote κx(n)(x) = κ(x(n),·) and the kth column
of Dn as dk. The minimal error is achieved by considering
the square of the expression inside the minimization and
expanding terms to obtain∣∣∣ ∑
k∈I\{Mn−1+1}

g(x(k))κdk
(x) + g(x(n))κx(n)(x)−

∑
k∈I\{Mn−1+1}

ukκdk
(x)
∣∣∣2

=
∣∣∣gTκDn(x) + g(x(n))κx(n)(x)− uTκDn(x)

∣∣∣2
= gTKDn,Dn

g + g(x(n))2 + uTKDn,Dn
u

+2g(x(n))wTκDn(x(n))−2g(x(n))uTκDn(x(n))

− 2wTKDn,Dn
u. (80)

To obtain the minimum, we compute the stationary solution of
(80) with respect to u ∈ RMn−1 and solve for the minimizing
ũ?, which in a manner similar to the logic in (15) - (21), is
given as ũ? = [g(x(n))K−1Dn,Dn

κDn(x(n)) + g] . Plug ũ?

into the expression in (79) and, using the short-hand notation∑
k ukκdk

(x) = uTκDn
(x). Simplifies (79) to∣∣∣gTκDn

(x) + g(x(n))κx(n)(x)− uTκDn
(x)
∣∣∣

=
∣∣∣gTκDn

(x) + g(x(n))κx(n)(x)

− [g(x(n))K−1Dn,Dn
κDn(x(n))+g]

T
κDn(x)

∣∣∣
=
∣∣∣g(x(n))κx(n)(x)−[g(x(n))K−1Dn,Dn

κDn(x(n))]
T
κDn(x)

∣∣∣
=g(x(n))

∣∣∣κx(n)(x)− κDn
(xn)TK−1Dn,Dn

κDn
(x)
∣∣∣ (81)

Notice that the right-hand side of (81) may be identified as
the distance to the subspace HDn in (77) defined in Lemma
3 scaled by a factor of g(x(n)). We may upper-bound the
right-hand side of (81) as

g(x(n))
∣∣∣κx(n)(x)− κDn

(x(n))TK−1Dn,Dn
κDn

(x)
∣∣∣

= g(x(n))dist(κx(n)(x),HDn
) (82)

where we have applied (75) regarding the definition of the
subspace distance on the right-hand side of (82) to replace
the absolute value term. Now, when the MMD-OMP stopping
criterion is violated, i.e., (78) holds, this implies γMn−1+1 ≤ ε.
Therefore, the right-hand side of (82) is upper-bounded by ε,
and we can write

g(x(n))dist(κx(n)(x),HDn) ≤ ε. (83)

After rearranging the terms in (83), we can write

dist(κx(n)(x),HDn
) ≤ ε

g(x(n))
, (84)

where we have divided both sides by g(x(n)). Observe that if
(84) holds, then γMn

≤ ε holds, but since γMn
≥ minj γj , we

may conclude that (78) is satisfied. Consequently the model
order at the subsequent step does not grow which means that
Mn ≤Mn−1 whenever (84) is valid.

Now, let’s take the contrapositive of the preceding expres-
sions to observe that growth in the model order (Mn =
Mn−1 + 1) implies that the condition

dist(κx(n)(x),HDn
) >

ε

g(x(n))
(85)

holds. Therefore, each time a new point is added to the
model, the corresponding map κx(x(n)) is guaranteed to be
at least a distance of ε

g(x(n)) from every other feature map
in the current model. In canonical works such as [25], [61],
the largest self-normalized importance weight is shown to be
bounded by a constant. Under the additional hypothesis that
the un-normalized importance weight is bounded by some
constant W , then we have via (85) dist(κx(n)(x),HDn) > ε

W .
Therefore, For a fixed compression budget ε, the MMD-OMP
stopping criterion is violated for the newest point whenever
distinct dictionary points dk and dj for j, k ∈ {1, . . . ,Mn−1},
satisfy the condition dist(κx(dj), κdk

(x)) > ε
W . Next, we

follow a similar argument as provided in the proof of Theorem
3.1 in [62]. Since X is compact and κx is continuous, the
range κx(X ) of the feature space X is compact. Therefore,
the minimum number of balls (covering number) of radius κ
(here, κ = ε

W ) needed to cover the set κx(X ) is finite (see,
e.g., [63]) for a finite compression budget ε. The finiteness of
the covering number implies that the number of elements in the
dictionary MN will be finite and using [62, Proposition 2.2],
we can characterize the number of elements in the dictionary
as 1 ≤ MN ≤ C

(
W
ε

)2p
, where C is a constant depending

upon the space X . �
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