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Combining quantitative data with logic-based
specifications for parameter inference.

Paul Piho, Jane Hillston

Imperial College London, University of Edinburgh

Abstract. Continuous time Markov chains are a common mathematical
model for a range of natural and computer systems. An important part of
constructing such models is fitting the model parameters based on some
observed data or prior domain knowledge. In this paper we consider the
problem of fitting model parameters with respect to a mix of quantitative
data and qualitative data formulated as temporal logic formulae. Our
approach works by defining a set of conditions that capture the dynamics
inferred by the quantitative data. This allows for a straightforward way to
combine the information from the quantitative and qualitative knowledge
into one parameter inference problem via rejection sampling.

1 Introduction

Quantitative models like continuous time Markov chains facilitate the under-
standing of processes and phenomena from a variety of areas like performance
modelling, epidemiology and biology. A large part of constructing these mod-
els deals with fitting the model parameters using existing data or prior domain
knowledge. In the context of formal methods such parameter inference prob-
lems have been considered in [4, 5] where logic specifications are used to specify
the constraints on the behaviour of the model. The emphasis is on identifying
parameters for which a given logical formula holds or parameters where the
probability of satisfying the formula is maximised. These ideas can be used ef-
fectively in the area of control where the logic specifications are used to define
the requirements for a successful controller [17]. Outside of formal methods, the
inference problems are generally based on fitting the model parameters using
existing observed data. The observed data can come in the form of quantitative
data, like measured time trajectories, or qualitative data [14].

In this work we concentrate on parameter inference for models where the
knowledge about the behaviour of the system comes in different forms. Firstly,
we have observed time trajectories corresponding to a part of the modelled sys-
tem’s behaviour. Secondly, we have aspects of the system behaviour that are not
directly measured but where the prior knowledge about the system’s behaviour
can be given through a logic-based specification. We combine those two sources of
information into a single parameter inference problem. The benefit such integra-
tion brings is that lack of time-series data about parts of the system’s behaviour
can be compensated via a logic-based high level specification.



To that end, we implement a rejection sampling-based algorithm where sam-
ples of parameters from a defined prior distribution are accepted as posterior
samples if the corresponding model trajectories are close enough to the quanti-
tative data and also satisfy the logic specification. The decision on whether or
not model trajectories are close to the available quantitative data is made in two
ways. One follows standard approximate Bayesian computation [15] by defining
a discrepancy measure between statistics of the quantitative data and simulated
model trajectories. Secondly, we propose an approach where the observed data
is translated into a logical specification capturing the temporal dynamics of the
data. The resulting specification is then combined with the logical specification
corresponding to the qualitative data. We then study the resulting posterior dis-
tributions empirically by considering the quantities corresponding to expected
satisfaction probability of a logical specification over the recovered approximate
posterior distributions.

We start by giving an overview of the related work in Section 2 and the re-
quired background in Section 3. In Section 4 we introduce the main contribution
of the paper — a method for performing inference based on both quantitative and
qualitative data in the form of logical specifications. In Section 5 we present com-
putational experiment results for two illustrative examples — a rumour spread
and a client server model. Finally, we end in Section 6 with conclusions and
further work.

2 Related work

Several recent papers present work on parameter fitting for non-stochastic mod-
els of dynamics from qualitative data [12, 14, 13]. All of these consider determin-
istic ordinary differential equation models. In [12] the qualitative observations
are formalised as inequality constraints on the model output. The parameter
identification is then treated as a constrained optimisation problem through a
heuristically constructed objective function. In [13] this work is extended to give
a Bayesian formulation of parameter inference from qualitative data. The authors
of [14] take an alternative approach where the best quantitative representation
of the qualitative observations in the form of categorical data is found via op-
timal scaling methods. The found quantitative representation is referred to as
surrogate data. This approach is based on an assumption that the qualitative
data comes in the form of ordered categorical data, like “low”, “high” and “very
high”, directly corresponding to quantitative trajectories. In the context of for-
mal methods, the authors of [4] propose a method of fitting model parameters
based on a logic specification by framing the problem in a Bayesian optimisation
framework. However, integration of quantitative and qualitative data remains
an open issue.



3 Background

In this section we present an overview of the necessary background topics. Specif-
ically, we introduce the main models of study, called parametric continuous time
Markov chains and the related statistical model checking and inference problems.

3.1 Parametric continuous time Markov chains

In this paper we consider discrete-state stochastic models, namely continuous
time Markov chains. We give the following definition, common in the verification
literature [2].

Definition 1. A continous time Markov chain is a model of the form M =
{S,Q, A, L} where

– S = {s0, s1, · · · , sn} is a finite set of states.
– Q is the transition rate matrix. In particular, Q is a |S| × |S| matrix such

that the off-diagonals are non-negative and the diagonal elements

aii = −
∑
i̸=j

aji (1)

– L : S → 2A is a labelling function mapping a state s ∈ S to a subset of
atomic propositions A that hold for s.

An infinite path of a CTMC M is a sequence s0t0s1t1 . . . where the transition
rate ai,i+1 > 0 and ti > 0 for all i ≥ 0. The state s0 denotes the initial state of
the CTMC and is assumed to be fixed. The time ti represents the time CTMC
spends in a given state. The times ti, called holding times, are drawn from the
exponential distribution with rate parameter −aii. A trace of M is the mapping
of path s0t0s1t1 . . . through the labelling function L.

The state of the CTMC remains constant between jumps. Thus, in addition
to the trace we can give the trajectory of a CTMC as a left-continuous function
ω : R≥0 → S that is constant for the duration of the holding time and then
jumps to the next state. We can simulate the CTMC via, for example, Gillespie’s
stochastic simulation algorithm [8]. Finally, we give a definition of the parametric
extension of continuous time Markov chains.

Definition 2. A parametric continuous time Markov chain over parameter vec-
tor θ is a model of the form Mθ = {S,Qθ, A, L} where S, A and L are defined
as before. Additionally,

– θ = (θ1, · · · , θk) is the vector of parameters taking values in some domain
D ⊂ Rk

≥0.
– Qθ is the parametric transition rate matrix such that each entry in Qθ de-

pends polynomially on θ1, · · · , θk.

In particular, Mθ defines a family of continuous time Markov chains with pa-
rameters θ varying in a domain D.



CTMC-based models are often expressed in a high-level modelling language
such as stochastic process algebras [9, 7], generalised stochastic Petri nets [3] or
Chemical Reaction Network (CRN) models [1]. For simplicity we consider the
latter option defined as follows:

Definition 3. A chemical reaction network model is defined by a

– a vector of population variables X = (X1, X2, · · · , Xn) ∈ Nn counting the
number of different agents in the system.

– a set of reaction rules in the form

r1X1 + · · ·+ rnXn
τ(X,θ)−−−−→ s1X1 + · · ·+ snXn

where ri and si are the counts of agents consumed (respectively produced) in
a reaction. τ is the rate function depending on the state of the model X and
a vector of model parameters θ.

The dynamics of the reaction network are interpreted as a parametric CTMC,
or a CTMC if the model parameters θ are fixed, where each state in the CTMC
corresponds to a vector of counts.

Example 1. In order to illustrate the ideas let us consider the following susceptible-
infected-recovered (SIR) model defined as a CRN

S + I
kI−→ I + I I

kR−−→ R

where S gives the number of susceptible, I the number of infected and R the
number of recovered individuals in the system. The first type of transition corre-
sponds to infected and susceptible individuals interacting, resulting in the num-
ber of infected individuals increasing and the number of susceptible decreasing.
In particular, the susceptible agent turns into an infected one. The second type
of transition corresponds to recovery of an infected individual and results in
the number of infected decreasing and the number of recovered increasing. The
states of the underlying CTMC keep track of the counts of different individuals
in the system. The model parameters are given by the vector (kI , kR) result-
ing in transition rates kI × S × I and kR × I for infection spread and recovery
respectively.

3.2 Statistical model checking

An important problem in statistical model checking is estimating the proba-
bility that a model satisfies a given logical specification [10]. In this paper we
assume that the logical properties are defined in the time-bounded fragment of
metric interval temporal logic (MiTL) [11]. MiTL is a linear temporal logic for
continuous time trajectories with the syntax given by

φ ::= true | µ | ¬φ | φ1 ∧ φ2 | φ1U[T1,T2]φ2 (2)



where U[T1,T2] denotes the time-bounded until operator. The atomic proposi-
tions are inequalities on population variables of a CRN model. A MiTL for-
mula is interpreted over a real-value function of time x(t) that corresponds to
a trajectory of a CTMC. The time-bounded until is then defined as follows:
x, t |= φ1U[T1,T2]φ2 if and only if there exists a time t1 in the interval [t+T1, t+T2]
such that x, t1 |= φ2 and for all t0 in the interval [t, t1] we have x, t0 |= φ1. Other
temporal modalities can then be defined using the until operator. For example,
time-bounded eventually and always are given by F[T1,T2]φ ≡ true U[T1,T2]φ and
G[T1,T2]φ ≡ ¬F[T1,T2]¬φ respectively.

One of the quantities of interest is the satisfaction probability with respect
to a MiTL formula. This is defined as follows.

Definition 4. Let Mθ be pCTMC over parameter vector θ ∈ D ⊂ Rk
≥0 and φ

be a temporal logic formula. The satisfaction probability associated with φ is the
probability

fφ(θ) = P (φ = true | Mθ). (3)

Statistical model checking provides a way to estimate the defined satisfaction
probability and relies on analysing a set of simulated trajectories of the model
Mθ for different parameter values θ. Supposing Dθ is a set of N trajectories for
θ we can give a Monte Carlo estimate of the satisfaction probability

fφ(θ) ≈ f̄φ(θ) =
1

|N |
∑
t∈Dθ

1[t |= φ]. (4)

In particular, we take a mean over the trajectories in Dθ with respect to the
indicator function that returns 1 if the trajectory satisfies the temporal logic
formula φ and 0 otherwise. Note that this corresponds to the maximum likelihood
estimate of the parameter of a Bernoulli distribution. Thus the variance of the
estimate is given by

Var(f̄φ(θ)) =
f̄φ(θ)(1− f̄φ(θ))

N
. (5)

The size of the simulated data set Dθ can then be chosen such that the vari-
ance of the estimate gives acceptable confidence for the intended application. An
alternative to statistical methods for estimating the defined satisfaction proba-
bility are numerical approximation methods [6] which suffer greatly from state
space explosion.

3.3 Approximate parameter inference

Parameter inference for stochastic systems in general, and continuous time Markov
chains in particular, is a difficult problem. Supposing we have a pCTMC model
Mθ and a set of observed data D. The aim of parameter inference is to describe
the distribution over parameters θ such that the pCTMC Mθ offers a good



model for the data. In the Bayesian setting we are looking to find the posterior
distribution over model parameters θ

p(θ|D) ∝ p(D|θ)p(θ)

given the observed data D. The posterior is proportional to the product of the
likelihood p(D|θ) and the prior p(θ). In the context of parameter inference of
stochastic systems like CTMCs the likelihood term is usually computationally in-
tractable. Because of this, the methods that rely on computing the likelihood are
infeasible. Thus, likelihood-free methods such as approximate Bayesian compu-
tation [15] and synthetic likelihood methods [16] are commonly used to identify
model parameter values such that the data simulated by the stochastic model
resembles the observed data.

In this section we concentrate on approximate Bayesian computation (ABC).
The idea is to simulate the model for different parameters and compare the
outcomes with the observed data. Let us consider the observed data D and
the data Dθ simulated from a model Mθ with a parameter value θ. In this
paper we think of both D and Dθ as sets of time-trajectories. The first step
in such methods is to reduce the observed data set D to appropriate summary
statistics. Let D = {z1, · · · , zn} denote the observed data set and let the function
Sn : Rn → Rd represent the chosen vector of summary statistics. The likelihood
L(θ) is approximated by

L(θ) = p(Sn(D)|θ)
which is the likelihood of data D under the summary statistic Sn. This likelihood
however is also not known and in practice L(θ) is approximated further.

The method we consider is based on the summary statistics Sn(Dθ) computed
from the simulated data Dθ. In particular, consider the standard ABC rejection
sampler. This method relies on defining a discrepancy measure

∆θ = ∥Sn(D)− Sn(Dθ)∥

for some norm ∥ · ∥. ABC methods proceed to draw samples θ from the prior
distribution and simulate the corresponding summary statistics Sn(Dθ). The
parameters θ sampled from the prior p(θ) are retained as samples from the
posterior p(θ|D) if the corresponding summary statistics Sn(D) and Sn(Dθ) are
within a chosen distance ϵ of each other. In other words, θ is retained as a
posterior sample if the acceptance criterion ∆θ < ϵ is satisfied.

The notable problem with this approach is the sensitivity of the results to
the choice of the discrepancy measure ∆θ and the threshold. In this paper we
work with the discrepancy measure defined in terms of the Euclidean distance
between the summary statistics. The choice of the threshold value is generally
less obvious and several values need to be tried to find a performing one. Setting
the value too high will result in a rejection sampler that discriminates poorly
between different parameter values of the model. Setting the value too low results
in computation time blowing up as too many samples are rejected.

Another common class of likelihood-free inference methods is synthetic like-
lihood methods where the intractable likelihood p(Sn(D|θ) is approximated by



a normal likelihood. The likelihood is then used in a Markov chain Monte Carlo
scheme like the Metropolis-Hastings algorithm. Such methods are out of the
scope of this paper and are left for future work.

4 Inference

In this section we discuss the main contribution of this paper — a method for
performing inference with quantitative and qualitative information about the
system’s behaviour. The Bayesian inference problem we are looking to solve
is constructing the posterior for model parameters θ under the evidence from
observed data D and logical specification φ. From the Bayes’ theorem we know
that the posterior of interest is proportional to likelihood multiplied by the prior:

p(θ|D, φ) ∝ p(D, φ|θ)p(θ)

The likelihood p(D, φ|θ) in the case of continuous time Markov chain models
is generally intractable. Further, the likelihood p(D, φ|θ) which considers both
quantitative and qualitative observations is more complex than considering the
quantitative and qualitative observations independent from each other. In par-
ticular, it is clear that conditional on the parameter θ the likelihood of D and
φ are not independent. From the law of conditional probability we know that
either

p(D, φ|θ) = p(D|θ, φ)p(φ|θ)

or
p(D, φ|θ) = p(φ|θ,D)p(D|θ)

It is not clear how to treat the conditional likelihoods p(D|θ, φ) and p(φ|θ,D)
corresponding to the likelihoods of observed data given parameter θ and specifi-
cation φ holding and the likelihood of φ holding given observed data D. Neither
the ABC methods or synthetic likelihood methods mentioned in Section 3.3 can
be applied directly to the problem at hand. In the case of ABC the challenge is
defining a set of summary statistics from the available (quantitative and logical)
data and a corresponding discrepancy measure. In the case of synthetic likeli-
hood methods we also have a problem with defining a set of summary statistics
that are approximately Gaussian.

In order to overcome these challenges we propose the following approach.
The quantitative data in the form of observed trajectories is translated into a
logical specification φD. The joint likelihood p(φD, φ|θ) can then be estimated
via statistical model checking methods. The main difficulty is in constructing the
specification φD from the qualitative data D such that the posterior p(φD, φ|θ)
approximates well the posterior p(D, φ|θ). Note that this problem of choosing a
suitable way to transform the quantitative observations into logical specification
is in spirit similar to choosing a set of summary statistics and a discrepancy
measure in ABC. Once we have an appropriately constructed logical specifica-
tion we can use rejection sampling to sample from the approximate posterior
p(θ|φ,φD).



4.1 Quantitative data

The most trivial method for transforming the observed trajectories to a logical
specification is to define a discrepancy measure ∆θ = ∥Sn(D)− Sn(Dθ)∥ and a
threshold ϵ as done for ABC. We then consider a property that is satisfied when
the discrepancy is less than ϵ. Suppose then that φ denotes the logical specifica-
tion corresponding to qualitative information. When implementing the rejection
sampling we only keep the samples θ for which both the discrepancy measure
is below a threshold and the logical specification for qualitative information is
satisfied.

Alternatively we can convert the quantitative data into the same logic, MiTL,
as the qualitative specification. Suppose D = {z1, · · · , zn} are time trajectories
observed at a finite number of points. Each trajectory zi consists of a set

{(yi0, t0), (yi1, t1), . . . (yim, tm)}

where yij is a measured vector of data points at time tj . As with the approximate
Bayesian computation we consider the summary statistics Sn(D) = {s1, · · · , sm}
at times t0, · · · , tm. Recall that ω(t) is the function that maps a CTMC to its
summary statistic at time t. We say that the trajectory is close to a point (sj , tj)
if for a small time ϵt and a time interval [tj − ϵt, tj + ϵt] there exists a time
t ∈ [tj − ϵt, tj + ϵt] such that d(ω(t), sj) < δ where d is a distance measure
defined between the state space of the CTMC model and summary statistic of
the observed trajectories. For chosen tolerances ϵt and δ this can be encoded as
a MiTL specification in the following way

F[tj−ϵt,tj+ϵt]{d(ω(t), sj) < δ}. (6)

That is, eventually in the given time interval the discrepancy between the trajec-
tory and the summary statistic from observations is less than δ. A useful special
case is when ϵt = 0.0 which gives

F[tj ,tj ]{d(ω(t), sj) < δ}. (7)

meaning at time tj the inequality d(ω(t), sj) < δ holds. In the rest of the paper
we are going to work with this special case.

Let us denote this formula by φi. The full specification corresponding to the
observed time trajectories is then given by the conjunction φD =

∧
i∈{1,··· ,m} φi

corresponding to the model trajectories close to the observed quantitative data.
This can be taken together with the logical specification φ for the qualitative
data. In particular, the assumption is that p(D, φ|θ) is approximately propor-
tional to p(φD, φ|θ).

Similarly to ABC we can then implement rejection sampling from the poste-
rior

p(θ|φD, φ) ∝ p(φD, φ|θ)p(θ) (8)

by randomly sampling from the prior p(θ) and accepting those samples for which
the model Mθ satisfies the constructed logical specification. Note that the re-
jection sampling will only accept samples if there is part of the parameter space



covered by the prior where both the satisfaction probability to both φD and φ
are non-zero.

4.2 Expected satisfaction probability

The assumption in the previous section that p(D, φ|θ) is approximately propor-
tional to p(φD, φ|θ) is difficult to verify in practice. Moreover, as discussed we
do not have access to the true posterior p(θ|D, φ). Thus, in order to study the re-
sulting posteriors we compare the expected satisfaction probabilities calculated
over the approximate posterior distributions p(θ|φD), p(θ|φ) and p(θ|φD, φ)

Suppose φ is a logical property and p(θ|D) is a posterior distribution. We
can compute the expected satisfaction probabilities over the distribution as∫

θ

fφ(θ)p(θ|D)dθ. (9)

For example, with respect to the posterior arising from the logical specification
for quantitative data we have

EφD
[fφ(θ)] =

∫
θ

fφ(θ)p(θ|φD)dθ. (10)

Clearly, analytical solution of this will be infeasible as neither the satisfaction
probability function fφ(θ) nor the posterior density p(θ|φD) have analytical
forms. However the expectation can be estimated from the posterior samples
S by giving the following Monte Carlo estimate

EφD
[fφ(θ)] ≈

1

|S|
∑
s∈S

fφ(s). (11)

The satisfaction probability fφ(s) requires another Monte Carlo estimate as de-
scribed in Section 3.2. Thus, for example, we can study the change in expected
satisfaction probability of properties φ and φD when going from posterior p(θ|φ)
to p(θ|φ,φD). This serves as a proxy for the trade-off being made when at-
tempting to fit a posterior distribution with respect to both quantitative and
qualitative information.

5 Results

In this section we present parameter inference results for two examples. Namely,
a rumour spread model [4] and a client-server model, both defined as CRNs.
In both cases the quantitative data considered are samples of trajectories at
a given set of times. Both approaches of describing the time trajectory as a
logical property presented in the previous section require us to specify a threshold
parameter and are analogous to each other in the context of rejection sampling.



5.1 Rumour spread model

To illustrate the proposed method we are going to first consider a simple rumour
spread model. This model is a variant of the commonly studied susceptible-
infected-recovered model from epidemiology. The agents in the model can be in
one of three states — ignorant I, spreading S or repressing R. As a chemical
reaction network the model is given as follows.

S + I
kI−→ S + S

S + S
kR−−→ S +R

R+ S
kR−−→ R+R

In particular, the rumour spreads from spreading individuals to ignorant. Only
novel rumours are deemed worthy of sharing and thus if two spreaders meet,
one of them will stop spreading the rumour. Finally, a repressing individual will
quash the rumour if they meet a spreading individual, and turn them into a
repressor. We assume two parameters kI and kR governing the rates at which
ignorants become spreaders and spreading individuals are converted to repressing
ones. The initial state of the model is given by 10 ignorants and 5 spreaders.

The experimental set up is as follows. For the quantitative data we assume
that only one of the species in the chemical reaction network is directly ob-
served. In particular, suppose only the number of repressors is quantitatively
measured. The quantitative observations are taken to be the mean values of
1000 trajectories simulated from the model with fixed parameters at 6 equally
spaced time-points in the time-interval [0.0, 5.0]. We repeat the experiment for 3
different parameter combinations from the half-open intervals kI ∈ (0.0, 1.0] and
kR ∈ (0.0, 1.0]. Namely, we consider {kI = 0.2, kR = 0.5}, {kI = 0.4, kR = 0.8}
and {kI = 0.1, kR = 0.1}. We then construct the discrepancy measure and MiTL-
based logic specifications for the quantitative data as described in Section 4.

For the qualitative information let us suppose the following condition:

G[0,1.0]{I > S}. (12)

That is, in the time-interval [0.0, 1.0] the number of ignorants is greater than
the number of spreaders. Clearly, this indirectly constrains the rate at which
the rumour spreads. Note that we have now said something about all three
populations in the model.

The parameter for the MiTL formula construction and rejection criterion for
the approximate Bayesian inference construction is chosen such that the rejection
rates are similar between the two conditions. In particular, we fix the acceptance
criterion parameter for the ABC as ϵ = 1.0. With that in mind, choosing the

parameters for the MiTL formula construction to be δ =
√

1
6 and ϵt = 0.0

ensures that a parameter accepted based on the MiTL formula is also accepted
by the Euclidean metric-based condition. In this case this selection of parameters
also happens to give a similar acceptance rate between the two methods.
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Fig. 1: Plot of the kernel density estimator based on accepted parameters for the
rumour spread model. The quantitative data was sampled from the model with
parameters kI = 0.2 and kR = 0.5. (a) shows the approximate posterior based
on quantitative information only. (b) shows the posterior based on qualitative
information only. (c) shows the posterior for the combined information as found
by method in Section 4.
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(c) Quantitative and quali-
tative.

Fig. 2: Same as Figure 1 but with the quantitative data sampled from the model
with parameters kI = 0.4 and kR = 0.8.
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(c) Quantitative and quali-
tative.

Fig. 3: Same as Figure 1 but with the quantitative data sampled from the model
with parameters kI = 0.1 and kR = 0.8.

Figures 1, 2 and 3 show the distributions resulting from the rejection sam-
pling based on both quantitative and qualitative information as well as each
separately. For each posterior we gathered 1000 samples. As discussed in Sec-
tion 4.2 we assess the method by comparing the recovered posterior distribution
when only quantitative, only qualitative and both sets of information are used.



Table 1: Expected satisfaction probabilities under different combinations of log-
ical specifications.

Parameters Formula Expect. sat. w.r.t
p(θ|φD) p(θ|φ) p(θ|φ,φD)

(0.2, 0.5)
MiTL φ 0.37 0.63 0.39

φD 0.021 0.009 0.017
Discrepancy measure φ 0.39 0.63 0.41

φD 0.033 0.015 0.028
(0.4, 0.8)

MiTL φ 0.20 0.64 0.21
φD 0.11 0.048 0.12

Discrepancy measure φ 0.21 0.64 0.23
φD 0.12 0.056 0.13

(0.1, 0.8)
MiTL φ 0.62 0.63 0.61

φD 0.11 0.077 0.11
Discrepancy measure φ 0.64 0.63 0.64

φD 0.13 0.095 0.13

In particular, Table 1 shows the trade-offs that are made to make the posterior
agree with both types of data as closely as possible. The trade-off is smaller
in the cases where the two posteriors p(θ|φ) and p(θ|φD) have the most over-
lap. Here, this would be the parameter combination kI = 0.1 and kR = 0.8.
It can also be seen that there is very little difference between the two methods
for taking into account the quantitative trajectories. However, the interpreta-
tion or construction of the MiTL method is simpler. In our case the parameter
was chosen to give similar results with the discrepancy measure-based condition.
However, the MiTL formula construction parameter can easily be interpreted as
the measurement noise or uncertainty.

5.2 Client server model

As the second example we consider the client-server model implemented as the
following chemical reaction network

Client + Server
kreq−−→ ClientThink + Server

ClientThink
kthk−−→ Client

Server
kbrk−−→ ServerBroken

ServerBroken
kfix−−→ Server

The model consists of two types of agents, clients and servers. The clients request
data from the server, receive the requested data and perform some independent



action with the data. The servers in addition to serving the clients are susceptible
to failure. The initial state of the model is given by 20 clients and 3 servers.

The model parameters are the various rates with which the transitions occur.
There are four rate parameter kreq , kthk , kbrk and kfix . We are going to assume
that two of them, namely kthk , kbrk are fixed at 0.1 and 0.2 respectively. In
the following we use the methods previously described to fit the remaining two
parameters.

Let us assume that the data available for parametrising the model are the
time-series observations of the available servers. Furthermore, let us assume the
following logical formula

G[0,10.0]{Client > ClientThink}. (13)

This means, in the time interval [0, 10.0], we always have more clients ready to re-
quest data from the server than thinking. In this case again we have quantitative
and qualitative information about different aspects of the system dynamics.

The threshold for the discrepancy measure and MiTL formula construction
parameter were again chosen by hand: they were fixed as ϵ = 3.0 and {δ =
2.05, ϵt = 0.0} respectively to give similar acceptance rates. The experiments
were repeated for three parametrisations of the pCTMC model. Namely, {kreq =
0.4, kfix = 0.3}, {kreq = 0.2, kfix = 0.6} and {kreq = 0.8, kfix = 0.8}.

Figures 4, 5 and 6 show the distributions resulting from the rejection sampling
based on both quantitative and qualitative information as well as each separately.
In this case the effect of taking the quantitative and qualitative information
together has a stronger effect on the resulting posteriors than in the previous
case-study. As discussed in Section 4.2 we assess the method by comparing the
recovered posterior distribution when only quantitative, only qualitative and
both sets of information are used. Similarly to the previous examples, Table 2
gives an overview of the trade-off in satisfaction relative to the quantitative and
qualitative data when attempting to satisfy both.

6 Conclusions

In this paper we presented a method for performing inference based on a com-
bination of quantitative and qualitative data. Our approach was to construct a
rejection sampling criterion such that the accepted samples correspond to trajec-
tories that are close to the quantitative data and also satisfy the logical property.
To achieve that, we provided a way of converting the quantitative data into a set
of logical formulae. The benefit of this logic-based construction over standard
approximate Bayesian rejection sampling acceptance criteria given in terms of
discrepancy measures is that this construction can easily be interpreted in terms
of measurement noise or uncertainty.

We studied the proposed method for two examples — a rumour spread model,
which is based on the standard susceptible-infected-recovered model, and a sim-
ple client-server model. In both case we supplemented the quantitative data
which gave information about one aspect of the model with quantitative data
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Fig. 4: Plot of the kernel density estimator based on accepted parameters for the
client server model. The quantitative data was sampled from the model with
parameters kreq = 0.4 and kfix = 0.3. (a) shows the approximate posterior based
on quantitative information only. (b) shows the posterior based on qualitative
information only. (c) shows the posterior for the combined information as found
by method in Section 4.
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Fig. 5: Same as Figure 4 with the quantitative data sampled from the model with
parameters kreq = 0.2 and kfix = 0.6.
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Fig. 6: Same as Figure 4 with the quantitative data sampled from the model with
parameters kreq = 0.8 and kfix = 0.8.

given as a logic specification. We saw that the logic-based specification success-
fully supplements the quantitative information. It allows us to refine the posterior
compared to the rejection sampling ABC with only quantitative data.

Further work can be done to investigate the effects of attributing weight to
different sources of information. For example, more reliable pieces can be given



Table 2: Expected satisfaction probabilities under different combinations of log-
ical specifications.

Parameters Formula Expect. sat. w.r.t
p(θ|φD) p(θ|φ) p(θ|φ,φD)

(0.4, 0.3)
MiTL φ 0.07 0.12 0.12

φD 0.18 0.11 0.19
Discrepancy measure φ 0.06 0.12 0.12

φD 0.17 0.10 0.20
(0.2, 0.6)

MiTL φ 0.08 0.12 0.12
φD 0.08 0.015 0.010

Discrepancy measure φ 0.08 0.12 0.12
φD 0.08 0.014 0.09

(0.8, 0.8)
MiTL φ 0.09 0.12 0.12

φD 0.63 0.42 0.66
Discrepancy measure φ 0.09 0.12 0.12

φD 0.67 0.44 0.7

more weight during the parameter fitting process. This can improve accuracy
of the model and allow information with different certainties to be used more
effectively. Even in the case of information defined in a logic specification we may
want to assign an uncertainty to the specification. In addition we are looking to
provide more rigorous justification for the method used in this paper. Finally,
further work can be done to improve the accuracy and robustness of the results.
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