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Abstract

Cocrystals are important molecular adducts that have many advantages as a means

of modifying the physicochemical properties of active pharmaceutical ingredients, in-

cluding taste masking and improved solubility, bio-availability and stability. As a

result, the discovery of new cocrystals is of great interest to commercial drug discovery

programs. Time consuming manual analysis of the large volumes of data that emerges

from large scale cocrystal screening programs of up to 1000s of preparations poses a

challenge. Raman spectroscopy has been shown to discriminate between cocrystals and

physical mixtures and is easy to automate allowing rapid screening of large numbers

of potential cocrystals, but the spectral features that encode the information are often

subtle (e.g. slight changes in peak positions or intensities). We have employed an auto-

mated signal processing routine based on a sparse decomposition algorithm to speed up
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the data processing steps while maintaining the accuracy of a trained spectroscopist.

We used our algorithm to screen 31 potential cocrystal preparations and found that

through the use of a computationally generated threshold, we could achieve a clear

classification of cocrystals and physical mixtures in less than a minute, compared to

several hours manually.

Introduction

Cocrystals have been defined as multiple component crystals in which all components are

solid and neutral under ambient conditions, thus differentiating themselves from solvates or

salts.1,2 In pharmaceutical cocrystals, active pharmaceutical ingredients (APIs) interact via

non-covalent bonds with molecules from the Generally Recognised as Safe List, (European

Medicine Agency, 2015) forming a bespoke material with potentially superior physical prop-

erties compared to the pure starting molecules. The molecules that interact with the API to

form cocrystals are called cocrystal formers (CCFs). Pharmaceutical cocrystals have been

proven to improve solubility, dissolution, stability, bioavailability, mechanical properties and

taste masking, as well as protection and extension of intellectual property.3–5 In 2015, the

European Medicines Agency (EMA) was the first scientific body to regard cocrystals as an

alternative to salts for providing appropriate solid state properties.6 Due to the salt-cocrystal

continuum7 and their conceptual similarities, the EMA recommends that similar principles

should be applied for salt and cocrystal safety and efficacy documentation from a regulatory

point of view. The FDA perspective on pharmaceutical cocrystals changed in 2018,8 when

the guideline stopped classifying cocrystals as drug product intermediates. From a regula-

tory perspective, a cocrystal is now treated in the same way as a new polymorph of the same

API and not as a different chemical entity. The new classification effectively simplifies the

cocrystal regulatory landscape, as it is possible to use existing regulatory documents to es-

tablish potency, purity and stability of a cocrystal API. This aligns the FDA guidelines with

those of the EMA, offering cocrystals exciting opportunities in the pharmaceutical industry.
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There have been a significant number of pharmaceutical cocrystals approved as marketed

products by the FDA, with some of the recent ones being Entresto® for the treatment of

symptomatic heart failure, Odomzo® for skin cancer in 2015 as well as Steglatro® for di-

abetes in 2017.9 Increased demand and commercialization of cocrystals inevitably leads to

a need for robust screening and manufacturing cocrystal methods. As more testing is car-

ried out experimentally, reliable and automated detection methods are required for cocrystal

recognition and discrimination from large databases of starting materials. Cocrystal screen-

ing methods can be solid state and solution based. Solid state grinding has been successfully

used to generate cocrystals, both by neat grinding (NG) or liquid assisted grinding (LAG).

Ultrasonication using different molar ratios of caffeine and maleic acid has been used to

obtain pure cocrystals of different stoichiometries.10 In some cases, spontaneous cocrystals

were obtained by contact formation, without grinding the components.11 High throughput

LAG has been achieved using a modified plenary mill, where up to 48 cocrystal systems can

be ground in parallel.12 Cocrystals were also obtained in 96 well plates subjected to solvent

mediated sonication or vortexing.13 Resonant acoustic mixing was implemented for cocrystal

screening and scale-up, using beads to accelerate the kinetics of cocrystal formation.14 All

the above cocrystal screening methods use on/off-plate X-ray powder diffraction (XRPD) as

an unambiguous way to differentiate between newly obtained phases and physical mixtures

of starting materials.

Raman spectroscopy is also used in solid state analysis as it provides fast, non-destructive,

non-contact measurements of physical properties and compositional changes. The analysis

can be done on only a fraction of the amount of material required for XRPD and is also fully

amenable to automation. Other advantages of Raman spectroscopy include high molecular

specificity and minimal need for sample pre-treatment. A validated, high throughput cocrys-

tal slurry approach was developed on 96 well plates, where resulting solids were analysed

by Raman spectroscopy.15 LAG followed by FTIR and Raman spectroscopy were recently

used in conjunction with Differential Scanning Calorimetry (DSC) as a tool to discover
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new cocrystals. The spectral and thermal characteristics were used to differentiate starting

materials from new phases.16 Another high-throughput ultrasound-assisted cocrystallisation

screen of hydrochlorothiazide used mid-infrared spectroscopy and multivariate data analysis

to assess cocrystal formation and purity. The study reported analysis problems due to fluo-

rescence when Raman microspectroscopy was used.17 For a theophylline-benzoic acid system,

the rate of cocrystal conversion in slurry was also monitored by Raman spectroscopy, giving

nucleation time and temperature information.18 With the development of experimental high

throughput screening methods generating increasingly vast amounts of data that need to

be analysed, there is an ever-increasing need for fast and reliable automated data analysis.

Such automation would save scientists considerable time and effort when manually/visually

comparing and interpreting Raman data. Traditional Raman analysis for discovering new

solid forms involves recording the spectra of starting materials and new phases. A visual

comparison is then carried out in a search for Raman bands that are shifted with respect to

the reagents, indicating the formation of a new solid form. These systems are classified as

cocrystal leads, and cocrystal scale-up followed by detailed solid state characterization can

be used to confirm cocrystal formation. In a high throughput screening (HTS) context, the

visual analysis of the obtained spectra is a time consuming step due to the large number of

experiments performed in well plates. The relatively low success rate for obtaining cocrystal

leads means that during a screen, one will mostly obtain physical mixtures of the reagents.

Visual interpretation of Raman results for a 96-well plate can take several hours and up to

days for difficult systems that show only subtle differences in their Raman spectra. With

such extended manual data analysis protocols operator fatigue can be an issue and cocrys-

tal leads could be missed based on visual spectral comparison as the differences in Raman

spectra are often more subtle than XRPD differences. To facilitate Raman spectroscopy in

a HTS fashion, multivariate analysis is required to deconvolute the spectral lines.19

Since the advent of digital spectroscopy many multivariate techniques,20 such as multi-

variable statistical techniques, have been proposed to identify important spectral compo-
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nents, e.g. principal components21 and independent components.22 The underlying structure

of Raman spectra (the peaks that correspond to molecular vibrational modes) facilitate the

identification or classification of molecules or mixtures. However, multivariate techniques

often need multiple measurements of the samples, due to the statistical inference nature of

the methods, to be able to blindly find the components. An alternative to this non-biased

approach, is to use our prior knowledge about spectral signals (i.e. where the peaks are),

with the aim of reducing the number of necessary measurements, down to a single measure-

ment. The use of a small number of peak positions to represent the overall spectrum of a

molecule is known as sparse decomposition,23 and has previously been demonstrated for the

analysis of complex mixtures using Raman sepctroscopy.24

Our proposed cocrystal detection method builds on the concept of sparse decomposition

and is based on the observation that the spectra of physical mixtures and cocrystals are

different from each other (ie the spectra of cocrystals often have different peak positions

compared to the spectra of the individual components).25

In this paper, we demonstrate that we can automatically decompose the spectra and

compare them to the spectra of the individual components. If a spectrum is not well modelled

by the combination of the spectra of the individual components (i.e. the fit of the spectrum

to the model has a large residual energy) it generates a high novelty score and is likely to

be a new physical form. In this work, the method is validated for cocrystal formation using

known cocrystals of two APIs, (nalidixic acid and resveratrol),26 but it can also be applied

for screening new polymorphs, salts, solvates, hydrates and other molecular adducts.
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Experimental Section

Generation of cocrystals and physical mixtures

Materials

Nalidixic acid (NLD), resveratrol (RES) and all cocrystal formers (CCFs) selected for exper-

imental screening were purchased from Sigma-Aldrich and used without further purification.

Analytical grade solvents were used for liquid-assisted grinding experiments. Three different

methods of cocrystal formation were used: ball milling in stainless steel jars on a 20 mg

scale, grinding in glass vials on a 5 mg scale and ultrasonication in 96 quartz well plates on

a 1-2 mg scale.

Cocrystallisation Experiments

In a ball mill: A weighed amount of nalidixic acid or resveratrol (20-30 mg) along with the

corresponding CCF was combined in a 5 mL stainless steel grinding jar containing a 7 mm

diameter grinding ball. In liquid-assisted grinding (LAG) experiments, 20-30 µL of ethanol,

methanol or n-heptane was also added. No solvent was added to the neat grinding (NG)

experiments. The mixtures were ground on a Retsch MM 200 mixer mill for 20-45 min at

25 Hz. NLD was ground with tert-butylhydroquinone (1:1), hydroquinone (1:1), phloroglu-

cinol (1:1), orcinol (1:1), resorcinol (1:1) and propyl gallate (1:1) to obtain cocrystals with

stoichiometry indicated in brackets.26 RES was ground with methenamine (1:1), phenazine

(1:3.5), 4,4’ -bipyridine (1:1.5), 4-dimethylaminopyridine (1:2) and piperazine (1:1) to obtain

cocrystals with stoichiometry indicated in brackets. Additionally, RES was also ground with

carbamazepine (1:1), theophylline (1:1) and trimesic acid (1:1) as control experiments. In

a previous study, these CCFs were found to give physical mixtures of the starting materi-

als following grinding experiments.27 Resulting materials were characterized by XRPD and

Raman spectroscopy.

In a pulverisette: Milling was carried out in Automaxion’s 12-slot vial attachment com-
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patible with the Fritsch Pulverisette for cocrystal screening.12 The cocrystal components

were weighed into 2 mL glass vials containing 3 mm stainless steel beads for grinding. 5 mg

API and the corresponding stoichiometric amount of the CCF were used. Following catalytic

solvent addition, the samples were subjected to LAG for 2 hours. Resulting materials were

characterized by XRPD and Raman spectroscopy.

Ultrasonication: Stock solutions of the APIs and CCFs were made up at 0.025 M to 0.1

M in chloroform (for NLD) and MeOH (for RES). Stoichiometric amounts of API and CCF

solution were pipetted into the wells of a 96 quartz well plate and solvent was evaporated

under ambient conditions. The plate was then ultrasonicated to aid cocrystal formation.

Ultrasonication was carried out in a Qsonica 700-Watt Sonicator system with a 431MPX

microplate horn accessory at an amplitude of 80 percent. Three ultrasonication cycles of 20

minutes each were carried out, with a 15 minute pause in between them to avoid overheating.

Resulting materials were characterized by XRPD and Raman spectroscopy.

Physical mixtures API and CCF

For the systems named “Physical mixture”, the corresponding stating materials were gently

mixed together (without grinding) to encourage a physical mixture and avoid cocrystal for-

mation. Resulting materials were characterized by XRPD and Raman spectroscopy. Please

see Tables 2 and 3 for the experimental conditions used for each of the tested systems.

Characterisation

All experiments were prepared on a large enough scale to allow XRPD analysis to confirm

cocrystal formation or presence of physical mixtures. X-ray Powder Diffraction (XRPD)

Measurements: XRPD data were collected on a Bruker D4 Endeavor diffractometer in re-

flectance mode. The powder samples were smeared onto zero-background silicon wafer sam-

ple holders. Each sample was exposed to Cu Kα1 and Cu Kα2 radiation with an average

wavelength of 1.5418 Å, for 0.12 seconds per 0.02◦ 2θ increment (continuous scan mode) over
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the range 2◦ to 40◦. The operating voltage was 40kV and the operating current was 40mA.

Raman Measurements: Raman spectra were acquired using a Thermo DXR2 dispersive

Raman microscope with a 785nm laser excitation and a 400 lines/mm grating. Laser power

was set to the maximum (30 mW). Raman spectra were collected in the range 300-1900

cm−1, using two acquisitions of between 10-20 seconds each, depending on the sample. A

10x magnification was used for measurements in quartz well plates. Samples generated in the

ball mill and pulverisette were analysed on glass microscope slides using a 20x microscope

objective. Alignment and calibration of the instrument was carried out prior to sample

characterisation.

For the pure components, XRPD and Raman analysis was done on the powder API and

CCF as received. This data was then used for the comparison to the LAG, NG, physical

mixture and ultrasonication results. The XRPD was measured to compare it to previously re-

ported cocrystals and ensure the cocrystal formed consistently using these methods. Raman

was then measured to generate a library of the cocrystals obtained using different methods.

Data analysis

Assuming that all of our spectra are recorded over the same wavenumber range and at the

same spectral resolution, we can represent them as column vectors where the API and CCF

spectra respectively are mi, 0 ≤ i ≤ Na and m̃j, 0 ≤ j ≤ Nc, where Na and Nc are the

numbers of different APIs and CCFs respectively. We can then put all spectra m̂i and m̃j

in the columns of a larger matrix Md×(Na+Nc) = [M̂d×Na , M̃d×Nc ], where M̂d×Na and M̃d×Nc

are respectively API and CCF library matrices. The spectrum of a physical mixture can be

modelled as a weighted sum of one mi and one mj. The contribution of each component

spectrum to the overall mixture can be characterised by a “positive” coefficient αj, i.e. zero

means no contribution and larger values, more contributions. The recorded spectrum of a

mixture can then be represented by yd, where yi is the measurement at ith wavenumber.
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The generation of y can be modelled as:

y = Mα+ b + ω, (1)

where α = [αj]j=1:N , N = Na +Nc, b is the Fluorescence background signal and ω includes

the measurement noise. The background signal can be removed using the fact that Raman

spectra Mα and background b are morphologically different, i.e. Raman spectra have sharp

peaks whereas Fluorescence gives a broad background. By removing the background signal

from measurements, the spectral mixture model can be simplified as,

y = Mα+ w, (2)

where the model-mismatch is small and it is absorbed in w. Because the spectrum of a

cocrystal is not well represented as a weighted sum of the API and CCF (because there is a

new phase in the sample), we can use the poorness of fit between the spectrum and equation

2 to derive a Novelty Score based on the energy of residual signal. The energy of a signal, in

the discrete spectral domain, is defined as the square-root of the sum of square of spectral

values at different wave-numbers. The defined novelty score potentially enables us to classify

physical mixtures from new phase cocrystals.

The sparse decomposition of y, using the noisy linear model (2), generates a represen-

tation α with only a few non-zero components. Sparse decomposition in this context does

not mean that the spectra has only few non-zero elements, but it can be parsimoniously

represented using the columns of M. Such a task is combinatorial and computationally

complex task, which cannot be exactly solved by conventional algorithms.28 Various practi-

cal algorithms have been proposed to approximately solve this problem with convex relax-

ation, iterative updates, greedy selection, message passing and Bayesian approaches as the

most well known algorithms.29 The greedy selection methods are among the computationally

cheapest methods for the sparsity diets of Raman spectral decomposition, i.e. very sparse.24
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1: input: K, Md×(Na+Nc) and y
2: initialisation: s = ∅, k = 0, x = 0 and r0 = y
3: while k < K & max(MT rk) > 0 do
4: (ζ, ι)← max(MT rk)
5: s← FS(s, ι)
6: xs ← arg minθ>0 ‖y −Msθ‖2
7: rk+1 ← y −Msxs

8: k ← k + 1
9: end while

10: output: x|s ← xs

Figure 1: Non-Negative Orthogonal Matching Pursuit: the selection step FS determines the
algorithm to be either canonical or two-library version of the algorithm.

The sparse decomposition algorithm is also known as a non-negative orthogonal matching

pursuit, which is presented in Figure 1.30 In simple terms, we select a new column of M,

i.e. a spectrum in this case, at each step and find the best set of positive weights to match

the library spectra to the experimental spectrum. We only have one API and one CCF

in each sample and it is therefore reasonable to select only one from each of the API and

CCF libraries. This avoids inaccuracy due to the measurement noise and potentially high

similarity between spectra within two libraries. Since there is a chance that we will choose

the first API and/or CCF incorrectly, we can thus set K, i.e. the number of iterations to

more than two, then have a backward cancellation step, if needed. In this case, the proposed

two-library NNOMP (TNNOMP) needs a controlling step in the forward selection function

FS(s, ι). The mapping table of FS is presented in Table 1. In simple terms lines 1 to 3

describe the process of building the library and initialising the algorithm. Line 4 finds the

most correlated spectrum in the library and line 5 implements the forward selection function

FS(s, ι) = s∪ι.30 described above. Line 6 find the best coefficients to fit to the experimental

spectrum and line 7 updates the residual spectrum which is used to calculate a novelty score

( see Yaghoobi et al.30 for more information and the fast implementation of NNOMP).

The residual error ε = ‖y −Msα‖ is the basis for the novelty score, as it is low when

the spectra are physical mixtures, and high when spectral components corresponding to new

phases are present. By normalising the spectrum under investigation y, and the library to
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Table 1: Forward selection mapping table for Two Library NNOMP.

If Then

s = ∅ or |s| ≥ 2 FS(s, ι) = s ∪ ι
|s| = 1, s ∈ [1, Na] FS(s, ι) = s ∪ ι̃, where (ζ̃ , ι̃)← max(M̃T rk)

|s| = 1, s ∈ [Na + 1, Na +Nc] FS(s, ι) = s ∪ ι̂, where (ζ̂ , ι̂)← max(M̂T rk)

have unit column norms, we have 0 ≤ ε ≤ 1. By taking 100× ε as the novelty score we get a

number between zero, for a perfect physical mixture, and 100 for definite new phase (which

could be a cocrystal or a new solid form of one of the starting materials).

The proposed screening algorithm TNNOMP allows us to input multiple spectra for each

API and CCF, to compensate for spectral variabilities resulting from the measurement (i.e.

solid vs solution). Multiple reasons cause the spectral variability in Raman spectroscopy

including, different Fluorescent background, instrument related artefacts and laboratory

measurement settings, which can potentially affect the accuracy of spectral decomposition

and novelty detection methods, i.e. the variability can be interpreted as an indication

of a new phase. Including multiple spectral measurements, whenever available, does not

essentially lead to the selection of variants of the same API or CCF in the algorithm, as

the algorithm selects one from each set, in the first two steps. As a result, we use multiple

versions of each API and CCF in the spectral library to reduce the novelty score for spectral

mixtures, while not significantly changing it for the new phase cocrystals.

The classifier here is a simple binary classifier with one learning parameter, i.e. the

threshold ρ. The optimal value for ρ can, in principle, be found by learning using real

physical mixtures and new phase cocrystals. However, in the absence of a well characterised

training data set, we propose the use of synthetic physical mixtures and setting ρ based on

a fixed false alarm rate. We practically observe that such a ρ can be close to optimal value

based on limited real data observation.
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Results and discussion

Spectral separation and automatic screening

Building a library of API and CCF spectra. Raman spectra of all of the APIs and

CCFs were recorded using the same instrumental settings, allowing us to build a library

against which to test spectra of the studied systems (both physical mixtures and cocrystals)

using the TNNOMP method described in the experimental section. All spectra were baseline

corrected with airPLS,31 then normalised. We included multiple versions of API and CCFs

in the library, when available, to mitigate the effect of measurement conditions, e.g. powder

from ball milling or solid obtained following solvent evaporation. This was found to improve

the robustness of the algorithm to slight spectral variabilities and made the classes more

separable.

Testing the algorithm on well characterised exemplars of physical mixtures

and cocrystals. Our first objective was to test whether the TNNOMP method could be

applied to well characterised samples which are representative of either physical mixtures or

new cocrystals.

The first of these cases is a physical mixture of resveratrol and theophylline. The na-

ture of the physical mixture was confirmed using XRPD measurements (Figure S1 in the

Supplementary Information). Figure 2.a shows the spectrum of the physical mixture and

the modelled spectrum based on the superposition of the spectrum of the API (Figure 2.b)

and the spectrum of the CCF (Figure 2.c). The contributions of the API and CCF to the

modelled spectrum are 98 percent and 2 percent respectively. Because the two spectra in 2.a

are very closely matched (as expected for a physical mixture) they generate a low novelty

score (7.2558).

The strength of the TNNOMP method is clear when applying it to the spectrum of a

system which is known to form a new cocrystal. In this case the API is nalidixic acid and the

CCF is hydroquinone, which formed a cocrystal under ultrasonication. Again, in this case
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the new cocrystal was confirmed using XRPD (Figure S2 in the Supplementary Information).

While spectral features of the API and coformer (Figures 3.b and 3.c) are clearly represented

in Figure 3.a, there are significant new peaks (such as those between 1250 and 1300 cm-1).

The presence of such peaks increases the energy of the residual spectrum and leads to a

novelty score of 61.110 which is significantly higher than those seen for the well characterised

physical mixture.

Testing the algorithm on a range of experimental spectra Since our primary

objective in carrying out this work is to develop an automated method of screening new

forms which is faster than manual processing (but not necessarily more accurate), we used

our TNNOMP method to generate novelty scores for a further 29 experiments (making 31

in total) and compared the accuracy of classification with that found when the spectra

were manually analysed by a skilled Raman spectroscopist. The various experiments are

summarised in Tables 2 and 3 and the difficulty of manually classifying the spectra as either

physical mixtures or cocrystals ranked as either easy, medium or hard. For all of these

experiments, the classification was confirmed using XRPD.

The automated TNNOMP processing of the spectra was performed in a minute compared

to manual processing which took several hours. The output of the TNNOMP method was a

range of novelty scores from 5.18 to 68.80.

Determining a suitable threshold level In order to automatically classify the spectra

as either cocrystal or physical mixture we needed to impose a suitable threshold level ρ for

the novelty score (higher than the threshold is a cocrystal, lower than the threshold is a

physical mixture). To avoid missing difficult-to-detect cocrystals, we estimated that we

could accept a false positive rate of 2%. We calculated ρ in the absence of a large training

set of physical mixtures, by using synthetically generated mixtures (randomly combining an

API and a coformer from the library, with different contribution weights, i.e. positive weights

between 0.1 and 1). We randomly generated 1000 mixtures and sorted the novelty scores

in a descending order, Figure 5. We then empirically found the novelty score threshold,
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corresponding to the 20th trial, i.e. 2% × 1000, which is approximately ρ = 25. We chose

this ρ to classify the spectra from the rest of the experiments.

The identity of the 19 investigated cocrystals and 12 physical mixtures are shown in

Tables ?? and ?? in the Supplementary Information, respectively. The spectra for all of

these cocrystals and physical mixtures can be found in Figures ??-??. The novelty scores

for these systems are shown in Figure 4. The average novelty score and a dotted horizontal

line of 25 (indicating the threshold) are shown in each panel. Looking at Figure 4 the first

observation worth remarking on is that there is no overlap between the two classes (i.e.

the lowest scoring cocrystals have a higher novelty score than the highest scoring physical

mixtures). Furthermore, as a consequence of the separation, by using the ρ of 25 we can

achieve a perfect classification of cocrystals and physical mixtures.

While it is not surprising that the TNNOMP method can quickly classify physical mix-

tures or cocrystals that a skilled spectroscopist would characterise as ”easy”, the strength

of TNNOMP can clearly be seen when examining the spectral profiles that the algorithm

correctly identifies as either cocrystals or physical mixtures and which a trained spectro-

scopist classifies as ”hard” or ”medium”. Looking at cocrystal 3 in Figure 4, which has a

novelty score of 27.9 and shown in Figure 6 and is rated as ”hard” the subtle shifts in peak

positions around 600 cm−1 and 1200 cm−1, are particularly difficult to detect by eye in the

unprocessed spectrum (Figure S3 in the Supplementary Information). Comparing this with

physical mixture 5 in Figure 4, which scored 23.7 and was rated ”medium”, the difference

by eye is challenging to discern (Figures S8 and S4 in the Supplementary Information). The

benefit of the automated process is therefore the quantitative basis for the novelty score and

the ability to set a threshold that allows a clear classification.

Conclusion

In summary we have demonstrated the use of an automated algorithm for screening large

numbers of potential pharmaceutical cocrystals. The value of this algorithm is in its accu-
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Table 2: Nalidixic acid API experiments: coformer (second colum), experimental condi-
tion (third column), expected form (fourth column), and visual detection difficulty by an
experienced operator (last column).

Coformer Experimental conditions Expected result Detection
1 Propyl gallate Ultrasonication Cocrystal Easy
2 Propyl gallate Physical mixture Physical mixture Easy
3 Propyl gallate LAG Cocrystal Easy
4 Propyl gallate NG Cocrystal Easy
5 t-butyl hydroquinone Ultrasonication Cocrystal Easy
6 t-butyl hydroquinone LAG Cocrystal Easy
7 t-butyl hydroquinone NG Cocrystal Easy
8 Hydroquinone Ultrasonication Cocrystal Easy
9 Hydroquinone Physical mixture Physical mixture Easy
10 Hydroquinone LAG Cocrystal Easy
11 Hydroquinone NG Cocrystal Easy
12 Resorcinol NG Cocrystal Easy
13 Orcinol NG Cocrystal Hard
14 Phloroglucinol Physical mixture Physical mixture Easy
15 Phloroglucinol LAG Cocrystal Medium

Table 3: Resveratrol API experiments: coformer (second colum), experimental condition
(third column), expected form (fourth column), and visual detection difficulty by an experi-
enced operator (last column).

Coformer Experimental conditions Expected result Detection
1 4, 4′-bipyridine LAG Cocystal Easy
2 4, 4′-bipyridine Physical mixture Physical mixture Easy
3 4, 4′-bipyridine Ultrasonication Cocrystal Easy
4 Phenazine LAG Cocrystal Hard
5 Phenazine Physical mixture Physical mixture Easy
6 Phenazine Ultrasonication Cocrystal Medium
7 Methenamine Physical mixture Physical mixture Easy
8 Methenamine Ultrasonication Cocrystal Easy
9 Piperazine Ultrasonication Cocrystal Hard
10 4-Dimethylaminopyridine Ultrasonication Cocrystal Easy
11 Theophylline LAG Physical mixture Easy
12 Theophylline Physical mixture Physical mixture Easy
13 Carbamazepine LAG Physical mixture Medium
14 Carbamazepine Physical mixture Physical mixture Medium
15 Trimesic acid LAG Physical mixture Easy
16 Trimesic acid Physical mixture Physical mixture Easy
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Figure 2: Resveratrol-Theophylline:LAG:Physical mixture. Acquired spectrum in black and re-
construction in dashed red (top), API (middle) and coformer (bottom).
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Figure 3: Nalidixic acid-Hydroquinone:NG:Cocrystal. Acquired spectrum in black and reconstruc-
tion in dashed red (top), API (middle) and coformer (bottom).
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Figure 4: Novelty scores for cocrystals (top panel) and physical mixtures (bottom panel). The
average has been indicated with a red line.

100 101 102 103

Trials

0

5

10

15

20

25

30

35

40

S
or

te
d 

N
ov

el
ty

 S
co

re
s

Figure 5: Sorted novelty scores for synthetically generated physical mixtures. The indicated
threshold ρ = 25 corresponds to roughly 2% percent misdetection

.
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Figure 6: Nalidixic acid-Orcinol:NG:Cocrystal. Acquired spectrum in black and reconstruction in
dashed red (top), API (middle) and coformer (bottom).

racy, which is as good as a trained spectroscopist, and in the time that it takes to screen

and analyse multiple spectra (a time saving of several hours based on a relatively small data

set). Moreover, for large data sets of 1000’s of spectra normally seen during early solid state

screening programs, this algorithm offers orders of magnitude time savings from potentially

several days to a few minutes. Another advantage is that the algorithm would allow initial

screening and data analysis to be carried out by non-Raman experts. The automated pro-

cess not only carries out signal processing tasks such as background subtraction, but also

compares the spectrum of an unknown (either cocrystal or physical mixture) to a library of

its potential constituents and builds the best possible model of the spectrum based on the

predicted constituents. By measuring the difference between the model and the experimental

spectra, a novelty score can be calculated. We have demonstrated that the novelty score is

a basis for classifying the experimental spectrum as belonging to either a cocrystal or phys-

ical mixture. We anticipate that the same methodology developed here for cocrystal can be

applied to analysis of other molecular adducts such as solvates, salts and even polymorphic

18



screens, which is left for the future study.
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