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Abstract

One of the most common scenarios of handling incomplete information occurs in relational databases. They

describe incomplete knowledge with three truth values, using Kleene’s logic for propositional formulae and

a rather peculiar extension to predicate calculus. This design by a committee from several decades ago is

now part of the standard adopted by vendors of database management systems. But is it really the right

way to handle incompleteness in propositional and predicate logics?

Our goal is to answer this question. Using an epistemic approach, we first characterize possible levels

of partial knowledge about propositions, which leads to six truth values. We impose rationality conditions

on the semantics of the connectives of the propositional logic, and prove that Kleene’s logic is the maximal

sublogic to which the standard optimization rules apply, thereby justifying this design choice. For extensions

to predicate logic, however, we show that the additional truth values are not necessary: every many-valued

extension of first-order logic over databases with incomplete information represented by null values is no

more powerful than the usual two-valued logic with the standard Boolean interpretation of the connectives.

We use this observation to analyze the logic underlying SQL query evaluation, and conclude that the many-

valued extension for handling incompleteness does not add any expressiveness to it.

Keywords: Many-valued logics, Incomplete information, SQL

1. Introduction1

Incomplete information is ubiquitous in applications that involve querying and reasoning about data.2

It is one of the oldest topics in database research [1], and is essential in many applications the combine3
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techniques from data management and AI. Such applications include data integration [2], data exchange [3],4

inconsistent databases [4], and ontology-based data access [5]. It is very common for them to reduce the5

problem at hand to a setting where one issues a query against a relational database.6

This is problematic, however, as relational database management systems (DBMSs) use a rather sim-7

plistic way of representing incomplete information (nulls) combined with a rather convoluted method of8

handling it, based on many-valued logics. Specifically, every relational DBMS uses a three-valued logic for9

handling incomplete information, namely Kleene’s logic [6]. This was the design choice of SQL, the language10

of relational DBMSs, which is now written into the SQL Standard [7], presented in all database textbooks,11

and implemented in all database products. It leads to many well documented cases of unexpected behavior12

[8]. For example, given a relation S and a relation R with attributes A and B, the SQL query13

SELECT * FROM S WHERE NOT EXISTS (SELECT * FROM R WHERE R.B=R.B)14

seemingly returns relation S iff R = ∅, i.e., it does not have a single tuple satisfying the tautological condition15

R.B=R.B. However, if R = {(1, null)}, this query always returns S. If null means that a value is missing,16

then in every possible world for relation R where we know the value of that null, the query will return the17

empty set since R 6= ∅. That is, when evaluated on the original database, the query returns false positives.18

This makes it hard to trust results produced by relational DBMSs, especially in AI-motivated applications19

that rely on the database technology.20

The reason for the unexpected behavior of the above query is the use of a many valued-logic; in partic-21

ular, the seemingly tautological condition R.B=R.B becomes null=null which evaluates neither to true nor22

to false but rather to the unknown truth value of Kleene’s three-valued logic. The use of Kleene’s logic was23

first proposed by [1], but it is far from the only logic to have been considered for representing incomplete24

information, and many others appeared afterward. [9] looked at a four-valued logic, but in the end argued25

against it due to the additional complexity. Nonetheless, well-documented problems with incomplete infor-26

mation [10, 8] led to the search of more appropriate logics for handling incompleteness. For example, [11]27

revisited four-valued logics, while [12] considered logics with four, five, and seven values, and showed how28

to encode them with three. A different kind of four-valued logics for missing data was studied by [13], while29

[14] suggested dropping nulls altogether and go back to the usual Boolean two-valued logic.30

There is also no shortage of many-valued logics that have been proposed in closely related contexts. For31

example, a variety of many-valued logics were used in the study of default reasoning [15] or in reasoning32

about inconsistency [16]. Those are typically based on the notion of bilattices, providing truth and knowledge33

orderings on the truth values [17, 18]. A common one is Belnap’s bilattice with four truth values [19, 20],34

which also found database applications [21]; but others exist as well, e.g., many generalizations of Kleene’s35

logic based on numerical intervals describing the degree of being true [22]. A many-valued propositional36

logic must also provide an interpretation of propositional connectives. To make the general picture even37
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muddier, for different sets of truth values, different semantics of propositional connectives exist, sometimes38

even non-deterministic ones [23].39

Thus, we are far from having a clear picture of what to use as a logic of incomplete information in data40

management applications. Choices are numerous, and there is no final argument as to why the approach of41

DBMSs that use Kleene’s logic is the right one. Hence, the first question we address is:42

1) What is the right many-valued propositional logic for handling incomplete information?43

Now suppose we have a propositional logic that correctly accounts for truth values of statements about44

incomplete information, and for operations on them. In querying data, however, we use predicate logics.45

Indeed, the core of SQL is essentially a programming syntax for relational calculus, which is another name46

for first-order (FO) predicate logic.47

Of course we know how to lift the semantics of propositional logic to the full predicate calculus by treating48

existential and universal quantifiers as disjunctions and conjunctions over all elements of the universe. What49

we do not know is how different choices of propositional logic for incomplete information affect the power of50

predicate calculus. As one example, consider the version of FO that underlies SQL and is based on Kleene’s51

logic. What extra power does it possess over FO under the usual two-valued Boolean interpretation of the52

connectives? It was recently argued, by means of rewriting SQL queries, that FO based on Kleene’s logic53

can be encoded in the usual Boolean FO [24]. But is there a general result in logic that underlies such a54

translation, and what is so special about Kleene’s logic that makes it work?55

Even more generally, the second question we would like to address is:56

2) How does the choice of a propositional logic for incomplete information affect predicate logic?57

Finally, we would like to understand how these theoretical considerations relate to the practice of in-58

complete data in relational databases. A rough approximation of the core of SQL – the way it is presented59

in many database textbooks – is first-order logic. But as soon as incomplete information enters the picture,60

this becomes a many-valued FO. And yet there is even more to it: in SQL queries, answer tuples are split61

into true ones that need to be returned, and others that are not returned, thus collapsing a three-valued62

logic to two-valued. This leads to our last question:63

3) What is the logic that underlies real-life handling of incomplete information in relational databases (i.e.,64

SQL’s logic), and how much more power than the usual two-valued FO does it possess?65

The goal of this paper is to address these three questions. Below we outline our main contributions.66

Propositional logic. To understand what a proper propositional logic for reasoning about incomplete infor-67

mation is, we need to define its truth values, and truth tables for its connectives (we shall concentrate on68

the standard ones, i.e., ∧,∨, and ¬, although we shall see others as well). We follow the approach of [18] to69
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turn partial knowledge about the truth of a proposition into truth values. If we have a set W of worlds, and70

two of its subsets T and F in which a proposition is true and false, respectively, this produces a description71

(T, F,W ). It is possible that T ∪ F 6= W , i.e., we may have partial knowledge about the truth or falsity of72

a proposition. We require however that T ∩ F = ∅, as here we do not consider inconsistent descriptions.73

Taking those descriptions (T, F,W ) directly as truth values, however, is not satisfactory: we shall have74

too many of them. Instead, we want to take as truth values what we know about such descriptions.75

We abstract this knowledge as epistemic theories of such descriptions: they say what is known about a76

proposition being possibly or certainly true or false. Then, as truth values we take maximally consistent77

epistemic theories. We show that there are only six such theories, resulting in a six-valued logic L6v. Its78

truth tables are again very naturally derived from epistemic theories of partial knowledge about truth of79

propositions.80

As a final step, we then look at what makes a many-valued logic database friendly. It needs to be81

a sublogic of L6v and yet satisfy some basic equivalences we expect to hold to be able to perform query82

evaluation and optimization. We then show that the maximal sublogic of L6v that satisfies those equivalences83

is L3v, the three-valued logic of Kleene used in all commercial DBMSs. Thus, we justify the choice that84

was made by SQL designers and standards committees in choosing L3v as the logic to be implemented in85

all database products.86

Predicate logic. We have justified Kleene’s logic L3v as the right choice for handling incompleteness in87

database contexts. But database languages are not propositional: they are based on FO instead. Thus, we88

next look at variants of FO based on propositional many-valued logics such as L3v and L6v, and compare89

their power with that of the usual Boolean FO (denoted by BFO from now on), based on just two values t90

and f . Our main result is that when added to FO, these many-valued propositional logics add no power: FO91

based on L3v, or on L6v, or on any other many-valued logic (under some mild restrictions on the connectives)92

has no more power than BFO.93

The logic of SQL. We finally apply the above observation to SQL’s logic. We explain that it corresponds94

to a L3v-based FO with an extra connectives that allows one to collapse truth values f and u into one, but95

it still has no more power than BFO. Thus, even though SQL designers were justified in choosing Kleene’s96

logic as the propositional logic for reasoning about incomplete information, they overlooked the fact that,97

when considered within FO, such a logic does not add any expressive power.98

To sum up, our investigation validates the choice of Kleene’s logic by the designers of SQL, but at the99

same time asks whether it was really necessary and opens up a possibility for future languages that handle100

incomplete information to avoid the recourse to many-valued logics. Notice that much of the criticism of SQL101

concentrated on its propositional logic. However we showed that it was very reasonable: a six-valued logic102
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would have been more refined, but the three-valued logic is better at handling computational aspects. For103

predicate logics, our results say that these many-valued logics could have been avoided altogether. However,104

the price for this is a different way of expressing logical queries, and thus this result is of more interest for105

future language design rather than changing the current choices.106

Organization. The paper is structured around three main themes: propositional logics, predicate logics, and107

the logic of SQL, followed by conclusions and future work. The proofs of the results on propositional logic108

are in Appendix A and the proofs of the results on predicate logic are in Appendix B.109

This is an extended version of a paper of the same title [25] presented at the 16th International Conference110

on Principles of Knowledge Representation and Reasoning (KR-18), where it was awarded the Ray Reiter111

Best Paper Prize. In addition to including full proofs, the current version includes the following new material:112

• By refining the notion of sublogic, we strenghtened the result (Theorem 3) that justifies the use of113

Kleene’s logic (L3v) for handling incomplete information at the propositional level. Indeed, the new114

definition of sublogic is less strict and captures more logics, including a four-valued logic that was115

introduced in [13].116

• We show that, when we are interested – as is the case in SQL – only in answers that evaluate to true,117

going from 3 to 2 truth values does not incur a blow up in the size of the formula. Indeed, we exhibit118

a linear rewriting that preserves equivalence of the true answers (Theorem 6). This tells us that, not119

only is SQL’s logic unjustified w.r.t. expressiveness, but also from a succinctness point of view.120

2. Propositional Logics121

Our study of logics for incomplete information starts at the propositional level. The goal of this section122

is to define a propositional logic for handling incompleteness, with a special regard to applications that deal123

with incomplete data, including relational databases query languages.124

To this end, we first need to formally define propositional formulae. We assume a countably infinite set125

of symbols, referred to as propositional atoms. For a set Ω of connectives with associated (positive) arities,126

the propositional language L over Ω is defined inductively as follows: every propositional atom is a formula127

of L; if ω is an n-ary connective in Ω and α1, . . . , αn are formulae of L, then so is ω(α1, . . . , αn); nothing128

else is in L. We assume that the binary connectives ∧ and ∨, for which we use the infix notation, and the129

unary connective ¬ are always present. As will be relevant in the next section, this general definition allows130

for the inclusion of additional connectives in the language.131

The standard way of evaluating propositional formulae is to associate atoms with truth values, which132

are then propagated through the connectives by means of truth tables. We define a (propositional) logic L133

as a pair (T,Ω), where T is the set of truth values and Ω is the set of truth tables, which are functions134
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∧ t f

t t f

f f f

∨ t f
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f t f

¬

t f

f t

Figure 1: The truth tables of LBool.

∧ t f u

t t f u

f f f f

u u f u

∨ t f u

t t t t

f t f u

u t u u

¬

t f

f t

u u

Figure 2: The truth tables of L3v.

ω : Tn → T, of appropriate arities, associated with the connectives. We say that L is a logic for a language135

L if L defines truth tables for every connective of L. With a deliberate abuse of notation, we denoted by136

Ω both the connectives of L and the truth tables associated with them in L. When it is not clear from the137

context, we use ωL to explicitly denote the truth table of L for the connective ω.138

Given a logic L = (T,Ω) for a language L, and a mapping µ from propositional atoms to the truth values

in T, the evaluation of a formula α ∈ L under µ in L is the truth value tvL(α, µ) in T defined inductively

as follows:

tvL(α, µ) = µ(α) if α is a propositional atom,

tvL
(
ω(α1, . . . , αn), µ

)
= ωL

(
tvL(α1, µ), . . . , tvL(αn, µ)

)
,

for every α, α1, . . . , αn ∈ L and every n-ary connective ω.139

For Ω = {∧,∨,¬}, the standard Boolean logic LBool has truth values {t, f} and truth tables as in Figure 1,140

while SQL uses Kleene’s three-valued logic, denoted by L3v, with truth values {t, f,u} and truth tables as in141

Figure 2. But is L3v the right propositional logic to deal with incomplete information in relational databases?142

To answer this question, we first need an appropriate model of incompleteness; then, we must define what143

kind of information truth values represent in this model, and how many of them are needed; finally, we need144

to define truth tables for ∧, ∨ and ¬ that propagate information in a consistent way.145

2.1. Model of Incompleteness146

In many data management applications, especially those involving knowledge representation and reason-147

ing, the veracity of data is a common problem. This results in dealing with two main sources of incomplete148

information: first, queries must be evaluated over incomplete data, i.e., multiple interpretations are possible,149

and, second, we may be able to evaluate a query only partially, e.g., due to computational constraints. In150
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our logical framework, we represent the first type of incompleteness by allowing sets of possible worlds, i.e.,151

multiple possible evaluations of formulae. We capture the second type of incompleteness by allowing partial152

evaluation functions, i.e., the evaluation a formula may not be defined in every world.153

In the literature on many-valued logics, the approach of [18] accounts for both these sources of incomplete154

information, and we follow it here as a basis for our model. As we shall discuss later on in this section, our155

approach deviates from the [18] with respect to what truth values are and represent.156

A propositional interpretation I is a triple (t, f,W ), where W is a non-empty set of worlds, and t and f

are functions from L to the powerset of W such that, for every α, β ∈ L, all of the following hold:

t(α) ∩ f(α) = ∅ ;

f(¬α) = t(α) ;

t(¬α) = f(α) ;

t(α ∧ β) = t(α) ∩ t(β) ;

t(α ∨ β) = t(α) ∪ t(β) ;

f(α ∧ β) = f(α) ∪ f(β) ;

f(α ∨ β) = f(α) ∩ f(β) .

Intuitively, t tells us on which worlds a given formula is true, while f indicates where it is false. When a157

world w is neither in f(α) nor in t(α), the formula α is said to be undefined in w. Observe that propositional158

interpretations capture the two types of incompleteness in our model: sets of possible worlds capture the159

multiple possible interpretations of a formula, and undefined formulae capture the possibly incomplete160

evaluation.161

In [18], objects similar to propositional interpretations defined above are used as truth values for formulae.162

This approach produces infinitely many truth values, each of which representing a possible evaluation of a163

formula over a set possible worlds. In this framework, the truth value of a formula ϕ being true in a world164

w and false in w′ is different from the truth value of a formula ψ being false in w and true in w′. Such165

a fine grained description, however, is incompatible with the standard evaluation of formulae we defined166

earlier. Instead, we want to collate the information provided by propositional interpretations and abstract167

it as truth values. In other words, we want to conclude that ϕ and ψ have the same truth value representing168

the fact that they are true somewhere and false somewhere else. To formalize this intuition, we make use of169

a modal formalism suitable to define what is known in propositional interpretations.170

Given a propositional language L, the language LKP of epistemic formulae is defined inductively as171

follows:172

• Kα and Pα are in LKP, for every α ∈ L;173

• if ϕ and ψ are in LKP, then so are ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ;174

• nothing else is in LKP.175

The semantics of epistemic formulae is given with respect to a propositional interpretation I = (t, f,W ).176

Whether I satisfies ϕ ∈ LKP, written I, w |= ϕ, is inductively defined as follows:177
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• I |= Kα if w ∈ t(α), for every w ∈ W ;178

• I |= Pα if w ∈ t(α), for some w ∈W ;179

• I |= ¬ϕ if I 6|= ϕ ;180

• I |= ϕ ∧ ψ if I |= ϕ and I |= ψ ;181

• I |= ϕ ∨ ψ if I |= ϕ or I |= ψ.182

We denote by Mod(ϕ) the set of all models of ϕ, i.e., propositional interpretations that satisfy ϕ. We say183

that ϕ is satisfiable whenever Mod(ϕ) is non-empty.184

Intuitively, the fact that I satisfies Kα means α is true in all the possible worlds I, while I |= Pα means185

that α is true in at least one of the possible worlds of I. Following the approach of Hintikka [26], we interpret186

the former as “α is known in I” and the latter as “α is possible in I”. However, the logic LKP differs from187

standard modal logics in two main respects. First, LKP is not concerned with introspection, i.e., we do not188

allow nesting of modal operators. Second, unlike the standard operators � and ♦ in classical modal logic, K189

and P here are not dual: while Kϕ implies ¬P¬ϕ, the converse is not necessarily true. To see this, consider190

a propositional formula α and the interpretation I = (t, f, {w1, w2}) such that t(α) = {w1} and f(α) = ∅;191

then, it is easy to verify that I satisfies ¬P¬α but not Kα, because w2 6∈ t(α).192

2.2. Truth Values193

We need to understand what it means for a propositional formula to be true or false in a propositional194

interpretation. To do that, we resort to the notion of modalities.195

Given a propositional formula α, the modalities of α are the modal formulae Kα, Pα, and their negation.196

Intuitively, the modalities of α describe the way α is true on a given propositional interpretation. To define197

truth values, then, we will look at the modalities of propositional formulae and their negations.198

More formally, for a propositional formula α, we denote by M(α) the set consisting of all modalities of199

α and ¬α. A subset M of M(α) is called consistent if there exists at least one propositional interpretation200

I for which every formula in M is satisfied. A subset of M(α) is maximally consistent if, in addition, none201

of its proper supersets is a consistent subset of M(α).202

Intuitively, every maximally consistent subset of M(α) defines a possible way in which a propositional203

formula can be evaluated on a propositional interpretation. Thus, to capture all possibilities, we need204

as many truth values as there are maximally consistent subsets of M(α). The following shows that our205

propositional logic must be six-valued.206
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Theorem 1. For every propositional formula α, there are at most 6 maximally consistent subsets of M(α).

These are:

{
Kα, Pα,¬K¬α,¬P¬α

}
(1)

{
¬Kα,¬Pα, K¬α, P¬α

}
(2)

{
¬Kα, Pα,¬K¬α, P¬α

}
(3)

{
¬Kα, Pα,¬K¬α,¬P¬α

}
(4)

{
¬Kα,¬Pα,¬K¬α, P¬α

}
(5)

{
¬Kα,¬Pα,¬K¬α,¬P¬α

}
(6)

Proof. Let I = (t, f,W ) be a propositional interpretation. If I satisfies Kα, then by the assumption that207

W 6= ∅ it also satisfies Pα, ¬K¬α and ¬P¬α. Thus, we get (1).208

Otherwise, when I 6|= Kα, I may or may not satisfy Pα. If it does, then I 6|= K¬α. Under this209

assumption, we have two possibilities: either I satisfies P¬α, in which case we get the set (3), or not, and210

we get (4).211

Suppose now I 6|= Kα and I 6|= Pα. If I satisfies K¬α, then by the assumption that W 6= ∅ it also212

satisfies P¬α. Thus, we get the set (2).213

Finally, if I 6|= K¬α, then I may or may not satisfy P¬α. Thus, we get the sets (5) and (6), respectively.214

215

We now analyze the information each of the above sets gives us for an arbitrary propositional formula216

α, and abstract it as a truth value, referring to the six maximally consistent sets in Theorem 1.217

(1) We know that α is true in all worlds (Kα). We abstract this as the truth value t (always true).218

(2) We know that ¬α is true in all worlds (K¬α), hence α is false in all worlds. We abstract this as the219

truth value f (always false).220

(3) We know that there exists a world w in which α is true (Pα) and there exists a world w′ in which its221

negation is true (P¬α). Since α cannot be both true and false in the same world, we have w 6= w′. We222

abstract this as the truth value s (sometimes true and sometimes false).223

(4) We know that there is a world in which α is true (Pα) but we do not know whether there is a (distinct)224

world in which its negation is true (¬P¬α). Thus, α could be true in all worlds, but we do not know225

that (¬Kα). We abstract this as the truth value st (sometimes true).226

(5) We know that there is a world in which the negation of α is true (P¬α) and where α is then false, but227

we do not know whether there is a (distinct) world in which α is true (¬Pα). Thus, α could be false in228

all worlds, but we do not know that (¬K¬α). We abstract this as the truth value sf (sometimes false).229
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(6) We do not know whether there exists a world in which α is true (¬Pα) nor whether there is one where230

its negation is true (¬P¬α). That is, we have no information at all, and we abstract this as the truth231

value u (unknown).232

Thus, our set of truth values is T6v = {t, f, s, st, sf,u}.233

With each truth value τ and each propositional formula α, we associate the epistemic formula χτ
α given234

by the conjunction of all formulae in the maximally consistent subset of M(α) corresponding to τ . So, for235

example, χs
α is the conjunction of all formulae in (3), that is, ¬Kα ∧ Pα ∧ ¬K¬α ∧ P¬α. Intuitively, the236

satisfiability of χτ
α tells us whether it is possible for α to evaluate to the truth value τ .237

2.3. Truth Tables238

With the set of truth values in place, we now look at how the truth tables for the connectives are defined.239

Starting from the fact that truth values correspond to maximally consistent sets of modalities, we will argue240

that the truth tables must satisfy two reasonable requirements: consistency and generality.241

Consistency. Let us first consider the unary connective ¬; given a truth value τ , which truth value should242

¬τ denote? If τ is t, intuition tells us that ¬τ should not be t. Indeed, such a situation cannot occur, in243

the sense that for every propositional formula α there exists no interpretation I that satisfies both χt
α and244

χt
¬α.245

For binary connectives, the situation is similar; for example, t ∧ t should not be f, as it cannot happen246

that for propositional formulae α and β there exists an interpretation I that satisfies χt
α, χ

t

β and χf

α∧β.247

Thus, we require that each entry in a truth table be consistent in the following sense.248

Definition 1. Let τ1, τ2, and τ be truth values in T6v, and let ω be a binary connective. We say that τ is249

consistent with ω on τ1 and τ2 if there exist propositional formulae α and β such that χτ1
α ∧ χτ2

β ∧ χτ
ω(α,β)250

is satisfiable. Similarly, τ is consistent with ¬ on τ1 if there exists a propositional formula α such that251

χτ1
α ∧ χτ

¬α is satisfiable.252

The notion of consistency directly yields the truth table of ¬ shown in Figure 3c, due to the following:253

Proposition 1. For every τ ∈ T6v there exists one and only one truth value in T6v that is consistent with254

¬ on τ .255

However, this is not the case for binary connectives: there are combinations of truth values that admit256

more than one consistent truth value, so consistency alone does not suffice to univocally define the truth257

tables for ∧ and ∨. For example, both f and sf are consistent with sf∧ sf, and both t and st are consistent258

with st ∨ st. In such cases, how do we choose a suitable truth value? This is what we answer next.259
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Generality. When there is more than one truth value that is consistent with a binary connective, we should260

pick the most general among them. To illustrate this point, let us consider the case of two propositional261

formulae, α and β, whose truth values are both sf. The formula α∧β admits two consistent truth values: sf262

and f. Since both α and β are false in some of the possible worlds, we can safely conclude that also α∧ β is263

false in some of these worlds. Observe, however, that, due to our current incomplete knowledge on α and β,264

it may still be the case that α∧ β is true in some world. Choosing f as truth value for α∧ β would preclude265

this possibility altogether; on the other hand, sf allows for this possibility without losing the information266

that the formula is certain false in some world. We will make this intuition more precise in what follows.267

For a propositional formula α and propositional interpretations I = (t, f,W ) and I ′ = (t′, f ′,W ′), we say268

that I is more general than I ′ w.r.t. α (and write I ′ �α I), if there exists a surjective mapping h : W →W ′
269

such that all of the following hold:270

• w ∈ t(α) implies h(w) ∈ t′(α), and271

• w ∈ f(α) implies h(w) ∈ f ′(α).272

Intuitively, I is more general than I ′ w.r.t. α if it has more worlds where α is not known to be true or false273

– that is, worlds that do not belong to either t(α) nor f(α) – but I agrees with I ′ on all the worlds for274

which this information is present.275

Using this notion, we can define a partial ordering on epistemic formulae as follows: we say that ϕ is276

more general than ψ w.r.t. α ∈ L (and write ψ �α ϕ) if for every model I of ψ there exists a model I ′ of ϕ277

such that I �α I ′.278

Finally, we can use generality to define a preference criterion for choosing a truth value over another279

when more than one are consistent with a connective.280

Definition 2. Let τ and τ ′ be truth values that are consistent with ω on τ1 and τ2. Then, τ ′ is preferable

to τ with respect to ω(τ1, τ2) if

χτ1
α ∧ χτ2

β ∧ χτ
ω(α,β) �ω(τ1,τ2) χτ1

α ∧ χτ2
β ∧ χτ ′

ω(α,β)

for all propositional formulae α and β such that both χτ1
α ∧χτ2

β ∧χτ
ω(α,β) and χ

τ1
α ∧χτ2

β ∧χτ ′

ω(α,β) are satisfiable.281

Of course, the above still leaves open the possibility that, among the truth values that are consistent282

with a binary connective, there might not be one that is preferable to all others. Below, we show that this283

is not the case.284

Theorem 2. Let ω ∈ {∧,∨}, let τ1, τ2 ∈ T6v, and let C be the subset of truth values in T6v that are285

consistent with ω on τ1 and τ2. Then, there exists a unique τ ∈ C such that, for every τ ′ ∈ C, τ is286

preferable to τ ′ with respect to ω(τ1, τ2).287
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∧ t f s st sf u

t t f s st sf u

f f f f f f f

s s f sf sf sf sf

st st f sf u sf u

sf sf f sf sf sf sf

u u f sf u sf u

(a)

∨ t f s st sf u

t t t t t t t

f t f s st sf u

s t s st st st st

st t st st st st st

sf t sf st st u u

u t u st st u u

(b)

¬

t f

f t

s s

st sf

sf st

u u

(c)

Figure 3: The truth tables of L6v for ∧, ∨ and ¬.

Thus, to define the truth table of a binary connective ω, for each combination of truth values τ1 and τ2 in288

T6v we assign to ω(τ1, τ2) the most preferable truth value that is consistent with ω on τ1 and τ2. This yields289

the truth tables for ∧ and ∨ shown in Figure 3a and 3b, respectively. Finally, we call L6v the propositional290

logic consisting of the truth values in T6v and the truth tables in Figure 3.291

Coming back to the example of sf∧sfmentioned earlier, we now illustrate intuitively why the requirement292

of generality is indeed reasonable. Suppose that two non-equivalent propositional formulae α and β are both293

assigned the truth value sf. If the evaluation is correct, then for every propositional interpretation there294

exists a world in which α is false and a world (not necessarily the same) in which β is false. Both sf and f295

are consistent with sf ∧ sf, so what truth value should α ∧ β evaluate to? The truth value f would indicate296

that α ∧ β is false in all worlds of every interpretation for which both α and β result in sf. Clearly, there297

are interpretations for which this happens, for example (t, f, {w1, w2}) with f(α) = {w1}, f(β) = {w2}298

and t(α) = t(β) = ∅. However, there are also interpretations where this is not the case, for instance299

(t′, f ′, {w1, w2}) with t′(α) = t′(β) = ∅ and f ′(α) = f ′(β) = {w1}. The truth value sf is general enough to300

correctly capture the outcome of sf ∧ sf in all situations, including those mentioned above, while f may be301

incorrect in some cases.302

2.4. SQL’s Propositional Logic303

The propositional logic L6v =
(
T6v, {∧,∨,¬}

)
can express many nuances of the truth value of a propo-304

sitional formula in the case of incomplete information. But can this logic be used in practice?305

The query optimization engines of modern relational database management systems are based on decades306

of research that relies on a well established set of assumptions on the logic underlying the evaluation. Among307

these assumptions, there are three crucial properties of the connectives, see [27, 28]:308

• idempotency, that is, τ ∨ τ = τ and τ ∧ τ = τ ; and309

• distributivity, that is, τ ∧ (τ ′ ∨ τ ′′) = (τ ∧ τ ′) ∨ (τ ∧ τ ′′) and similarly with ∧ and ∨ swapped;310
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• double-negation elimination, that is, ¬¬τ = τ .311

These properties are used in all RDBMS query optimizers to transform redundant expressions into equivalent312

non-redundant ones, in order to reduce the number of superfluous operations to be executed during query313

evaluation.314

While L6v has the double-negation elimination property, it fails idempotency and distributivity. Indeed,

s ∧ s and s ∨ s give sf and st, respectively, rather than s. Moreover, ∧ does not distribute over ∨:

s ∧

st
︷ ︸︸ ︷

(s ∨ s)
︸ ︷︷ ︸

sf

6=

sf
︷ ︸︸ ︷

(s ∧ s)∨

sf
︷ ︸︸ ︷

(s ∧ s)
︸ ︷︷ ︸

u

and ∨ does not distribute over ∧:

s ∨

sf
︷ ︸︸ ︷

(s ∧ s)
︸ ︷︷ ︸

st

6=

st
︷ ︸︸ ︷

(s ∨ s)∧

st
︷ ︸︸ ︷

(s ∨ s)
︸ ︷︷ ︸

u

Observe that the binary connectives in L6v are weakly idempotent, i.e., for every truth value τ ∈ T6v we315

have τ ∧ τ ∧ τ = τ ∧ τ , and likewise for ∨. However, due to the lack of idempotency and distributivity, L6v316

is unlikely to be implemented in real systems for query evaluation. To overcome this, we look for sublogics317

of L6v with the desired properties.318

To this end, we formalize the notion of sublogic as follows. Given two logics L = (T,Ω) and L′ = (T′,Ω),319

with T′ ⊆ T and over the same set of connectives, we say that L′ is a sublogic of L if there is a mapping320

h : T → T′ such that, for every n-ary connective ω ∈ Ω and every n-tuple τ̄ of truth values from T′, we have321

h
(
ωL(τ̄ )

)
= ωL

′(
h(τ̄ )

)
. If h is a bijection, we say that L′ is equivalent to L (i.e., the same up to renaming322

of truth values). Also, if h is the identity over a set T′′ ⊆ T, we say that L′ preserves T′′.323

Intuitively, if L′ is a sublogic of L, the truth tables of L′ behave consistently with those of L, over a324

more refined set of truth values. This definition of sublogic captures several interesting cases, e.g., it can be325

shown that the four-valued logic presented in [13] is a sublogic of L6v that preserves {t, f}. The same holds326

for L3v, due to the following mapping: h(τ) = τ , if τ ∈ {t, f}, h(τ) = u, otherwise.327

To handle incomplete information in practice, we want a logic that preserves, as much as possible, the328

behavior of L6v. A sublogic L′ of L is maximal with respect to a property P if it has P and every sublogic329

L′′ of L with property P is also a sublogic of L′. For practical purposes, we want a sublogic of L6v that330

is maximal with respect to distributivity, idempotency, and double-negation elimination. In general, such331

a logic need not be unique. A sublogic L′ of L, maximal with respect to P , is unique (up to renaming of332

truth values) if every sublogic L′′ of L that is maximal with respect to P is equivalent to L′.333

A sublogic that is maximal w.r.t. the above properties, however, is not yet enough for practical appli-334

cations. To answer database queries, we need a logic that can at least distinguish between true and false335

answers. For this reason, we thus require a sublogic of L6v that preserves the truth values {t, f} and that is336

maximal with respect to distributivity, idempotency, and double-negation elimination.337
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Theorem 3. L3v is the unique, up to renaming of truth values, sublogic of L6v that preserves {t, f}, and338

that is maximal with respect to distributivity, idempotency, and double-negation elimination.339

Therefore, when it comes to balancing expressiveness and practicality, the much criticized three-valued340

logic used by SQL is in fact a good choice for dealing with incomplete information in relational databases,341

at least for the propositional case.342

We next examine extensions of propositional logics such as L6v and L3v to predicate logics.343

3. Predicate Logics344

As already explained, the need to consider a predicate logic of incomplete information arises most com-345

monly in querying incomplete databases, where special values – commonly referred to as nulls – indicate346

incompleteness of some sort. When atomic formulae may involve nulls – e.g., comparing a null with another347

value, or checking whether a tuple with nulls belongs to a relation – the standard approach is not to follow348

the Boolean semantics of FO, but instead to look for a many-valued semantics that will properly lift a349

propositional logic to all of FO. Such a semantics is by no means unique; we shall see three common versions350

later in this section.351

We now define incomplete relational databases (which are in fact two-sorted relational structures), and352

consider many-valued FO logics on them, based on particular propositional logic. While propagating truth353

values through connectives and quantifiers simply follows the truth tables of the propositional logic, assigning354

them to atoms is not unique. We consider three commonly occurring ways:355

• one uses the Boolean semantics [6],356

• one adopts the approach of SQL [10],357

• and yet another is based on tuple unification, to achieve query answers with certainty guarantees [29].358

As our main result, we show that in the context of many-valued FO, the exact choice of semantics of359

atoms, or truth values, or propositional connectives, does not matter: whatever combination of these one360

chooses, the resulting logic never exceeds the power of Boolean FO and can be naturally encoded into it.361

3.1. Incomplete Relational Structures (Databases)362

As is standard in the database field and many applications of incomplete information, elements of re-363

lational structures (or relational databases; these terms are used interchangeably) come from two disjoint364

sets. One is the set Const of constants, i.e., known values that are stored in databases. The other is the set365

Null of nulls that represent unknown values. We always assume that Const is countably infinite. For the set366

Null, some options exist, of which the most common are the following.367
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• Null too is a countably infinite set. This corresponds to the model of marked nulls used both in368

relational databases and their many applications, such as data exchange [3], data integration [2] and369

ontology-based data access [5].370

• Null is a singleton set containing one element denoted by nnn. This is the approach of SQL and imple-371

mentations of relational DBMSs, where there is just one single null value.372

A relational vocabulary σ (which is usually called schema in the database context) is a set {R1, . . . , Rn,=}373

consisting of relation names R1, . . . , Rn, each with an associated arity, plus a binary relation symbol “=”374

for equality. A structure A of this vocabulary is a tuple 〈A,RA
1 , . . . , R

A
n ,=

A〉, where:375

• A is a finite subset of Const ∪ Null,376

• RA
i ⊆ Ak for every i ∈ {1, . . . , n}, and377

• =A is the binary relation defined as {(a, a) | a ∈ A}.378

3.2. Many-valued Predicate Logics379

A many-valued predicate logic 〈FO(L), J K〉 is based on a many-valued propositional logic L with a set T380

of truth values and Ω of propositional connectives; the extra element here is the semantics J K of its formulae.381

We now define these. Throughout the section, we make the following assumptions:382

• L has connectives ∨,∧ which are commutative and associative (this is necessary to define quantifiers);383

other connectives are arbitrary.384

• Truth values t and f are always included in T, and the connectives ∨,∧,¬ restricted to them follow385

the rules of Boolean logic (in other words, we do not re-define true and false).386

Syntax and semantics of FO(L). Given a propositional logic L with truth values T and connectives Ω,387

formulae of FO(L) are defined by the following rules.388

• Atomic formulae:389

– if R is a k-ary vocabulary symbol, and x1, . . . , xk are variables, then R(x1, . . . , xk) is an atomic390

formula; we shall also write the more common x1 = x2 in place of =(x1, x2);391

– const(x) and null(x) are atomic formulae.392

• If ω ∈ Ω is a k-ary connective, and ϕ1, . . . , ϕk are formulae, then ω(ϕ1, . . . , ϕk) is a formula.393

• If ϕ is a formula and x is a variable, then ∃xϕ and ∀xϕ are formulae.394
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The notion of free variables is defined in the usual way.395

The semantics of a formula ϕ is given with respect to a structure A with universe A and an assignment396

ν of values in A to free variables of ϕ (i.e., ν is a partial function that is defined on all free variables of ϕ397

and takes values in A). This semantics will be denoted by JϕKA,ν , and it is a value in T. In other words, J K398

assigns a truth value in T to ϕ in a structure A under assignment ν.399

The semantics of atoms const and null is as follows:

Jconst(x)KA,ν =







t if ν(x) ∈ Const,

f if ν(x) ∈ Null.

Jnull(x)KA,ν =







t if ν(x) ∈ Null,

f if ν(x) ∈ Const.

For propositional connectives and quantifiers, the semantics is defined with the standard lifting rules:

Jω(ϕ1, . . . , ϕk)KA,ν = ω(Jϕ1KA,ν , . . . , JϕkKA,ν) ,

J∃xϕKA,ν =
∨

a∈A

JϕKA,ν[a/x] ,

J∀xϕKA,ν =
∧

a∈A

JϕKA,ν[a/x] ,

where ν[a/x] is the same as ν except that it assigns a to x. The last two rules rely on the fact that ∨ and400

∧ are commutative and associative.401

For atomic formulae R(x̄), with R ∈ σ, there are several options, which we now consider, when the402

underlying logic is either Lbool or L3v.403

Boolean semantics. This is the standard two-valued FO semantics, with only t and f as truth values, and

it is given by

JR(x̄)KboolA,ν =







t if ν(x̄) ∈ RA,

f if ν(x̄) 6∈ RA,

for every R in the vocabulary σ (which, recall, includes =). It is then extended to all of FO with the above404

rules, resulting in the semantics J Kbool defined for all FO formulae. When JϕKbool
A,ν = t we also write the405

more customary A, ν |= ϕ.406

The logic BFO, or Boolean FO, is now formally defined as FO(Lbool) interpreted under J Kbool; it is the407

standard FO with only t and f as truth values.408

Null-free semantics. A tuple ā is null-free if all of its values are from Const. The null-free semantics of

FO(L3v) is the same as the Boolean semantics for tuples of constants; if any nulls are present, it produces
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the truth value u:

JR(x̄)KnfA,ν =







t if ν(x̄) ∈ RA and ν(x̄) is null-free,

f if ν(x̄) 6∈ RA and ν(x̄) is null-free,

u if ν(x̄) contains a null,

for every R in the vocabulary σ (which, recall, includes =). In particular, for the equality predicate =, this409

is exactly the semantics used by SQL [10].410

Unification semantics. A semantics based on the notion of tuple unification was proposed by [29] to enforce

certainty guarantees for query answers. We say that two tuples ā and b̄ unify if there is a map h : Const ∪

Null → Const that is the identity on constants and such that h(ā) = h(b̄). Then, for every relation symbol

R in the vocabulary σ, the unification semantics is defined by

JR(x̄)K⇑
A,ν =







t if ν(x̄) ∈ RA,

f if ∄ā ∈ RA s.t. ν(x̄) and ā unify,

u otherwise.

The semantics J K⇑ is then lifted to all of FO by the standard lifting rules.411

The reason this semantics was introduced is that it ensures certainty of answers to FO queries: if412

Jϕ(x̄)K⇑
A,ν = t, then the tuple ū = ν(x̄) is what is known as a certain answer to ϕ, i.e., h(A) |= ϕ

(
h(ū)

)
413

for every map h : Const ∪ Null → Const that is the identity on constants. Here h(A) is obtained from A by414

replacing every value v in its domain by h(v).415

Mixed semantics. There is a priori no reason to apply the same semantics on each relation symbol R ∈ σ;416

instead we can freely mix them. A mixed semantics J Ks is then given by a function s : σ → {bool,⇑, nf} so417

that JR(x̄)Ks
A,ν = JR(x̄)K

s(R)
A,ν . This generalizes Boolean, unification, and null-free semantics.418

3.3. Boolean FO Captures Many-valued FO419

We now show that in most cases, many-valued predicate logics do not give any extra power compared to420

BFO, i.e., the usual FO under the standard Boolean interpretation of connectives and the Boolean semantics421

of atomic formulae. The notion of capturing a many-valued FO logic by BFO needs to account is defined422

as follows.423

Definition 3. A formula ϕ of FO(L) over a many-valued propositional logic L with truth values T is

captured by BFO under semantics J K if there exist BFO formulae ϕτ for each τ ∈ T such that for every

structure A and assignment ν of free variables of ϕ we have

JϕKA,ν = τ ⇔ A, ν |= ϕτ .

FO(L) is captured by BFO if each of its formulae is.424
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Usually we are interested in formulae that are true in a given structure, i.e., JϕKA,ν = t. If a formula is425

captured by BFO, this tells us that we do not need many-valued semantics, and instead can simply check426

whether A, ν |= ϕt under the usual Boolean semantics.427

To capture a many-valued FO by BFO we need very few assumptions. Recall that L = 〈T,Ω〉 is given428

by a set of truth values and truth tables for connectives in Ω, which we assume to contain at least ∨,∧ to429

define quantifiers. In logics such as Lbool and L3v, these connectives are idempotent, i.e., τ ∧ τ = τ ∨ τ = τ430

for every τ ∈ T. In L6v, they are weakly idempotent: τ ∧ τ ∧ τ = τ ∧ τ and likewise for ∨. Notice that431

idempotency implies weak idempotency. This is the only condition we need to impose to be able to lift432

capturing formulae by Boolean FO from atoms to arbitrary formulae.433

Theorem 4. Let L be a propositional many-valued logic in which connectives ∧ and ∨ are weakly idempotent.434

Assume that every relational atom R(x̄), for R ∈ σ, is captured by BFO under J K. Then every FO(L) formula435

over vocabulary σ is captured by BFO under J K.436

To apply this result to the previously considered semantics, we need to capture atomic formulae, under437

different semantics, in BFO. This is possible for all of them.438

Proposition 2. Relational atoms are captured by BFO under Boolean, unification, and null-free semantics.439

Finally, this tells us that any mixed semantics (including its pure versions, i.e., Boolean, unification, null-440

free) coupled with any propositional many-valued logic like L3v or L6v (as long as it has weakly idempotent441

conjunction and disjunction) is no more powerful than the standard semantics over two truth values t and442

f .443

Corollary 1. Let L be a propositional many-valued logic whose truth values include {t, f,u}, with an ar-444

bitrary set of connectives where ∨ and ∧ are (weakly) idempotent. Then for every vocabulary σ, every445

function s defining a mixed semantics, and every formula ϕ of FO(L) there is a formula ϕ′ of BFO such446

that JϕKs
A,ν = t iff A, ν |= ϕ′.447

Using this result, we can clarify, in the next section, the question of the power of the logic that underlies448

real-life database applications that use incomplete information.449

4. The Logic of SQL450

Most database texts will claim that the core of SQL, the main relational database query language, is451

first-order logic FO. This was certainly true in the early stages of SQL design, as it grew out of relational452

calculus, which is just another name for FO. But then the language gained many features, in particular null453

values, leading to more complex underlying logics.454
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These logics are still not well understood, as the formalization of SQL mainly took a different route455

via relational algebra, which is the procedural counterpart of FO. Several attempts to provide a theoretical456

language behind SQL looked at relational algebra translations of the language [30, 31] or presented semantics457

of various fragments of the language, often under the simplifying assumption that no nulls are present and458

no three-valued logic is used [32, 33]. An attempt to find a logic underlying SQL concentrated on its features459

that go beyond FO (i.e., aggregation) rather than nulls [34]. More recent work [24], while providing a direct460

semantics of SQL, accounted for null values and three-valued logic, and even gave a translation of SQL461

queries that, similarly in spirit to the results in the previous section, showed how to evaluate them without462

ever producing the unknown truth value u. This was done, however, at the level of SQL queries. We now463

analyze the power of SQL and the need for three truth values at a purely logical level.464

We start with the basic fragment of relational languages that has the power of FO, or – equivalently –465

the basic operations of relational algebra, or SQL’s select-from-where queries without aggregation. These466

operate on databases whose values come from Const. Recall that SQL uses a single null denoted here by467

nnn. Now we add it; how should the logic change to capture this extension? It depends on who is asked to468

produce such an extension.469

A logician’s approach. If the domain is extended by a single constant, we simply consider FO over Const∪{nnn}470

with a unary predicate null( ) that is only true in nnn (to keep the vocabulary relational; alternatively a constant471

symbol could be added). The interpretation of = is simply {(c, c) | c ∈ Const} ∪ {(nnn,nnn)}, i.e., syntactic472

equality: nnn is equal to itself, and not equal to any element of Const. In other words, the logic is the usual473

BFO, with all the atoms interpreted under the Boolean semantics J Kbool.474

It would thus be seen, by a logician, as an overkill to introduce a many-valued logic to deal with just475

one extra element of the domain. Nonetheless, this is what SQL did.476

SQL approach: a textbook version. The usual explanation of the logic behind SQL is that it adds a new477

truth value u to account for any comparisons involving nulls. In other words, the logic is FO(L3v), and the478

semantics J Ksql is mixed, combining Boolean and null-free semantics:479

• for relational atoms, JR(x̄)Ksql
A,ν = JR(x̄)Kbool

A,ν ;480

• for equality, Jx = yKsql
A,ν = Jx = yKnf

A,ν .481

SQL approach: what really happens. While the textbook approach comes close to describing the logic of482

SQL, it misses one important feature of such logic. In essence, we can think of SQL queries as expressions483

select x̄

from Q1, . . . , Qn

where θ(x̄1, . . . , x̄n)

484
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where Q1, . . . , Qn are either queries or relations, x̄i is a tuple of variables returned by Qi, and θ is a485

condition composed of equalities of variables and constants, or statements Q′(ȳ), where Q′ is another query,486

or statements Q′ 6= ∅, combined using ∧, ∨, and ¬.487

Note that in SQL query evaluation, it is the conditions θ that are evaluated in L3v; once the evaluation488

of the where θ clause is finished, only tuples that evaluated to t are kept. To capture this in logic, we489

need a propositional operator that collapses f and u into f . Such an operator does exist in propositional490

many-valued logics [35] and is known as an assertion operator: ↑p for a proposition p evaluates to t if p491

evaluates to t, and to f otherwise. Let L↑
3v be the extension of L3v with this operator.492

The basic SQL query can then be expressed in FO(L↑
3v):

Q(x̄) = ∃ȳ
n∧

i=1

Qi(x̄i) ∧ ↑θ(x̄1, . . . , x̄n) ,

where ȳ lists the variables present in x̄1, . . . , x̄n but not in x̄. Thus, the many-valued predicate logic capturing493

SQL’s behavior is FO(L↑
3v) under J Ksql.494

To sum up, there are three choices of a logic capturing SQL’s behavior:495

1) Boolean predicate logic BFO;496

2) FO based on Kleene’s logic under the J Ksql semantics;497

3) FO based on Kleene’s logic with the assertion operator under the J Ksql semantics.498

These logics use different sets of truth values. However, it only matters when formulae evaluate to true,

as this determines the output of queries. Thus, to compare logics with different sets of truth values, we say

that two logics, FO(L1) under J K1, and FO(L2) under J K2, are true-equivalent if the models of t are the

same in both. That is, for every formula ϕ1 of FO(L1) there is a formula ϕ2 of FO(L2) such that

Jϕ1K
1
A,ν = t ⇔ Jϕ2K

2
A,ν = t

for every A, ν, and vice versa, for each ϕ2 of FO(L2) there is a formula ϕ1 of FO(L1) such that the above499

condition holds.500

Then, with respect to the truth value t, there is no difference between the logics that attempt to model501

SQL’s behavior.502

Theorem 5. The logics FO(L3v) and FO(L↑
3v), both under J Ksql, and BFO, are all true-equivalent.503

Therefore, the use of a many-valued logic to handle incomplete information adds no extra expressiveness.504

However, one may still wonder whether many-valued logics may give an advantage in terms of succinctness505

of formulae. To prove that this is not the case, we first defined the size |ϕ| of a formula ϕ.506
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• |R(x)| = |(x1 = x2)| = 1;507

• |ϕ ∧ ψ| = |ϕ ∨ ψ| = |ϕ|+ |ψ|;508

• |¬ϕ| = |∀x.ϕ| = |∃x.ϕ| = 1 + |ϕ|.509

The use of BFO to express properties in FO(L↑
3v) does not have a dramatic impact on the size of the510

formulae, as the following theorem shows.511

Theorem 6. There is c ∈ N such that, for each formula ϕ1 ∈ FO(L↑
3v), there exists a formula ϕ2 ∈ BFO512

for which |ϕ2| = c · |ϕ1| and A, ν |= ϕ2 ⇔ Jϕ1K
sql
A,ν = t.513

Thus, the more natural logical approach to adding a null value to the language does not miss any514

fundamental characteristic of the approaches based on many-valued logics.515

5. Conclusions516

To conclude, let us revisit history. Handling incomplete information by logical languages is an important517

topic, especially in data management. All commercial database systems that speak SQL offer a solution518

based on a three-valued propositional logic that is lifted then to full predicate logic. This solution was519

heavily criticized in the literature, but at the level of the chosen propositional logic.520

We proposed a principled approach to justifying a proper logic for handling incomplete information, which521

resulted in a six-valued logic L6v. However, taking into account the needs of SQL query evaluation (e.g.,522

distributivity laws), the largest fragment of L6v that does not break traditional evaluation and optimization523

strategies is Kleene’s logic L3v, precisely the one chosen by SQL.524

However, even though the SQL designers were justified in their choice of Kleene’s logic, they neglected to525

consider the impact that lifting it to full predicate logic would have. We showed that it leads to no increase526

in expressive power; had this been known to the SQL designers, perhaps other choices would have been527

considered too.528

But does this mean that we should abandon many-valued logics of incomplete information? Most likely529

not: while the theoretical complexity of formulae that result from eliminating many-valuedness is the same530

as that of original many-valued formulae, their practical complexity (i.e., if implemented as real life database531

queries) is likely to be different. This is mainly due to the fact that 40 years of research on query evaluation532

and optimization had one particular model in mind, and that model used a many-valued logic. However, the533

observations we made here might have an impact on the design of new languages, since avoiding many-valued534

logics for handling incompleteness is now an option.535

Regarding future directions, we would like to extend the propositional setup with bilattice orderings as536

is often done [17, 18], and understand the right orderings for logics like L6v. Yet another direction is to drop537
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the restriction t(α) ∩ f(α) = ∅ for every propositional formula α. Such restrictions have been lifted in the538

study of paraconsistent logics [23, 16], and in fact the question of looking for the right many-valued logic539

for reasoning about inconsistency has been raised [36]. Our focus would be slightly different, as we want to540

extend the current study to handle the most common case of inconsistency in data management, namely541

inconsistency with respect to integrity constraints [37, 4].542
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Appendix A. Proofs of Results on Propositional Logic602

In this section, we present the proofs of Proposition 1 and Theorem 2. In what follows, we use the603

following notation. Given a propositional interpretation I = (t, f,W ), we use uI to denote the function604

from L to the powerset of W such that uI(α) =W \ (t(α) ∪ f(α)), for every α ∈ L. Intutively, uI denotes605

the set of worlds of W where α is undefined. As customary, given two (propositional or modal) formulae ϕ606

and ψ, we use ϕ→ ψ for ¬ϕ∨ψ and ϕ↔ ψ for (ϕ→ ψ)∧ (ψ → ψ). A modal formula ϕ is a tautology if it is607

satisfied by every propositional interpretation. In our proofs, we use tautologies that represent fundamental608

properties of our modal formalism. We present these properties now, starting from Weak Duality (WD).609

Intuitively, Weak Duality characterizes the interaction between the modal operators.610

Proposition 3. Let α and β be propositional formulae. The following modal formulae are tautologies:611

• (WD1) Kα→ (Pβ ↔ P(α ∧ β)).612
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• (WD2) ¬Kα→ (¬Pβ → ¬K(α ∨ β))613

• (WD3) Kα→ ¬P¬α614

Proof. Assume a propositional interpretation I = (t, f,W ). We prove each statement separately.615

(WD1). If I |= P(α ∧ β), then there exists w ∈ t(α) ∩ t(β). Trivially, then, w ∈ t(β), i.e., I |= Pβ. We can616

conclude that the formula P(α ∧ β) → P(α) is a tautology. Assume now I |= Kα, i.e., t(α) =W , we prove617

that I satisfies (Pβ → P(α ∧ β)). If I |= Pβ, then there exists w ∈ t(β). Therefore, w ∈ t(α) ∩ t(β), and618

we can conclude that w ∈ t(α ∧ β), i.e., I |= P(α ∧ β).619

(WD2). Assume I |= ¬Kα, i.e., t(α) 6= W . We prove that I |= (¬Pβ → ¬K(α ∨ β)). Suppose I |= ¬Pβ,620

i.e., t(β) = ∅, and let w ∈ W such that w 6∈ t(α). Therefore, w 6∈ t(α) ∪ t(β), proving I |= ¬K(α ∨ β).621

(WD3). Assume I |= Kα, i.e., t(α) = W . By definition, t(α) ∩ t(¬α) = ∅. Therefore, t(¬α) = ∅, i.e.,622

I |= ¬P¬α.623

624

The following tautologies represents additional relevant properties of the modal operators.625

Proposition 4. Let α and β be propositional formulae. The following modal formulae are tautologies:626

• (Completeness of P) ¬Pα → ¬P(α ∧ β)627

• (Distributivity of K over ∧) K(α ∧ β) ↔ Kα ∧Kβ628

• (Distributivity of P over ∨) P(α ∨ β) ↔ Pα ∨Pβ629

Proof. Assume a propositional interpretation I = (t, f,W ). We prove each statement separately.630

(Completeness of P). If I |= ¬Pα, then t(α) = ∅. From the definition of propositional interpretations, it631

follows that t(α ∧ β) = ∅, in turn proving I |= ¬P(α ∧ β).632

(Distributivity of K over ∧). We prove the two claims separately. (⇒) If I |= K(α∧β), then W = t(α∧β).633

From the definition of propositional interpretations, it follows t(α∧β) = t(α)∩ t(β). Therefore, W = t(α) =634

t(β), and we can conclude I |= (Kα ∧ Kβ). (⇐) If I |= (Kα ∧Kβ), then W = t(α) =∈ t(β). From the635

definition of propositional interpretations, it follows that W = t(α∧β), and we can conclude I |= K(α∧β).636
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(Distributivity of P over ∨). We prove the two claims separately. (⇒) If I |= P(α ∨ β), then there exists637

w ∈ W such that w ∈ t(α ∨ β). From the definition of propositional interpretations, it follows that either638

w ∈ t(α) or w ∈ t(β). In turn, the latter proves I |= (Pα ∨ Pβ). (⇐) If I |= (Pα ∨ Pβ), then there exists639

w ∈ W such that either w ∈ t(α) or w ∈ t(β). From the definition of propositional interpretations, it follows640

that w ∈ t(α ∨ β), in turn proving I |= P(α ∨ β).641

Finally, we prove the following statements on the interpretation of propositional formulae in proprosi-642

tional interpretations.643

Proposition 5. Let α and β be two propositional formulae, and let I = (t, f,W ) be a propositional inter-644

pretation. For every w ∈ W , the following holds.645

• (P1): if w ∈ t(α) then w ∈ t(α ∨ β)646

• (P2): if w ∈ t(¬α) then w ∈ t(¬(α ∧ β))647

Proof. The proof follows straightforwardly from the definition of propositional interpretations.648

Truth Table of Conjunction649

We now analyze the truth table of conjunction (Figure 3a). First, we show that, for some combination650

of truth values τ, τ ′, only one truth value σ is consistent with τ ∧ τ ′.651

Lemma 1. The following claims hold.652

• (f ∧ τ = f) For every τ ∈ T , the only truth value that is consistent ∧ on f and τ is f.653

• (t ∧ t = t) The only truth value that is consistent with ∧ on t and t is f.654

• (t ∧ s = s) The only truth value that is consistent with ∧ on t and s is s.655

• (t ∧ st = st) The only truth value that is consistent with ∧ on t and stis st.656

• (t ∧ sf = sf) The only truth value that is consistent with ∧ on t and sf is sf.657

• (t ∧ u = u) The only truth value that is consistent with ∧ on t and u is u.658

• (s ∧ u = sf) The only truth value that is consistent with ∧ on s and u is sf.659

• (st ∧ sf = sf) The only truth value that is consistent with ∧ on st and sf is sf.660

• (st ∧ u = u) The only truth value that is consistent with ∧ on st and u is u.661

• (sf ∧ u = sf) The only truth value that is consistent with ∧ on sf and u is sf.662

• (u ∧ u = u) The only truth value that is consistent with ∧ on u and u is u.663

Proof. We prove each claim separately.664
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(f ∧ τ = f). We prove that χf
α ∧ χτ

β → χf

α∧β is a tautology. From K¬α and (P2) we can derive χf
α →665

K¬(α ∧ β). From ¬Pα and completeness of P we derive χf
α → ¬P(α ∧ β). From P¬α and (P2) we can666

derive χf
α → P¬(α∧β). Finally, using ¬Kα and the distributivity ofK over ∧ we can derive χf

α → ¬K(α∧β).667

(t∧t = t). We prove that χt
α∧χ

t

β → χt

α∧β is a tautology. From Kα∧Kβ, using distributivity of K over ∧668

we can derive (a) : χt
α ∧ χt

β → K(α ∧ β). Using (WD3) and (a) we can now derive χt
α ∧ χt

β → ¬P¬(α ∧ β).669

From Kα∧Pβ, using (WD1) we can derive (b) : χt
α ∧ χt

β → P(α ∧ β). Using (WD3) and (b) we can derive670

χt
α ∧ χt

β → ¬K¬(α ∧ β).671

(t ∧ s = s). We prove that χt
α ∧ χs

β → χs

α∧β is a tautology. From Kα ∧ Pβ and (WD1) we can derive672

(a) : χt
α ∧ χs

β → P(α ∧ β). From (a) and (WD3) we derive χt
α ∧ χs

β → ¬K¬(α ∧ β). From P¬β and (P2)673

(b) : χt
α ∧ χs

β → P¬(α ∧ β). From (b) and (WD3) we derive χt
α ∧ χs

β → ¬K(α ∧ β).674

(t ∧ st = st). We prove that χt
α ∧ χst

β → χst

α∧β is a tautology. From Kα ∧ Pβ and (WD1) we can derive675

(a) : χt
α ∧ χst

β → P(α ∧ β). From (a) and (WD3) we derive χt
α ∧ χst

β → ¬K¬(α ∧ β). From ¬P¬α ∧ ¬P¬β676

and distributivity of P over ∨ we can derive χt
α ∧ χst

β → ¬P(¬α ∨ ¬β) ↔ ¬P¬(α ∧ β). Finally, from ¬Kβ677

and distributivity of K over ∧ we can derive χt
α ∧ χst

β → ¬K(α ∧ β).678

(t ∧ sf = sf). We prove that χt
α ∧ χsf

β → χsf

α∧β is a tautology. From P¬β and (P2) we can derive (a) :679

χt
α ∧ χsf

β → P¬(α ∧ β). From (a) and (WD3) we can derive χt
α ∧ χsf

β → ¬K(α ∧ β). From ¬Pβ and680

completeness of P we can derive χt
α ∧ χsf

β → ¬P(α ∧ β). Finally, from ¬K¬β ∧ ¬P¬α and (WD2) we can681

derive χt
α ∧ χsf

β → ¬K(¬α ∨ ¬β) ↔ ¬K¬(α ∧ β).682

(t∧u = u). We prove that χt
α∧χ

u

β → χu

α∧β is a tautology. From ¬Pα and completeness of P we can derive683

(a) : χt
α∧χ

u

β → ¬P(α∧β). From (a) and (WD3) we can derive χt
α∧χ

u

β → ¬K(α∧β). From ¬P¬α∧¬P¬β684

and distributivity of P over ∨ we can derive (b) : χt
α ∧ χu

β → ¬P(¬α ∨ ¬β) ↔ ¬P¬(α ∧ β). From (b) and685

(WD3) we can derive χt
α ∧ χu

β → ¬K¬(α ∧ β).686

(s ∧ u = sf). We prove that χs
α ∧ χu

β → χsf

α∧β is a tautology. From P¬α and (P2) we can derive (a) :687

χs
α ∧ χu

β → P¬(α ∧ β). From (a) and (WD3) we can derive χs
α ∧ χu

β → ¬K(α ∧ β). Moreover, from ¬Pβ688

and completeness of P we can derive χs
α ∧ χu

β → ¬P(α ∧ β). Finally from ¬K¬α ∧ ¬P¬β and (WD2) we689

can derive χs
α ∧ χu

β → ¬K(¬α ∨ ¬β) ↔ ¬K¬(α ∧ β).690

(st ∧ sf = sf). We prove that χst
α ∧ χsf

β → χsf

α∧β is a tautology. From P¬β and (P2) we can derive691

(a) : χst
α ∧ χsf

β → P¬(α ∧ β). From (a) and (WD3) we can derive χst
α ∧ χsf

β → ¬K(α ∧ β). From ¬Pβ692

and completeness of P we can derive ¬P(α ∧ β). Finally from ¬K¬β ∧ ¬P¬α and (WD2) we can derive693

χst
α ∧ χsf

β → ¬K(¬α ∨ ¬β) ↔ ¬K¬(α ∧ β).694
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(st ∧ u = u). We prove that χst
α ∧ χu

β → χu

α∧β is a tautology. From ¬Pβ and completeness of P we695

can derive χst
α ∧ χu

β → ¬P(α ∧ β). From ¬P¬α ∧ ¬P¬β and distributivity of P over ∨ we can derive696

χst
α ∧ χu

β → ¬P(¬α ∨ ¬β) ↔ ¬P¬(α ∧ β). From ¬Kα ∧ ¬Kβ and distributivity of K over ∧ we can derive697

χst
α ∧χu

β → ¬K(α∧β). Finally from ¬K¬α∧¬P¬β and (WD2) we can derive χst
α ∧χu

β → ¬K(¬α∨¬β) ↔698

¬K¬(α ∧ β).699

(sf ∧ u = sf). We prove that χsf
α ∧ χu

β → χsf

α∧β is a tautology. From P¬α and (P2) we can derive (a) :700

χsf
α ∧ χu

β → P¬(α ∧ β). From (a) and (WD3) we can derive χsf
α ∧ χu

β → ¬K(α ∧ β). From ¬Pβ and701

completeness of P we can derive χsf
α ∧χu

β → ¬(α∧β). Finally from ¬Kα∧¬P¬β and (WD2) we can derive702

χsf
α ∧ χu

β → ¬K(¬α ∨ ¬β) ↔ ¬K¬(α ∧ β).703

(u∧u = u). We prove that χu
α∧χ

u

β → χu

α∧β is a tautology. From ¬Pα and completeness of P we can derive704

χu
α∧χ

u

β → ¬P(α∧β). From distributivity of K over ∧ and ¬Kα∧¬Kβ we can derive χu
α∧χ

u

β → ¬K(α∧β).705

From ¬P¬α ∧¬P¬β and distributivity of P over ∨ we can derive χu
α ∧ χu

β → ¬P(¬α ∨¬β) ↔ ¬P¬(α ∧ β).706

Finally, from ¬K¬α ∧ ¬P¬β and (WD2) we can derive χu
α ∧ χu

β → ¬K(¬α ∨ ¬β) ↔ ¬K¬(α ∧ β).707

For the remaining combinations of truth values , we have more than one possible consistent choice. In708

the following set of lemmas, we show that only one of these choices is the most preferable.709

Lemma 2 (s ∧ s = sf). The truth value sf is consistent with ∧ on s and s. Moreover, sf is preferable to τ ,710

for every truth value τ consistent with ∧ on s and s.711

Proof. We prove the claim in two steps. First, we prove that the truth values consistent with ∧ on s and s712

are three: sf, s, and f. Second, we prove that sf is preferable to both s and f w.r.t. s ∧ s.713

We start by proving that the following formula is a tautology: χs
α ∧ χs

β → P¬(α ∧ β) ∧ ¬K(α ∧ β).714

From P¬α and (P2) we can derive (a) : χs
α ∧ χs

β → P¬(α ∧ β). From (a) and (WD3) we can derive715

χs
α ∧ χs

β → ¬K(α ∧ β). From the above result, we can conclude that, if χs
α ∧ χs

β ∧ χτ
α∧β is satisfiable, then716

τ ∈ {sf, s, f}. We proceed to show that, for each such τ , there exist propositional formulae α and β such717

that χs
α ∧ χs

β ∧ χτ
α∧β is satisfiable. In what follows, we assume propositional formulae α, and β, and a718

propositional interpretation I = (t, f,W ).719

(Truth Value sf). Assume that W can be partitioned into three non-empty subsets, namely W ′, W ′′, and720

W ′′′, having the following properties.721

• W ′ ⊆ t(α) and W ′ ⊆ f(β);722

• W ′′ ⊆ f(α) and W ′ ⊆ t(β);723

• W ′′′ ∈ uI(α) ∩ uI(β).724
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Clearly, I |= χs
α ∧ χs

β . Moreover, t(α ∧ β) = ∅ due the definition of propositional interpretatinons, and725

f(α ∧ β) 6=W , due to W ′′′. We can conclude that I satisfies both ¬P(α ∧ β) and ¬K¬(α ∧ β).726

(Truth Value s). Assume that W can be partitioned into two non-empty subsets, namely W ′ and W ′′,727

having the following properties.728

• W ′ ⊆ f(α) and W ′ ⊆ f(β);729

• W ′′ ⊆ t(α) and W ′′ ⊆ t(β).730

Clearly, I |= χs
α ∧ χs

β . Moreover, W ′ ⊆ f(α ∧ β) and W ′′ ⊆ t(α ∧ β). We can conclude that I satisfies both731

P(α ∧ β) and ¬K¬(α ∧ β).732

(Truth Value f). Assume that W can be partitioned into two non-empty subsets, namely W ′ and W ′′,733

having the following properties.734

• W ′ ⊆ t(α) and W ′ ⊆ f(β);735

• W ′′ ⊆ f(α) and W ′′ ⊆ t(β);736

Clearly, I |= χs
α ∧ χs

β . Moreover, t(α ∧ β) = ∅, due to the definition of propositional interpretations. We737

can conclude that I satisfies both ¬P(α ∧ β) and K¬(α ∧ β).738

(The Most Preferable Truth Value Is sf). We now prove that sf is preferable to both s and f w.r.t. s ∧ s.739

Given propositional formulae α and β, we use X f, X s, and X sf, to denote, respectively, the formulae740

χs
α ∧ χs

β ∧ χf

α∧β , χ
s
α ∧ χs

β ∧ χs

α∧β and χs
α ∧ χs

β ∧ χsf

α∧β . Assume propositional formulae α and β such that741

X s and X sf are satisfiable. Let I = (t, f,W ) be a propositional interpretation that satisfies X s, we define742

I ′ = (t′, f ′,W ′) as follows.743

• I ′ |= X sf; and744

• for each w ∈W , w ∈W ′ and w ∈ uI′(γ), for each γ ∈ L.745

Such I ′ exists, being X sf satisfiable. Let g :W ′ →W be a mapping such that g is the identity over W , and746

g(w′) ∈ f(α ∧ β), for each w′ ∈ f(α ∧ β). The mapping g proves I �α∧β I ′. We can conclude that sf is747

preferable to s w.r.t. s ∧ s.748

Similarly, assume propositional formulae α and β such that X f and X sf are satisfiable. Let I = (t, f,W )749

be a propositional interpretation that satisfies X f, we define I ′ = (t′, f ′,W ′) as follows.750

• I ′ |= X sf; and751

• For each w ∈W , w ∈ W ′ and w ∈ uI′(γ), for each γ ∈ L.752
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Such I ′ exists, being X sf satisfiable. Moreover, the function g : W ′ → W defined above proves that753

I ′ �α∧β I. We can conclude that sf is preferable to f w.r.t. s ∧ s.754

Lemma 3 (st ∧ st = u). The truth value u is consistent with ∧ on st and st. Moreover, u is preferable to755

τ , for every truth value τ consistent with ∧ on s and s.756

Proof. We prove the claim in two steps. First, we prove that the truth values consistent with ∧ on s and s757

are two: st and u. Second, we prove that u is preferable to st w.r.t. st ∧ st.758

We start by proving that the following formula is a tautology: χst
α ∧ χst

β → ¬K(α ∧ β) ∧ ¬P¬(α ∧ β) ∧759

¬K¬(α∧β). From ¬P¬α∧¬P¬β and distributivity of P over ∨ we can derive χst
α ∧χst

β → ¬P(¬α∨¬β) ↔760

¬P¬(α ∧ β). From ¬K¬α ∧ ¬P¬β and (WD2) we can derive χst
α ∧ χst

β → ¬K(¬α ∨ ¬β) ↔ ¬K¬(α ∧ β).761

Finally, from ¬Kα ∧ ¬Kβ and distributivity of K over ∧ we can derive χst
α ∧ χst

β → ¬K(α ∧ β). From the762

above result, we can conclude that, if χst
α ∧ χst

β ∧ χτ
α∧β is satisfiable, then τ ∈ {sf, s}. We proceed to show763

that , for each such τ , there exist propositional formulae α and β such that χst
α ∧χst

β ∧χτ
α∧β is satisfiable. In764

what follows, we assume propositional formulae α, and β, and a propositional interpretation I = (t, f,W ).765

(Truth Value st). Assume that W can be partitioned into two non-empty subsets, namely W ′ and W ′′
766

having the following properties.767

• W ′ ⊆ t(α) and W ′ ⊆ t(β);768

• W ′′ ⊆ uI(α) and W
′′ ⊆ uI(β).769

Clearly, I |= χst
α ∧ χst

β . Moreover, W ′ ⊆ t(α ∧ β), and we can conclude that I satisfies P(α ∧ β).770

(Truth Value u). Assume that W can be partitioned into two non-empty subsets, namely W ′ and W ′′,771

having the following properties.772

• W ′ ⊆ t(α) and W ′ ⊆ uI(β);773

• W ′′ ⊆ uI(α) and W
′′ ⊆ t(β);774

Clearly, I |= χst
α ∧ χst

β . Moreover, t(α ∧ β) = ∅ due to the definition of propositional interpretations. We775

can conclude that I satisfies ¬P(α ∧ β).776

(The Most Preferable Truth Value Is u). We proceed to prove that u is preferable to st w.r.t. st∧st. Given777

propositional formulae α and β, we use Xu, and X st, to denote, respectively, the formulae χst
α ∧ χst

β ∧ χu

α∧β778

and χst
α ∧ χst

β ∧ χst

α∧β. Assume propositional formulae α and β such that X st and Xu are satisfiable. Let779

I = (t, f,W ) be a propositional interpretation that satisfies X st, we define I ′ = (t′, f ′,W ′) as follows.780

• I ′ |= Xu; and781
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• for each w ∈W , w ∈W ′ and w ∈ uI′(γ), for each γ ∈ L.782

Such I ′ exists, being Xu satisfiable. Let g : W ′ → W be the identity over W . The mapping g proves783

I ′ �α∧β I. We can conclude that u is preferable to st w.r.t. st ∧ st.784

Lemma 4 (s ∧ st = sf). The truth value sf is consistent with ∧ on s and st. Moreover, sf is preferable to785

τ , for every truth value τ consistent with ∧ on s and st.786

Proof. We prove the claim in two steps. First, we prove that the truth values consistent with ∧ on s and st787

are two: sf and s. Second, we prove that sf is preferable to s w.r.t. s ∧ st.788

We start by proving that the following formula is a tautology: χs
α ∧ χst

β → ¬K(α ∧ β) ∧ ¬K¬(α ∧ β) ∧789

P¬(α∧β) From P¬α and (P2) we can derive (a) : χs
α∧χ

st

β → P¬(α∧β). From (a) and (WD3) we can derive790

χs
α ∧χst

β → ¬K(α∧ β). Moreover, from ¬K¬α∧¬P¬β and (WD2) we can derive χs
α ∧χst

β → ¬K¬(α∧ β).791

From the above result, we can conclude that, if χs
α ∧ χst

β ∧ χτ
α∧β is satisfiable, then τ ∈ {sf, s}. We proceed792

to show that, for each such τ , there exist propositional formulae α and β such that χs
α ∧ χst

β ∧ χτ
α∧β is793

satisfiable. In what follows, we assume propositional formulae α, and β, and a propositional interpretation794

I = (t, f,W ).795

(Truth Value sf). Assume that W can be partitioned into two non-empty subsets, namely W ′ and W ′′,796

having the following properties.797

• W ′ ⊆ t(α) and W ′ ⊆ uI(β);798

• W ′′ ⊆ f(α) and W ′′ ⊆ t(β);799

Clearly, I |= χs
α ∧ χst

β . Moreover, W ′ ⊆ uI(α ∧ β) and W ′ ⊆ f(α ∧ β). We can conclude that I satisfies800

¬P(α ∧ β).801

(Truth Value s). Assume that W can be partitioned into two non-empty subsets, namely W ′ and W ′′,802

having the following properties.803

• W ′ ⊆ t(α) and W ′ ⊆ t(β);804

• W ′′ ⊆ f(α) and W ′′ ⊆ uI(β);805

Clearly, I |= χs
α ∧ χst

β . Moreover, W ′ ⊆ t(α ∧ β). We can conclude that I satisfies P(α ∧ β).806

(The Most Preferable Truth Value Is sf). We now prove that sf is preferable to s w.r.t. s ∧ st. Given807

propositional formulae α and β, we use X s, and X sf, to denote, respectively, the formulae χs
α ∧ χst

β ∧ χs

α∧β ,808

and χs
α ∧ χst

β ∧ χsf

α∧β. Assume propositional formulae α and β such that X s and X sf are satisfiable. Let809

I = (t, f,W ) be a propositional interpretation that satisfies X st, we define I ′ = (t′, f ′,W ′) as follows.810
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• I ′ |= X sf; and811

• for each w ∈W , w ∈W ′ and w ∈ uI′(γ), for each γ ∈ L.812

Such I ′ exists, being X sf satisfiable. Let g : W ′ → W be the mapping such that g identity over W and813

g(w′) ∈ f(α ∧ β), for each w′ ∈ f ′(α ∧ β). The mapping g proves I ′ �α∧β I. We can conclude that sf is814

preferable to s w.r.t. s ∧ st.815

Lemma 5 (sf∧ sf = sf). The truth value sf is consistent with ∧ on sf and sf. Moreover, sf is preferable to816

τ , for every truth value τ consistent with ∧ on sf and sf.817

Proof. We prove the claim in two steps. First, we prove that the truth values consistent with ∧ on sf and818

sf are two: sf, and f. Second, we prove that sf is preferable f w.r.t. sf ∧ sf.819

We start by proving that the following formula is a tautology: χsf
α∧χ

sf

β → ¬K(α∧β)∧¬P(α∧β)∧P¬(α∧β)820

From P¬α and (P2) we can derive (a) : χsf
α ∧ χsf

β → P¬(α ∧ β). From (a) and (WD3) we can derive821

χsf
α ∧ χsf

β → ¬K(α ∧ β). Finally from ¬Pα and completeness of P we can derive χsf
α ∧ χsf

β → ¬P(α ∧ β).822

From the above result, we can conclude that, if χsf
α ∧ χsf

β ∧ χτ
α∧β is satisfiable, then τ ∈ {sf, f}. We823

proceed to show that, for each such τ , there exist propositional formulae α and β such that χsf
α ∧χsf

β ∧χτ
α∧β824

is satisfiable. In what follows, we assume propositional formulae α, and β, and a propositional interpretation825

I = (t, f,W ).826

(Truth Value sf). Assume that W can be partitioned into two non-empty subsets, namely W ′ and W ′′,827

having the following properties.828

• W ′f(α), and W ′ ∈ f(β);829

• W ′uI(α), and W
′ ∈ uI(β).830

Clearly I |= χsf
α ∧ χsf

β . Moreover, W 6= f(α ∧ β), and we can conclude that I satisfies ¬K¬(α ∧ β).831

(Truth Value f). Assume that W can be partitioned into two non-empty subsets, namely W ′ and W ′′,832

having the following properties.833

• W ′ ⊆ f(α), and W ′ ⊆ uI(β);834

• W ′ ⊆ uI(α), and W
′ ⊆ f(β);835

Clearly, I |= χsf
α ∧χsf

β . Moreover,W = f(α∧β), from the definition of propositional interpretations. We836

can conclude that I satisfies K¬(α ∧ β).837
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(The Most Preferable Truth Value Is sf). A construction similar to the one used in the prove Lemma 2838

proves that sf is preferable to f with respect to sf ∧ sf.839

Lemma 6 (s ∧ sf = sf). The truth value sf is consistent with ∧ on s and sf. Moreover, sf is preferable to840

τ , for every truth value τ consistent with ∧ on s and sf.841

Proof. We prove the claim in two steps. First, we prove that the truth values consistent with ∧ on s and sf842

are two: sf, and f. Second, we prove that sf is preferable f w.r.t. sf ∧ sf.843

We start by proving that the following is a tautology: χs
α ∧ χsf

β → ¬K(α ∧ β) ∧ ¬P(α ∧ β) ∧P¬(α ∧ β)844

Form P¬α and (P2) we can derive (a) : χs
α ∧ χsf

β → P¬(α ∧ β). From (a) and (WD3) we can derive845

χs
α ∧ χsf

β → ¬K(α ∧ β). Moreover, from ¬Pα and completeness of P we can derive χs
α ∧ χsf

β → ¬P(α ∧ β).846

From the above result, we can conclude that, if χs
α ∧ χsf

β ∧ χτ
α∧β is satisfiable, then τ ∈ {sf, f}. We847

proceed to show that, for each such τ , there exist propositional formulae α and β such that χs
α ∧χsf

β ∧χτ
α∧β848

is satisfiable. In what follows, we assume propositional formulae α, and β, and a propositional interpretation849

I = (t, f,W ).850

(Case of truth value sf). Assume that W can be partitioned into two non-empty subsets, namely W ′ and851

W ′′, having the following properties.852

• W ′ ⊆ t(α), and W ′ ⊆ uI(β);853

• W ′′ ⊆ f(α), and W ′′ ⊆ f(β);854

Clearly, I |= χs
α∧χ

sf

β . Moreover, F (α∧β) 6= ∅ due toW ′. We can conclude that I satisfies ¬K¬(α∧β).855

(Case of truth value f). Assume that W can be partitioned into two non-empty subsets, namely W ′ and856

W ′′, having the following properties.857

• W ′ ⊆ t(α), and W ′ ⊆ f(β);858

• W ′ ⊆ f(α), and W ′ ⊆ uI(β);859

Clearly, I |= χs
α ∧ χsf

β . Moreover, the formula W = f(α ∧ β), due to the definition of propositional860

interpretations. We can conclude that I satisfies K¬(α ∧ β).861

(The Most Preferable Truth Value Is sf). To prove that sf is the most preferable truth value in this case,862

we can use a construction similar to the one used in the proof of Lemma 2.863
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Truth Table of Disjunction864

We now analyze the truth table of disjunction (Figure 3b). First, we show that, for some combination865

of truth values τ, τ ′, only one truth value σ is consistent with τ ∨ τ ′.866

Lemma 7. The following claims hold.867

• (t ∨ τ = t) For every τ ∈ T , the only truth value that is consistent with ∨ on t and τ is t.868

• (f ∨ f = f) The only truth value that is consistent with ∨ on f and f is f.869

• (f ∨ s = s) The only truth value that is consistent with ∨ on f and s is s.870

• (f ∨ st = st) The only truth value that is consistent with ∨ on f and st is st.871

• (f ∨ sf = sf) The only truth value that is consistent with ∨ on f and sf is sf.872

• (f ∨ u = u) The only truth value that is consistent with ∨ on f and u is u.873

• (s ∨ u = st) The only truth value that is consistent with ∨ on s and u is st.874

• (u ∨ u = u) The only truth value that is consistent with ∨ on u and u is u.875

• (st ∨ sf = st) The only truth value that is consistent with ∨ on st and sf is st.876

• (st ∨ u = st) The only truth value that is consistent with ∨ on st and u is st.877

• (sf ∨ u = u) The only truth value that is consistent with ∨ on sf and u is u.878

Proof. We prove each claim separately.879

(t ∨ τ = t). We prove that χt
α ∧ χτ

β → χt

α∨β is a tautology. From Kα and (P1) we can derive (a) :880

χt
α → K(α ∨ β). From (a) and (WD3) we derive χt

α → ¬P¬(α ∨ β). From Pα and (P1) we derive881

(b) : χt
α → P(α ∨ β). Finally, from (b) and the we can derive (b) : χf

α → ¬K¬(α ∨ β).882

(f ∨ f = f). We prove that χf
α ∧ χf

β → χf

α∨β is a tautology. From ¬Pα ∧ ¬Pβ and distributivity of P over883

∨ we can derive χf
α ∧ χf

β → ¬P(α ∨ β). From ¬Kα ∧ ¬Pβ we can derive χf
α ∧ χf

β → ¬K(α ∨ β). From884

K¬α ∧K¬β and distributivity of K over ∧ we can derive χf
α ∧ χf

β → K(¬α ∧ ¬β) ↔ K¬(α ∨ β). Finally,885

from K¬α ∧P¬β and (WD1) we can derive χf
α ∧ χf

β → P(¬α ∧ ¬β) ↔ P¬(α ∨ β).886

(f ∨ s = s). We prove that χf
α ∧ χs

β → χs

α∨β is a tautology. From K¬α ∧ P¬β and (WD1) we can derive887

(a) : χf
α ∧ χs

β → P(¬α ∧ ¬β) ↔ P¬(α ∨ β). From (a) and (WD3) we can derive χf
α ∧ χs

β → ¬K(α ∨ β).888

From Pβ and (P1) we can derive (b) : χf
α ∧ χs

β → P(α ∨ β). Finally, from (b) and (WD3) we can derive889

χf
α ∧ χs

β → ¬K¬(α ∨ β).890
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(f ∨ st = st). We prove that χf
α ∧ χst

β → χst

α∨β is a tautology. From Pβ and (P1) we can derive (a) :891

χf
α ∧ χst

β → P(α ∨ β). From (a) and (WD3) we can derive χf
α ∧ χst

β → ¬K¬(α ∨ β). From K¬α ∧P¬β and892

(WD1) we can derive χf
α ∧ χst

β → ¬P(¬α ∧ ¬β) ↔ ¬P¬(α ∨ β). Finally from ¬Kβ ∧ ¬Pα and (WD2) we893

can derive χf
α ∧ χst

β → ¬K(α ∨ β).894

(f ∨ sf = sf). We prove that χf
α ∧ χsf

β → χsf

α∨β is a tautology. From K¬α ∧P¬β and (WD1) we can derive895

(a) : χf
α ∧ χsf

β → P(¬α ∧ ¬β) ↔ P¬(α ∨ β). From (a) and (WD3) we can derive χf
α ∧ χsf

β → ¬K(α ∨ β).896

From ¬Pα∧¬Pβ and distributivity of P over ∨ we derive χf
α ∧χsf

β → ¬P(α∨β). Finally from ¬Kα∧¬Kβ897

and distributivity of K over ∧ we derive χf
α ∧ χsf

β → ¬K(¬α ∧ ¬β) ↔ ¬K¬(α ∨ β).898

(f ∨ u = u). We prove that χf
α ∧ χu

β → χu

α∨β is a tautology. From ¬K¬β and distributivity of K over ∧899

we can derive χf
α ∧ χu

β → ¬K(¬α ∧ ¬β) ↔ ¬K¬(α ∨ β). From ¬Kα ∧ ¬Pβ and (WD2) we can derive900

χf
α∧χ

u

β → ¬K(α∨β). From ¬Pα∧¬Pβ and distributivity of P over ∨ we can derive χf
α∧χ

u

β → ¬P(α∨β).901

Finally from ¬P¬β and completeness of P we can derive χf
α ∧ χu

β → ¬P(¬α ∧ ¬β) ↔ ¬P¬(α ∨ β).902

(s ∨ u = st). We prove that χs
α ∧ χu

β → χst

α∨β is a tautology. From Pα and (P1) we can derive (a) :903

χs
α ∧ χu

β → P(α ∨ β). From (a) and (WD3) we can derive χs
α ∧ χu

β → ¬K¬(α ∨ β). From ¬P¬β and904

completeness of P we can derive χs
α ∧ χu

β → ¬P(¬α ∧ ¬β) ↔ ¬P¬(α ∨ β). Finally, from ¬Kα ∧ ¬Pβ and905

(WD2) we can derive χs
α ∧ χu

β → ¬K(α ∨ β).906

(u ∨ u = u). We prove that χu
α ∧ χu

β → χu

α∨β is a tautology. From ¬Pα ∧ ¬Pβ and completeness of P we907

can derive χu
α ∧ χu

β → ¬P(¬α ∧ ¬β) ↔ ¬P¬(α ∨ β). From ¬K¬α and distributivity of K over ∧ we can908

derive χu
α ∧ χu

β → ¬K(¬α ∧ ¬β) ↔ ¬K¬(α ∨ β). From ¬Pα ∧ ¬Pβ and distributivity of P over ∨ we can909

derive χu
α ∧ χu

β → ¬P(α ∨ β). Finally, from ¬Kα ∧ ¬Pβ and (WD2) we can derive χu
α ∧ χu

β → ¬K(α ∨ β).910

(st ∨ sf = st). We prove that χst
α ∧ χsf

β → χst

α∨β is a tautology. From Pα and (P1) we can derive (a) :911

χst
α ∧ χsf

β → P(α ∨ β). From (a) and (WD3) we can derive χst
α ∧ χsf

β → ¬K¬(α ∨ β). From ¬P¬α and912

completeness of P we can derive χst
α ∧ χsf

β → ¬P(¬α ∧ ¬β) ↔ ¬P¬(α ∨ β). Finally from ¬Kα ∧ ¬Pβ and913

(WD2) we can derive χst
α ∧ χsf

β → ¬K(α ∨ β).914

(st ∨ u = st). We prove that χst
α ∧ χu

β → χst

α∨β is a tautology. From Pα and (P1) we can derive (a) :915

χst
α ∧ χu

β → P(α ∨ β). From (a) and (WD3) we can derive ¬K¬(α ∨ β). From ¬P¬α and completeness of916

P we can derive χst
α ∧ χu

β → ¬P(¬α ∧ ¬β) ↔ ¬P¬(α ∨ β). Finally from ¬Kα ∧ ¬Pβ and (WD2) we can917

derive χst
α ∧ χu

β → ¬K(α ∨ β).918

(sf∨u = u). We prove that χsf
α ∧χu

β → χu

α∨β is a tautology. From ¬Pα∧¬Pβ and distributivity of P over919

∨ we can derive χsf
α ∧χu

β → ¬P(α∨β). From ¬Kα∧¬Pβ and (WD2) we can derive χsf
α ∧χu

β → ¬K(α∨β).920

From ¬P¬β and completeness of P we can derive χsf
α ∧ χu

β → ¬P(¬α ∧ ¬β) ↔ ¬P¬(α ∨ β). Finally, from921

¬K¬α ∧ ¬K¬α and distributivity of K over ∧ we can derive χsf
α ∧ χu

β → ¬K¬(α ∨ β).922
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For the remaining combinations of truth values, we have more than one possible compatible choice. In923

the following set of lemmas, we show that only one of these choices is the most preferable.924

Lemma 8 (s∨ s = st). The truth value st is consistent with ∨ on s and s. Moreover, st is preferable to τ ,925

for every truth value τ consistent with ∨ on s and s.926

Proof. We prove the claim in two steps. First, we prove that the truth values consistent with ∨ on s and s927

are three: st, s, and t. Second, we prove that st is preferable to both s and t w.r.t. s ∨ s.928

We start by proving that the following formula is a tautology: χs
α ∧ χs

β → P(α ∨ β) ∧ ¬K¬(α ∨ β) is929

a tautology. From Pα and (P1) we can derive (a) : χs
α ∧ χs

β → P(α ∨ β). From (a) and (WD3) we can930

derive χs
α ∧χs

β → ¬K¬(α∨β). From the above result, we can conclude that, if χs
α ∧χs

β ∧χ
τ
α∨β is satisfiable,931

then τ ∈ {st, s, t}. We proceed to show that, for each such τ , there exist propositional formulae α and β932

such that χs
α ∧ χs

β ∧ χτ
α∨β is satisfiable. In what follows, we assume propositional formulae α, and β, and a933

propositional interpretation I = (t, f,W ).934

(Case of truth value st). Assume thatW can be partitioned into three non-empty subsets, namelyW ′, W ′′,935

and W ′′′, having the following properties.936

• W ′ ⊆ t(α), and W ′ ⊆ f(β);937

• W ′′ ⊆ f(α), and W ′′ ⊆ t(β);938

• W ′′′ ⊆ uI(α), and W
′′′ ⊆ uI(β);939

Clearly, I |= χs
α∧χ

s

β . Moreover, the formula uI(α∨β) 6= ∅ due to W ′′′. Moreover, due to the definition940

of propositional interpretations, f(α ∨ β) = ∅. We can conclude that I satisfies both ¬P¬(α ∨ β) and941

¬K(α ∨ β) .942

(Case of truth value s). Assume that W can be partitioned into two non-empty subsets, namely W ′ and943

W ′′, having the following properties.944

• W ′ ⊆ t(α), and W ′ ⊆ t(β);945

• W ′′ ⊆ f(α), and W ′′ ⊆ f(β);946

Clearly, I |= χs
α ∧ χs

β . Moreover, t(α ∨ β) 6= ∅ due to W ′, and f(α ∨ β) 6= ∅ and true in W ′′. We can947

conclude that I satisfies both P(α ∨ β) and ¬K(α ∨ β).948

(Case of truth value t). Assume that W can be partitioned into two non-empty subsets, namely W ′ and949

W ′′, having the following properties.950

• W ′ ⊆ t(α), and W ′ ⊆ f(β);951
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• W ′′ ⊆ f(α), and W ′′ ⊆ t(β);952

Clearly, I |= χs
α∧χ

s

β . Moreover, due to the definition of propositional formulae,the formula t(α∨β) =W .953

We can conclude that I satisfies both ¬P¬(α ∨ β) and K(α ∨ β).954

(The Most Preferable Truth Value Is st). We now prove that st is preferable to both s and t w.r.t. s ∨ s.955

Given propositional formulae α and β, we use X t, X s, and X st, to denote, respectively, the formulae956

χs
α ∧ χs

β ∧ χt

α∨β , χ
s
α ∧ χs

β ∧ χs

α∨β and χs
α ∧ χs

β ∧ χst

α∨β . Assume propositional formulae α and β such that957

X s and X st are satisfiable. Let I = (t, f,W ) be a propositional interpretation that satisfies X s, we define958

I ′ = (t′, f ′,W ′) as follows.959

• I ′ |= X st; and960

• for each w ∈W , w ∈W ′ and w ∈ uI′(γ), for each γ ∈ L.961

Such I ′ exists, being X st satisfiable. Let g : W ′ → W be a mapping such that g is the identity over W ,962

and g(w′) ∈ t(α ∨ β), for each w′ ∈ t(α ∨ β). The mapping g proves I �α∨β I ′. We can conclude that st is963

preferable to s w.r.t. s ∧ s.964

Similarly, assume propositional formulae α and β such that X t and X st are satisfiable. Let I = (t, f,W )965

be a propositional interpretation that satisfies X t, we define I ′ = (t′, f ′,W ′) as follows.966

• I ′ |= X st; and967

• For each w ∈W , w ∈968

W ′ and w ∈ uI′(γ), for each γ ∈ L.969

Such I ′ exists being X st satisfiable. Moreover, the function g :970

W ′ →W defined above proves that I ′ �α∨β I. We can conclude that st is preferable to t w.r.t. s ∨ s.971

Lemma 9 (s ∨ st = st). The truth value st is consistent with ∨ on s and st. Moreover, st is preferable to972

τ , for every truth value τ consistent with ∨ on s and s.973

Proof. We prove the claim in two steps. First, we prove that the truth values consistent with ∨ on s and st974

are two: st and t. Second, we prove that st is preferable to t w.r.t. s ∨ st.975

We start by proving that the following formula is a tautology: χs
α ∧ χst

β → P(α ∨ β) ∧ ¬K¬(α ∨ β) ∧976

¬P¬(α ∨ β). From Pα and (P1) we can derive (a) : χs
α ∧ χst

β → P(α ∨ β). From (a) and (WD3) we can977

derive χs
α ∧ χst

β → ¬K¬(α ∨ β). Finally, from ¬P¬α and completeness of P we can derive χs
α ∧ χst

β →978

¬P(¬α∧¬β) ↔ ¬P¬(α∨ β). From the above result, we can conclude that, if χs
α ∧χst

β ∧χτ
α∨β is satisfiable,979

then τ ∈ {st, t}. We proceed to show that, for each such τ , there exist propositional formulae α and β980

such that χs
α ∧ χs

β ∧ χτ
α∨β is satisfiable. In what follows, we assume propositional formulae α, and β, and a981

propositional interpretation I = (t, f,W ).982
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(Case of truth value st). Assume that W can be partitioned into two non-empty subsets, namely W ′ and983

W ′′, having the following properties.984

• W ′ ⊆ t(α), W ′ ⊆ t(β);985

• W ′′ ⊆ f(α), W ′′ ⊆ uI(β).986

Clearly, I |= χs
α ∧ χst

β . Moreover, the formula uI(α ∨ β) 6= ∅ due to W ′′. We can conclude that I satisfies987

¬K(α ∨ β).988

(Case of truth value t). Assume that W can be partitioned into two non-empty subsets, namely W ′ and989

W ′′, having the following properties.990

• W ′ ⊆ f(α), W ′ ⊆ t(β);991

• W ′′ ⊆ t(α), W ′′ ⊆ uI(β).992

Clearly, I |= χs
α ∧ χst

β . Moreover, due to the definition of propositional interpretations, t(α ∨ β) = W . We993

can conclude that I satisfies K(α ∨ β).994

(The Most Preferable Truth Value Is st). To prove that st is the most preferable truth value in this case,995

we can use a construction similar to the one used in the proof of Lemma 8.996

Lemma 10 (s∨ sf = st). The truth value st is consistent with ∨ on s and sf. Moreover, st is preferable to997

τ , for every truth value τ consistent with ∨ on s and sf.998

Proof. We prove the claim in two steps. First, we prove that the truth values consistent with ∨ on s and sf999

are two: st and s. Second, we prove that st is preferable to s w.r.t. s ∨ st.1000

We start by proving that the following formula is a tautology: χs
α ∧ χsf

β → ¬K(α ∨ β) ∧ P(α ∨ β) ∧1001

¬K¬(α ∨ β). From Pα and (P1) we can derive (a) : χs
α ∧ χsf

β → P(α ∨ β). From (a) and (WD3) we can1002

derive χs
α ∧χsf

β → ¬K¬(α∨β). Finally, from ¬Kα∧¬Pβ and (WD2) we can derive χs
α ∧χsf

β → ¬K(α∨β).1003

From the above result, we can conclude that, if χs
α ∧ χsf

β ∧ χτ
α∨β is satisfiable, then τ ∈ {st, s}. We proceed1004

to show that, for each such τ , there exist propositional formulae α and β such that χs
α ∧ χsf

β ∧ χτ
α∨β is1005

satisfiable. In what follows, we assume propositional formulae α, and β, and a propositional interpretation1006

I = (t, f,W ).1007

(Case of truth value s). Assume that W can be partitioned into two non-empty subsets, namely W ′ and1008

W ′′, having the following properties.1009

• W ′ ⊆ f(α), and W ′ ⊆ f(β);1010

• W ′′ ⊆ t(α), and W ′′ ⊆ uI(β);1011
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Clearly, I |= χs
α ∧ χsf

β . Moreover, the formula f(α ∨ β) 6= ∅ due to W ′′. We can conclude that I satisfies1012

P¬(α ∨ β).1013

(Case of truth value st). Assume that W can be partitioned into two non-empty subsets, namely W ′ and1014

W ′′, having the following properties.1015

• W ′ ⊆ t(α), and W ′ ⊆ f(β);1016

• W ′ ⊆ f(α), and W ′ ⊆ uI(β).1017

Clearly, I |= χs
α ∧ χsf

β . Moreover, t(α∨ β) 6= ∅ due to W ′, and uI(α ∨ β) 6= ∅ due to W ′′. We can conclude1018

that I satisfies ¬P¬(α ∨ β).1019

(The Most Preferable Truth Value Is st). To prove that st is the most preferable truth value in this case,1020

we can use a construction similar to the one used in the proof of1021

Lemma 11 (st∨ st = st). The truth value st is consistent with ∨ on st and st. Moreover, st is preferable1022

to τ , for every truth value τ consistent with ∨ on st and st.1023

Proof. We prove the claim in two steps. First, we prove that the truth values consistent with ∨ on st and1024

st are two: st and t. Second, we prove that st is preferable to t w.r.t. st ∨ st.1025

We start by proving that the following formula is a tautology: χst
α ∧ χst

β → P(α ∨ β) ∧ ¬P¬(α ∨ β) ∧1026

¬K¬(α ∨ β) is a tautology. From Pα and (P1) we can derive (a) : χst
α ∧ χst

β → P(α ∨ β). From (a) and1027

(WD3) we can derive χst
α ∧ χst

β → ¬K¬(α ∨ β). Finally, from ¬P¬α and completeness of P we can derive1028

χst
α ∧ χst

β → ¬P(¬α ∧ ¬β) ↔ ¬P¬(α ∨ β). From the above result, we can conclude that, if χst
α ∧ χst

β ∧ χτ
α∨β1029

is satisfiable, then τ ∈ {st, t}. We proceed to show that, for each such τ , there exist propositional formulae1030

α and β such that χst
α ∧ χst

β ∧ χτ
α∨β is satisfiable. In what follows, we assume propositional formulae α, and1031

β, and a propositional interpretation I = (t, f,W ).1032

(Case of truth value t). Assume that W can be partitioned into two non-empty subsets, namely W ′ and1033

W ′′, having the following properties.1034

• W ′ ⊆ t(α), and W ′ ⊆ uI(β);1035

• W ′′ ⊆ uI(α), and W
′′ ⊆ t(β);1036

Clearly, I |= χst
α ∧ χst

β . Moreover, due to the definition of propositional interpretations, t(α ∨ β) = W .1037

We can conclude that I satisfies K(α ∨ β).1038
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(Case of truth value st). Assume that W can be partitioned into two non-empty subsets, namely W ′ and1039

W ′′, having the following properties.1040

• W ′ ⊆ t(α), and W ′ ⊆ t(β);1041

• W ′′ ⊆ uI(α), and W
′′ ⊆ uI(β);1042

Clearly, I |= χst
α ∧ χst

β . Moreover, uI(α ∨ β) 6= ∅ due to W ′′. We can conclude that I satisfies1043

|= ¬K(α ∨ β).1044

(The Most Preferable Truth Value Is st). To prove that st is the most preferable truth value in this case,1045

we can use a construction similar to the one used in the proof of Lemma 8.1046

Lemma 12 (sf∨ sf = u). The truth value u is consistent with ∨ on sf and sf. Moreover, u is preferable to1047

τ , for every truth value τ consistent with ∨ on sf and sf.1048

Proof. We prove the claim in two steps. First, we prove that the truth values consistent with ∨ on sf and1049

sf are two: sf and u. Second, we prove that u is preferable to sf w.r.t. sf ∨ sf.1050

We start by proving that the following formula is a tautology: χsf
α ∧ χsf

β → ¬K(α ∨ β) ∧ ¬P(α ∨ β) ∧1051

¬K¬(α ∨ β). From ¬Kα ∧ ¬Pβ and (WD2) we can derive χsf
α ∧ χsf

β → ¬K(α ∨ β). From ¬Pα ∧ ¬Pβ and1052

distributivity of P over ∧ we can derive χsf
α ∧ χsf

β → ¬P(α ∨ β). From ¬K¬α ∧ ¬K¬β and distributivity of1053

K over ∧ we can derive χsf
α ∧ χsf

β → ¬K(¬α ∧ ¬β) ↔ ¬K¬(α ∨ β).1054

From the above result, we can conclude that, if χsf
α ∧ χsf

β ∧ χτ
α∨β is satisfiable, then τ ∈ {sf,u}. We1055

proceed to show that, for each such τ , there exist propositional formulae α and β such that χsf
α ∧χsf

β ∧χτ
α∨β1056

is satisfiable. In what follows, we assume propositional formulae α, and β, and a propositional interpretation1057

I = (t, f,W ).1058

(Case of truth value u). Assume that W can be partitioned into two non-empty subsets, namely W ′ and1059

W ′′, having the following properties.1060

• W ′ ⊆ f(α), and W ′ ⊆ f(β);1061

• W ′′ ⊆ uI(α), and W
′′ ⊆ uI(β);1062

Clearly, I |= χsf
α ∧ χsf

β . Moreover, the formula f(α ∨ β) 6= ∅ due to W ′. We can conclude that I satisfies1063

P¬(α ∨ β).1064

(Case of truth value sf). Assume that W can be partitioned into two non-empty subsets, namely W ′ and1065

W ′′, having the following properties.1066

• W ′ ⊆ f(α), and W ′ ⊆ uI(β);1067
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• W ′′ ⊆ uI(α), and W
′′ ⊆ f(β);1068

Clearly, I |= χsf
α ∧ χsf

β . Moreover, uI(α ∨ β) = W due to the definition of propositional interpretations.1069

We can conclude that I satisfies ¬P¬(α ∨ β).1070

(The Most Preferable Truth Value Is u). We now show that u is preferable to sf w.r.t. sf ∨ sf.1071

Given propositional formulae α and β, we use X sf and Xu, to denote, respectively, the formulae χsf
α ∧1072

χsf

β ∧χsf

α∨β and χsf
α ∧χsf

β ∧χu

α∨β . Assume propositional formulae α and β such that X sf and Xu are satisfiable.1073

Let I = (t, f,W ) be a propositional interpretation that satisfies X sf, we define I ′ = (t′, f ′,W ′) as follows.1074

• I ′ |= Xu; and1075

• for each w ∈W , w ∈W ′ and w ∈ uI′(γ), for each γ ∈ L.1076

Such I ′ exists, being Xu satisfiable. Let g : W ′ → W be the identity over W . The mapping g proves1077

I �α∨β I ′. We can conclude that u is preferable to sf w.r.t. s ∧ s.1078

1079

Truth Table of Negation1080

We finally analyze the truth table of negation (Figure 3c). As stated in Proposition 1, we only have one1081

compatible truth value in each case.1082

Lemma 13. The following claims hold.1083

• (¬t = f) The only truth value that is consistent with ¬ on t is f.1084

• (¬f = t) The only truth value that is consistent with ¬ on f is t.1085

• (¬s = s) The only truth value that is consistent with ¬ on s is s.1086

• (¬st = sf) The only truth value that is consistent with ¬ on st is sf.1087

• (¬sf = st) The only truth value that is consistent with ¬ on sf is st.1088

• (¬u = u) The only truth value that is consistent with ¬ on u is u.1089

Proof. To prove the claims, we observe the following. Assume a propositional formula α. The formula χτ
¬α1090

is equivalent to
∧

ϕ∈M(α) ¬ϕ. The claim follows straightforwardly.1091

Proof of Theorem 31092

The proof is by inspection of all sublogics of L6v. To this end, we devised a Python script that automat-1093

ically enumerates these logics and checks whether they satisfy the desired properties.1094
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Appendix B. Proofs of Results on Predicate Logic1095

Proof of Theorem 41096

We prove that for every formula ϕ of FO(L) and every τ ∈ T, there exists a formula tr(ϕ, τ) such that1097

for every structure A, and assignment ν of free variables of ϕ we have JϕKA,ν = τ ⇔ A, ν |= tr(ϕ, τ) . This1098

formula tr(ϕ, τ) is what we call earlier ϕτ ; the new notation is used in the proof for readability, to ensure1099

that multiple indexes do not clash.1100

The claim is proved by induction on the structure of formulae of ϕ ∈ FO(L).1101

Atomic formulae. By the assumption of the theorem, if ϕ is an atomic formula then it is captured by BFO.1102

Logical connectives. Assume ϕ = ω(ϕ1, . . . , ϕn), where ω ∈ Ω is an n-ary connective.1103

Let Tτ,ω denote the set of all the n-tuples τ̄ of truth values such that ωL(τ̄ ) = τ . More formally,1104

Tτ,ω = {(τ1, . . . , τn) ∈ Tn | ωL(τ1, . . . , τn) = τ}.1105

By the induction hypothesis, for i = 1 . . . n there exist formulae tr(ϕi, τi) ∈ BFO such that JϕiKA,ν = τi1106

iff A, ν |= tr(ϕi, τi) . From these formulae, we can define tr(ϕ, τ) ∈ BFO as follows:1107

tr(ϕ, τ) =
∨

(τ1,...,τn)∈Tτ,ω

(tr(ϕ1, τ1) ∧ · · · ∧ tr(ϕn, τn)) (B.1)

Suppose A, ν |= tr(ϕ, τ). If this is the case, at least one of the disjuncts of tr(ϕ, τ) is satisfied by A, ν,1108

which in turn proves (due to the inductive hypothesis) that for some (τ1, . . . , τn) ∈ Tτ,ω we have JϕiKA,ν = τi1109

for every i = 1 . . . n. Then, from the definition of Tτ,ω it follows that JϕKA,ν = τ .1110

Suppose now that JϕKA,ν = τ . Then for some (τ1, . . . , τn) ∈ Tτ,ω we have that JϕiKA,ν = τi for every1111

i = 1 . . . n. By the inductive hypothesis then, one of the disjuncts of tr(ϕ, τ) is satisfied by A, ν, proving1112

A, ν |= tr(ϕ, τ).1113

Existential quantification. Assume that ϕ(x̄) = ∃y.ψ(x̄, y). The semantics of existential quantifiers says1114

that for every structure A = 〈A,RA
1 , . . . , R

A
n , Eq

A〉 and assignment ν for x̄ the following equality holds:1115

J∃y.ψ(x̄, y)KA,ν = J
∨

a∈A ψ(x̄, a)KA,ν[a/y].1116

To define tr(ϕ, τ) ∈ BFO that captures ∃y.ψ(x̄, y), we will make use of this equality. First, notice that1117

the number of disjuncts in
∨

a∈A ψ(x̄, a) depends on the size of the domain of A. For this reason, we cannot1118

straightforwardly apply the argument used to prove the case of general connectives. However, due to the1119

assumptions of commutativity, associativity, and weak idempotence of the disjunction operation, in defining1120

tr(ϕ, τ) we need to take into account only a limited number of combinations of truth values.1121

To define these combinations, we start by observing the following. Let t̄ be a tuple of truth values such

that
∨

L
t̄ = τ , and let |t̄|t denote the number of occurrences of truth value t in t̄. Due to the assumptions

on ∨ in L, in order to determine the truth value of
∨

L
t̄, we only need to know if τ occurs once, twice, or

none at all in t̄, for each truth value τ ∈ T. Indeed, ∨ is commutative and associtive in L, and from weak
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idempotency it follows that t ∨ t ∨ t ∨ . . . ∨ t = t ∨ t whenever the size of the disjunction is at least two. In

other words, the truth value of
∨

L t̄ is fully determined by the function function f : T → {0, 1, 2} where

f(t) = 0 or f(t) = 1 indicate that t occurs zero or once in t̄, respectively, and f(t) = 2 indicates that t

occurs at least twice. If the following condition holds, the function f witnesses
∨

L
t̄ = τ

( L∨

τ ′∈f−1(1)

τ ′
)

∨L

( L∨

τ ′′∈f−1(2)

(τ ′′ ∨ τ ′′)
)

= τ (B.2)

Intuitively, the functions defined above represent multisets of truth values whose disjunction yields τ .1122

Moreover, every tuple of truth values whose disjunction yields τ can be represented by one of these multisets.1123

We now discuss how we can encode these multisets into BFO formulae.1124

Let F t
∨ be the set of functions f : T → {0, 1, 2} having the property (B.2) for truth value τ . We define1125

tr(∃y.ψ(x̄, y), τ) as1126

tr(∃y.ψ(x̄, y), τ) =
∨

f∈F τ

∨

( ∧

t0∈f−1(0)

Zero(ψ, t0) ∧
∧

t1∈f−1(1)

One(ψ, t1) ∧
∧

t2∈f−1(2)

T wo(ψ, t2)
)

(B.3)

Where Zero, One, and T wo are formulae defined as follows:1127

Zero(ϕ, t) = ∀y¬tr(ϕ(x̄, y), t) (B.4)

One(ϕ, t) = ∃y.tr(ϕ(x̄, y), t) ∧ ∀z.(y 6= z) → ¬tr(ϕ(x̄, z), t) (B.5)

T wo = ∃y.∃z.(y 6= z) ∧ tr(ϕ(x̄, y), t) ∧ tr(ϕ(x̄, z), t) (B.6)

We proceed to prove that A, ν |= tr(ϕ, τ) if and only if JϕKA,ν = τ . Suppose A, ν |= tr(ϕ, τ), then at1128

least one of its disjuncts is satisfied by A, ν. Let f ∈ F τ
∨ be the function defining this disjunct. Applying1129

the inductive hypothesis to tr(ψ, t), we can see that1130

• There is no element a ∈ A such that Jψ(x̄, a)KA,ν = t0, for every t0 ∈ f−1(0);1131

• There is exactly one element a ∈ A such that Jψ(x̄, a)KA,ν = t1, for every t1 ∈ f−1(1);1132

• There are at least two elements a, a′ ∈ A such that Jψ(x̄, a) ∨ ψ(x̄, a′)KA,ν = t2, for every t2 ∈ f−1(2).1133

Then from (B.2) it follows that JϕKA,ν = τ .1134

Suppose now that JϕKA,ν = τ . For every a ∈ A, let ta denote the truth value such that Jψ(x̄, y)KA,ν[a/y] =1135

ta. By the definition of existential quantification, we know that
∨

L

a∈A ta = τ . As defined above, there exists1136

a function f ∈ F τ
∨ such that all of the following hold:1137

• f satisfies condition (B.2);1138
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• f(ta) = 0 if there exists no b ∈ A such that Jψ(x̄, y)KA,ν[b/y] = ta;1139

• f(ta) = 1 if there exists exactly one b ∈ A such that Jψ(x̄, y)KA,ν[b/y] = ta;1140

• f(ta) = 2 if there exist two distinct b, c ∈ A such that Jψ(x̄, y)KA,ν[b/y] = ta and Jψ(x̄, y)KA,ν[c/y] = ta.1141

The above together with the inductive hypothesis prove that one of the disjuncts of tr(ϕ, τ) is satisfied1142

by A, ν, and hence the claim follows.1143

Universal quantification. For universal quantification, we can use an argument similar to the one used to1144

prove the case of existential quantification. As stated before in the paper, for every ϕ = ∀y.ψ(x̄, y), structure1145

A, and assignment ν for x̄ the following equality holds: J∀y.ψ(x̄, y)KA,ν = J
∧

a∈A ψ(x̄, y)KA,ν[a/y].1146

Using weak idempotency of ∧ in L, we can define tr(∀y.ψ(x̄, y) in the same way as we did for existential1147

quantification, using a set F τ
∧ of functions f : T → {0, 1, 2} having the following property:1148

( L∧

τ ′∈f−1(1)

τ ′
)

∧L

( L∧

τ ′′∈f−1(2)

(τ ′′ ∧ τ ′′)
)

= τ . (B.7)

Now using (B.7) in place of (B.2), we conclude the proof in exact same way as for existential quantification.1149

Proof of Proposition 21150

We discuss each of the three cases separately. In what follows, we will say that a formula ϕ captures the1151

truth value τ of a formula ψ under semantics s if for every structure A and assignment ν for the free variables1152

of ψ we have that A, ν |= ϕ if and only if JψKs
A,ν = τ . By Theorem 4, BFO captures atomic formulae under1153

semantics s if and only if for every atomic formula α and truth value τ there exists a formula trs(α, τ) that1154

captures the truth value τ of α. We will use this observation to prove the claim of Proposition 2.1155

Boolean semantics. Trivially, for every atomic formula R(x̄), formula R(x̄) captures truth value t of R(x̄)1156

under boolean semantics, and ¬R(x̄) captures truth value f of R(x̄) under boolean semantics.1157

Null-free semantics. For a given tuple of variables x1, . . . , xn, we define the formula N (x̄) as follows:1158

N (x̄) = const(x1) ∧ · · · ∧ const(xn).1159

Case JR(x̄)Knf
A,ν = t. Define trnf(R(x̄), t) = R(x̄) ∧ N (x̄). For every structure A and assignment ν for1160

x̄, A, ν |= trnf(R(x̄), t) if and only if ν(x̄) contains no nulls and R(ν(x̄)) ∈ RA. In turn, this proves that1161

trnf(R(x̄), t) captures truth value t of R(x̄) under null-free semantics, for every atomic formula R(x̄).1162

Case JR(x̄)Knf
A,ν = f. Define trnf(R(x̄), f) = ¬R(x̄) ∧ N (x̄). For every structure A and assignment ν for1163

x̄, A, ν |= trnf(R(x̄), t) if and only if ν(x̄) contains no nulls and R(ν(x̄)) 6∈ RA. This in turn proves that1164

trnf(R(x̄), f) captures truth value f of R(x̄) under null-free semantics, for every atomic formula R(x̄).1165

Case JR(x̄)Knf
A,ν = u. Define trnf(R(x̄),u) = ¬N (x̄). For every structure A and assignment ν for x̄,1166

A, ν |= trnf(R(x̄), t) if and only if ν(x̄) contains at least one null. This in turn proves that trnf(R(x̄),u)1167

captures truth value u of R(x̄) under null-free semantics, for every atomic formula R(x̄).1168
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Unification semantics. To show that BFO captures an atomic formula R(x1, . . . , xn) under unification1169

semantics we will make use of a formula that encodes the notion of unification. The intuition behind this1170

formula is the following.1171

Let x̄ and ȳ be two n-tuples of variables, not necessarily distinct. By xi and yi, we will denote the1172

variable in position i of x̄ and ȳ respectively, and by X we will denote the set of variables in x̄ and ȳ (i.e.,1173

X = {x1, . . . , xn, y1, . . . , yn}). Assume now a structure A = 〈A,RA
1 , . . . , R

A
n , Eq

A〉, and suppose that for1174

some substitution ν : X → A we have that ν(x̄) unifies with ν(ȳ).1175

Let h denote a mapping from the elements of ν(x̄) and ν(ȳ) to the set A, assume that the image of h is1176

the set Im(h) = {a1, . . . , am}, and let Bj denote the set of all those elements of A that are mapped into aj1177

by h, i.e., Bj = h−1(aj). In order to be a unifier for ν(x̄) and ν(ȳ), h needs to enjoy the following properties:1178

h is the identity on the constants of ν(x̄) and ν(ȳ), and h(ν(x̄) = h(ν(ȳ)). In other words, for j = 1, . . . ,m1179

each set Bj must contain at most one constant, and for each i = 1, . . . , n variables xi and yi must belong to1180

the same set B. We now show how the existence of such mapping can be tested by a BFO formula.1181

Let Π denote the set of all the partitions of X = {x1, . . . , xn, y1, . . . , yn}. In light of what we said above,1182

a unifier for ν(x̄) and ν(ȳ) exists if and only if there exists a partition π ∈ Π with the following properties.1183

1) For each B ∈ π, and each u, v ∈ B, ν(u) = ν(v),1184

2) for each B,B′ ∈ π with B 6= B′, and each u ∈ B and v ∈ B′, ν(u) 6= ν(v),1185

3) there exists a set B ∈ π such that xi, yi ∈ B for each i = 1, . . . , n,1186

4) for each B ∈ π, and u, v ∈ B, if ν(u) and ν(v) are constant then they are the same.1187

From these considerations, a formula U(x̄, ȳ) such that A, ν |= U(x̄, ȳ) if and only if ν(x̄) unifies with

ν(ȳ) can be defined as follows. First, for π ∈ Π define απ(x̄, ȳ) as follows.

απ(x̄, ȳ) =
∧

B∈π

( ∧

u,v∈B

(

u = v
))

∧

∧

B,B′∈π, B 6=B′

( ∧

u∈B,v∈B′

(

u 6= v
))

∧

∧

B∈π

(

¬
∨

u,v∈B

(

const(u) ∧ const(v) ∧ u 6= v
))

(B.8)

We are now ready to define U(x̄, ȳ). Let P be the subset of Π such that for each p ∈ P there exists B ∈ p1188

such that xi, yi ∈ B for each i = 1, . . . , n. The formula U(x̄, ȳ) is defined as follows.1189

U(x̄, ȳ) =
∨

p∈P

αp(x̄, ȳ) (B.9)

For what stated above, for every structure A and assignment ν for x̄ and ȳ we have that A, ν |= U(x̄, ȳ)1190

if and only if ν(x̄) unifies with ν(ȳ).1191
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With formula U(x̄, ȳ) in place, we are now ready to show that BFO captures atomic formulae under1192

unification semantics.1193

Case JR(x̄)K⇑
A,ν = t. Define tr⇑(R(x̄), t) = R(x̄). For every structure A and assignment ν for x̄,1194

A, ν |= tr⇑(R(x̄), t) if and only if R(ν(x̄)) ∈ RA. This in turn proves that tr⇑(R(x̄), t) captures truth value1195

t of R(x̄) under unification semantics, for every atomic formula R(x̄).1196

Case JR(x̄)K⇑
A,ν = f. Define tr⇑(R(x̄), t) = ∀ȳR(ȳ) → ¬U(x̄, ȳ), where ȳ is an n-tuple of different1197

variables, not appearing in x̄. For every structure A and assignment ν for x̄, A, ν |= tr⇑(R(x̄), t) if and only1198

if ν(x̄) does not unify with any t̄ ∈ RA. This in turn proves that tr⇑(R(x̄), f) captures truth value f of R(x̄)1199

under unification semantics, for every atomic formula R(x̄).1200

Case JR(x̄)K⇑
A,ν = u. Define tr⇑(R(x̄),u) = ∃ȳ.R(ȳ) ∧ U(x̄, ȳ) ∧ ¬(x̄ = ȳ), where ȳ is an n-tuple of1201

different variables, not appearing in x̄. For every structure A and assignment ν for x̄, A, ν |= tr⇑(R(x̄), t) if1202

and only if ν(x̄) unifies with at least one t̄ ∈ RA. This in turn proves that tr⇑(R(x̄),u) captures truth value1203

u of R(x̄) under unification semantics, for every atomic formula R(x̄).1204

Proof of Theorem 5 and Theorem 61205

To ease the presentation, we assume that L↑
3v contains also the unary operator ↓, as a shorthand for ¬ ↑.1206

With ↓ in the language, we can assume that formulae in L↑
3v are given in negation normal form, i.e., with1207

negation appearing only in front of the atoms. It is easy to see that, if ϕ ∈ L↑
3v is not in negation normal1208

form, there exists a formula ψ ∈ L↑
3v, equivalent to ϕ and in negation normal form, such that |ψ| is bounded1209

by a linear in the size of ϕ.1210

Given ϕ ∈ L↑
3v in negation normal form, we define ϕt inductively as follows.1211

• (R(x̄))t = R(x̄);1212

• (¬R(x̄))t = ¬R(x̄);1213

• (x1 = x2)
t = (x1 = x2) ∧ const(x1) ∧ const(x2);1214

• (¬(x1 = x2))
t = ¬(x1 = x2) ∧ const(x1) ∧ const(x2);1215

• (ϕ ∧ ψ)t = ϕt ∧ ψt;1216

• (ϕ ∨ ψ)t = ϕt ∨ ψt;1217

• (↑ ϕ)t = (ϕ)t;1218

• (↓ ϕ)t = ¬(ϕ)t;1219

• (∃x.ϕ(x))t = ∃x.(ϕ(x))t;1220

• (∀x.ϕ(x))t = ∀x.(ϕ(x))t.1221
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Clearly, the size of ϕt grows linearly with respect to the size of ϕ. More precisely, there exists a constant1222

c ∈ N such that |ϕ| = c · |ϕt|. We can prove this by induction on ϕ. For ϕ = (x1 = x2) and ϕ = ¬(x1 = x2),1223

|ϕt| ≤ 4|ϕ|, otherwise |ϕt| = |ϕ|. It follows that |ϕt| ≤ 4 · |ϕ|.1224

To conclude, we prove by induction that ϕt captures the truth value t of ϕ, that is, for every ϕ ∈ FO(L↑
3v),1225

JϕKsql
A,ν = t if and only if A, ν |= ϕt.1226

Base case. For R(x̄) and ¬R(x̄), the claim follows straightforwardly from the definition of JKsql. For1227

(x1 = x2), observe that J(x1 = x2)K
sql = t if and only if x1 is equal to x2 and they are both constants.1228

Similarly, observe that J¬(x1 = x2)K
sql = t if and only if J(x1 = x2)K

sql = f. In turn, this is the case if and1229

only if x1 is not equal to x2 and they are both constants.1230

Case ϕ = (ψ1 ∧ψ2). Assume Jψ1 ∧ψ2K
sql
A,ν = t. By definition, Jψ1K

sql
A,ν = t and Jψ2K

sql
A,ν = t. By inductive1231

hypothesis then, A, ν |= ψt
1 and A, ν |= ψt

2, proving A, ν |= ψt
1 ∧ ψt

2. Assume now A, ν |= ψt
1 ∧ ψt

2, then,1232

by definition, A, ν |= ψt
1 and A, ν |= ψt

2. Applying the inductive hypothesis, we obtain Jψ1K
sql
A,ν = t and1233

Jψ2K
sql
A,ν = t. In turn, this implies Jψ1 ∧ ψ2K

sql
A,ν = t.1234

ϕ = (ψ1 ∨ ψ2). Assume Jψ1 ∨ ψ2K
sql
A,ν = t. By definition, either Jψ1K

sql
A,ν = t or Jψ2K

sql
A,ν = t. Suppose,1235

w.l.o.g., that Jψ1K
sql
A,ν = t, then, by inductive hypothesis, A, ν |= ψt

1. In turn, this proves A, ν |= ψt
1 ∨ ψ

t
2.1236

Assume now A, ν |= ψt
1 ∨ ψt

2, then, by definition, either A, ν |= ψt
1 or A, ν |= ψt

2. Suppose, w.l.o.g., that1237

A, ν |= ψt
1. Then, by inductive hypothesis, Jψ1K

sql
A,ν = t. In turn, this implies Jψ1 ∨ ψ2K

sql
A,ν = t.1238

ϕ = (↑ ψ)t. Assume J↑ ψKsql
A,ν = t, then, by definition, JψKsql

A,ν = t. Applying the inductive hypothesis,1239

we obtain A, ν |= ψt and the claim follows. Assume now A, ν |= ψt. By inductive hypothesis, JψKsql
A,ν = t.1240

In turn, this implies J↑ ψKsql
A,ν = t.1241

ϕ = (↓ ψ)t. Assume J↓ ψKsql
A,ν = t. By definition, JψKsql

A,ν is either f or u. By inductive hypothesis then,1242

A, ν 6|= ψt. In turn, this implies that A, ν |= ¬ψt and the claim follows. Assume now A, ν |= ¬ψt. In turn,1243

this implies A, ν 6|= ψt. By inductive hypothesis then, JψKsql
A,ν 6= t and then, by definition, J↓ ψKsql

A,ν = t,1244

proving the claim.1245

ϕ = (∃x.ψ(x))t. Assume J∃x.ψ(x)Ksql
A,ν = t then, by definition, J

∨

c∈dom(A) ψ(c)K
sql
A,ν = t. In turn, this1246

implies that Jψ(a)Ksql
A,ν = t, for some a ∈ dom(A). By inductive hypothesis, the latter implies A, ν |= ψ(a)t,1247

proving A, ν |= ∃x.(ψ(x)t). Assume now A, ν |= ∃x.(ψ(x)t). By definition, there exists a ∈ dom(A) such1248

that A, ν |= (ψ(a)t). Applying the inductive hypothesis, we obtain Jψ(a)Ksql
A,ν = t which, in turn, proves1249

J
∨

c∈dom(A) ψ(c)K
sql
A,ν = t and the claim follows.1250

ϕ = (∀x.ψ(x))t. Assume J∀x.ψ(x)Ksql
A,ν = t then, by definition, J

∧

c∈dom(A) ψ(c)K
sql
A,ν = t. In turn, this1251

implies that Jψ(a)Ksql
A,ν = t, for every a ∈ dom(A). By inductive hypothesis then, A, ν |= ψ(a)t for every1252

a ∈ dom(A) which, in turn, proves A, ν |= ∀x.(ψ(x)t). Assume now A, ν |= ∀x.(ψ(x)t). By definition,1253

for every a ∈ dom(A) we have A, ν |= (ψ(a)t). By inductive hypothesis then, Jψ(a)Ksql
A,ν = t, for every1254

a ∈ dom(A). In turn, this proves J
∧

c∈dom(A) ψ(c)K
sql
A,ν = t and the claim follows.1255
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