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Parametrization of renormalized models for singular stochastic PDEs

I. BAILLEUL1 & Y. BRUNED

Abstract. Let T be the regularity structure associated with a given system of singular stochastic
PDEs. The paracontrolled representation of the Π map provides a linear parametrization of the
nonlinear space of admissible models M = (g,Π) on T , in terms of the family of para-remainders
used in the representation. We give an explicit description of the action of the most general
class of renormalization schemes presently available on the parametrization space of the space of
admissible models. The action is particularly simple for renormalization schemes associated with
degree preserving preparation maps; the BHZ renormalization scheme has that property.

1 – Introduction

The systematic approach to the renormalization problem for singular stochastic partial differen-
tial equations (PDEs) was built gradually from Hairer’s ad hoc construction in his groundbreaking
work [17] to Bruned, Hairer and Zambotti’s general setting for the BPHZ-type robust renormal-
ization procedure [11] implemented by Chandra & Hairer in [14]. The dual action of this renor-
malization procedure on the equation was unveiled in Bruned, Chandra, Chevyrev and Hairer’s
work [10]. The specific BHZ renormalization scheme was included in [8] by Bruned in a larger
class of renormalization schemes, and the dual action of schemes of this class on the equation was
investigated in Bailleul & Bruned’s work [3] using algebraic insights from Bruned & Manchon’s
work [12].

On a technical level, the setting of regularity structures disentangles the task of solving an equa-
tion from the problem of making sense of a number of ill-defined quantities that are characteristic
from the singular nature of the equation. The latter are encapsulated in the notion of model over a
regularity structure. It provides a finite family of reference distributions/functions which are used
to give local descriptions of possible solutions to a given singular stochastic PDE around each point
in its state space. The definition of a model (g,Π) on a given regularity structure T involves non-
linear operations that turn the metric space of models into a nonlinear space. Bailleul & Hoshino
were able in [4, 5] to provide a parametrization of the space of models over a given regularity
structure by a linear space, a product of Hölder spaces. This parametrization involves the tools of
paracontrolled calculus. Having such a parametrization is useful for understanding the structure
of the space of models and [4, 5] contains a number of applications. The present work tackles the
question of understanding the action of a general renormalization scheme on the parametrization
space of the models used for the study of systems of singular stochastic PDEs. Tapia & Zam-
botti had previously obtained a free transitive action of a product of Hölder spaces on the space
of branched rough paths – a particular example of models over a particular regularity structure,
indexed by a time interval. The action of a renormalization map on their parametrization space
was investigated by Bruned in [9].

The regularity structures used for the study of singular stochastic PDEs have a particular
structure described in depth in [11]. The models ‘adapted’ to this structure are called admissible.
We refer the reader to Bailleul & Hoshino’s Tourist guide [6] for a short self-contained reference
on the algebraic and analytic sides of regularity structures theory and its applications to the study
of singular stochastic PDEs. We need a piece of notation to describe the parametrization of the
set of admissible models over a given regularity structure T =

(
(T ,∆), (T +,∆+)

)
. Given τ ∈ T

write
∆τ =

∑

σ≤τ

σ ⊗ (τ/σ) ∈ T ⊗ T +. (1.1)

A choice of linear basis B of T fixes uniquely this decomposition by requiring that the elements
σ ∈ T that appear in the sum belong to B. This notation is only used in that sense in this work.
In order to stick strictly to the statements proved in [4] we formulate things in the case where
the state space of the dynamics is the isotropic space R

d, this corresponds to elliptic equations;
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1

http://arxiv.org/abs/2106.08932v1


2

a similar result holds in the anisotropic setting used for the study of parabolic equations. The
bilinear operator P below stands for a paraproduct operator; its definition or properties are not
needed in the present work, so we refer the reader to the first section of [4] for more information.
Let T be the BHZ regularity structure associated with a given (elliptic) singular stochastic PDE,
and B a basis of T . The following statement is a particular case of Theorem 2 in [4]. We denote
here and after by Cα(Rd) the usual isotropic Hölder spaces of regularity exponent α ∈ R.

Theorem 1 – Given any family of distributions
(
[τ ] ∈ Cdeg(τ)(Rd)

)
τ∈B,deg(τ)≤0

, there exists a

unique admissible model M = (g,Π) on T such that one has

Πτ =
∑

σ≤τ

Pg(τ/σ)[σ],

for all τ ∈ B with deg(τ) ≤ 0.

Note the specific form of the above representation of Πτ ; a different paracontrolled representation
of Π involving other functions than the g(τ/σ) has for instance no a priori reason to give rise to
a parametrization of the model. It is convenient to talk of a bracket map [ · ] associated with the
model Π. The precise statement of our main result involves notations that will be introduced
below. We state it here in a qualitative form and refer the reader to Theorem 9 and Theorem 12
for the full statements. Degree preserving preparation maps are defined in Definition 6 in Section
3.

Theorem 2 – Assume that an admissible model on T is given and parametrized by the [τ ], for

τ ∈ B with deg(τ) ≤ 0. Let R : T 7→ T , be a preparation map with associated renormalization map

MR : T 7→ T , and renormalized model
(
gR,ΠR

)
.

• If R is degree preserving then the map ΠR, hence the entire admissible model, is parametrized

by the [MRτ ], for τ ∈ B with deg(τ) ≤ 0.

• In the general case of a non-degree preserving preparation map R the bracket map [ · ]R

giving the parametrization of the map ΠR is given explicitly in terms of the bracket map [ · ].

Emphasize here that the class of degree preserving preparation maps is much larger than the
class of BHZ renormalization maps though. A number of useful results about preparation maps
and their associated renormalization maps are given in Section 2. The particular case of degree
preserving preparation maps is considered in Section 3 and the general case in Section 4.

We refer the reader to Hairer’s review articles [18, 19], Friz & Hairer’s book [15] or Bailleul &
Hoshino’s Tourist guide [6] for introductions to regularity structures and singular stochastic PDEs.

2 – Basics on preparation maps

Let T =
(
(T ,∆), (T +,∆+), (T −,∆−)

)
be the BHZ regularity structure associated with a given

(system of elliptic) singular stochastic PDE(s). Denote by δ : T → T −⊗T the splitting map which
is part of the renormalization structure on T . These regularity structures have special features
detailed in [11, 6]. We denote by S+ the antipode of the Hopf algebra (T +,∆+), and by Ia : T → T
and I+

a : T → T +, for a in a finite set, the derivatives of the abstract integration operators used
in the definition of T . To lighten notations we work with only two ‘non-differentiated’ abstract
integration operator I and I+ whose formal derivatives are given by the Ia, I

+
a ; what follows works

verbatim when working with several pairs of integration operators. We recall that the notion of
admissibility of a model (g,Π) is relative to an operator K and that admissible models satisfy

Π(Iaτ) = (DaK) ∗ (Πτ)

and
g−1
x

(
I+
a τ

)
= −

(
DaK ∗ Πxτ

)
(x) (2.1)

for all x in the state space. The notation ∗ stands here for the convolution operator on the state
space. The possibly multi-dimensional noise symbol in the regularity structure will be denoted by
Ξ ∈ T . We fix throughout a basis B of T ; this fixes in particular the notation in formula (1.1)
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describing ∆. We denote by deg : T → R, the degree map associated to the regularity structure
T . It provides the direct sum decomposition T =

⊕
β∈A Tβ of T into sums of vector spaces whose

elements have a given degree; we denote by 1 the unique element of B of degree 0. Given a tree
of the form σ = Ia(τ), one has deg(σ) = deg(τ) + β − |a| where β corresponds to the Schauder
estimate (gains in regularity) provided by the kernel associated to I. Denote by | · |Ξ : T → N the
map that counts the number of noises in any given tree. As a last piece of notation, we denote by
M+ : T + ⊗ T + → T + the multiplication operator in T +. We recall from Bruned’s work [8] the
following definition.

Definition – A preparation map is a map

R : T → T

that fixes polynomials and such that

• for each τ ∈ T there exist finitely many τi ∈ T and constants λi such that

Rτ = τ +
∑

i

λiτi, with deg(τi) ≥ deg(τ) and |τi|Ξ < |τ |Ξ, (2.2)

• one has

(R ⊗ Id)∆ = ∆R. (2.3)

Example – The archetype of a preparation map is defined from a map δr, with the index ‘r’ for

‘root’, defined similarly as the splitting map δ, but extracting at a time from any τ ∈ T only one

diverging subtree of τ with the same root as τ , and summing over all possible such subtrees – see

Definition 4.2 in [8]. Given a character ℓ of the algebra T −, the map

Rℓ := (ℓ ⊗ Id)δr

is a preparation map. Its associated renormalization map MRℓ
, defined below in (2.4), is of the

type introduced in [11]. �

We will work exclusively with preparation maps R : T → T such that

R Ia = Ia,

for all a. Let M×
R : T → T , and MR : T → T , be the maps uniquely defined from R by requiring

that M×
R is multiplicative and satisfies

M×
R (Iaτ) = Ia

(
M×

R (Rτ)
)

and
MR := M×

RR. (2.4)

The map MR is the renormalization map associated with the preparation map R. While this map
is not multiplicative, it follows from (2.3) that MR commutes with all the integration operators
Ia. While in the setting of [11] the structure of the renormalization scheme on T and its induced
action on T + are encoded in the splitting map δ : T → T − ⊗ T and a character of the algebra
T −, the algebraic structure associated with the renormalization map MR is entirely encoded in
the latter. The following result is used to describe the renormalisaed model; it was first proved in
Proposition 8.36 in [17]. We give an elementary proof to be self-contained.

Lemma 3 – The map (
Id ⊗M+

)
(∆⊗ Id) : T ⊗ T + → T ⊗ T +

is invertible.

Proof – Writing

∆σ =
∑

σ1≤σ

σ1 ⊗ σ/σ1,

one has for σ ∈ T and τ ∈ T +

(
Id ⊗M+

)
(∆⊗ Id)(σ ⊗ τ) =

∑

σ1≤σ

σ1 ⊗
(
σ/σ1τ

)

and the only element in the previous sum whose T +-component has maximum degree is σ⊗τ .
This shows the injectivity of the map from the statement. It surjectivity comes from the fact
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that (
Id ⊗M+

)
(∆⊗ Id)(σ ⊗ τ) =: σ ⊗ τ +N(σ ⊗ τ),

for a nilpotent map N , so a Neumann series gives the inverse of (Id⊗M+) (∆⊗Id). A different
representation (

Id +N
)−1

= (Id ⊗M+)
(
Id ⊗ S+ ⊗ Id

)(
∆⊗ Id

)
(2.5)

was proved by Bruned in Lemma 3.20 of [8]. This explicit formula plays a role in the proof of
Lemma 7, in Section 3. �

It follows from Lemma 3 that one defines inductively two maps

δR : T → T ⊗ T +, M+
R : T + → T +,

setting
(Id ⊗M+)(∆⊗ Id)δR := (MR ⊗M+

R )∆, (2.6)

with M+
R : T + → T +, the multiplicative map fixing the monomials and such that one has

M+
R

(
I+
a (τ)

)
= M+

(
I+
a ⊗ Id

)
δRτ,

for all τ ∈ T .

Recall now the following explicit inductive expression for the co-action ∆

∆(•) := • ⊗ 1, for • ∈
{
1, Xi,Ξ

}
,

∆(Iaτ) := (Ia ⊗ Id)∆ +
∑

|ℓ+m|<deg(Iaτ)

Xℓ

ℓ!
⊗

Xm

m!
I+
a+ℓ+m(τ).

(2.7)

A similar formula for I+
a holds involving only I+-type operators. These expressions used in Hairer’s

original work [17] are different from the expressions used by Bruned, Hairer and Zambotti in [11].

One moves from [17] to [11] by performing a change of basis in T + and taking
∑

ℓ∈Nd

(−X)ℓ

ℓ! I+
a+ℓ(τ)

in the role of I+
a (τ). The induction rule giving the action of ∆ on the abstract integration operator

is more useful here in the form of relation (2.10) than in the form given in [11], identity (3.6) in
[6]. The following formulas for the co-product ∆+ and the antipode S+ hold in that setting

∆+(I+
a τ) :=

∑

ℓ∈Nd

(
I+
a+ℓ ⊗

(−X)ℓ

ℓ!

)
∆τ + 1⊗ I+

a τ, (2.8)

S+(I+
a τ) = −

∑

ℓ∈Nd

M+

(
I+
a+ℓ ⊗

Xℓ

ℓ!
S+

)
∆τ. (2.9)

Recall from (2.6) the definition of the map δR; the next statement gives a useful different repre-
sentation for it. This is the very place where we take advantage of the fact that we work with
renormalization maps built from a preparation map, as opposed to working with a general renor-
malization map as those of Section 8.3 of Hairer’ seminal work [17]. Define a multiplicative map

δ×R : R[T ] → T ⊗ T +

setting

δ×R(•) := • ⊗ 1, for • ∈
{
1, Xi,Ξ

}
,

δ×R(Iaτ) := (Ia ⊗ Id)δ×R(Rτ)−
∑

|ℓ|≥deg(Iaτ)

Xℓ

ℓ!
⊗M+

(
I+
a+ℓ ⊗ Id

)
δ×R(Rτ).

(2.10)

Lemma 4 – One has δR = δ×R R.

Proof – We proceed by induction on deg(τ) + |τ |Ξ. Using identity (2.4) to write

(MR ⊗M+
R )∆ = (M×

R ⊗M+
R )∆R

and the fact that R is invertible we are down to checking that one has

(Id ⊗M+)(∆ ⊗ Id)δ×R = (M×
R ⊗M+

R )∆.
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It suffices by multiplicativity to consider a tree of the form Ia(τ), for which one has on the
one hand

(M×
R ⊗M+

R )∆Ia(τ)
(2.7)
= (Ia ⊗ Id)

(
M+

R ⊗M+
R

)
∆τ +

∑

|ℓ+m|<deg(Iaτ)

Xℓ

ℓ!
⊗

Xm

m!
M+

R

(
I+
a+ℓ+m(τ)

)
.

On the other hand we have

(Id ⊗M+)(∆⊗ Id)δ×R
(
Ia(τ)

) (2.10)
= (Ia ⊗ Id)(Id ⊗M+)(∆⊗ Id)δRτ

+
∑

ℓ,m∈Nd

Xℓ

ℓ!
⊗

Xm

m!
M+

(
I+
a+ℓ+m ⊗ Id

)
δRτ

−
∑

|ℓ+m|≥deg(Iaτ)

Xℓ

ℓ!
⊗

Xm

m!
M+

(
I+
a+ℓ+m ⊗ Id

)
δRτ

We conclude by applying the induction hypothesis on τ . A similar proof was performed in

Proposition 3.19 of [8] using the explicit formula (2.5) for
(
Id +N

)−1
.

�

Definition – A map A : T → T × T +, with Aτ =
∑

τ1 ⊗ τ2, is said to be upper triangular if

deg(τ1) ≥ deg(τ), for all τ1 in the preceding decomposition of Aτ .

Lemma 5 – The map δR is upper triangular.

Proof – It suffices from the property (2.2) of preparation maps to see that δ×R is upper tri-

angular. This point is obtained from (2.10) and the multiplicativity of δ×R by an elementary
induction on deg(τ) + |τ |Ξ. �

It follows from Lemma 5 and the definition of M+
R that deg

(
M+

Rσ
)
≥ deg(σ), for all σ ∈ T +.

The last ineguality means that for M+
Rσ =

∑
i λiσi, one has for every i, deg

(
σi

)
≥ deg(σ).

3 – The case of degree preserving preparation maps

We prove the first part of Theorem 2 in this section. The algebraic properties enjoyed by
the renormalization maps associated with the class of degree preserving preparation maps defined
below allow indeed a direct construction of renormalized models close to what is done for the BHZ
models from Bruned-Hairer-Zambotti’s work [11]. The construction involved in the general is not
as simple; it will be detailed in Section 4.

Recall from Theorem 1 that the formula

Πτ =
∑

σ≤τ

Pg(τ/σ)[σ], (3.1)

for τ ∈ T with deg(τ) ≤ 0, provides a parametrization of the set of models over a large class
of regularity structures containing those used for the study of singular stochastic PDEs – called
hereafter ‘BHZ regularity structures’, after the initials of the authors of [11]. The class of renor-
malization maps used in [11] are built from specific features of BHZ regularity structures and from
a character on a Hopf algebra (T −,∆−) that is in co-interaction with (T ,∆). A single feature
of the fine structures involved in the definition of the preparation map associated with the BHZ
renormalization map is of importance here. It singles out a large class of preparation maps for
which the action of their associated renormalization maps on the parametrization space takes the
simple form given in Theorem 9 below. The BHZ renormalization maps form one family of this
class.

Definition 6 – A preparation map is said to be degree preserving if for each τ ∈ T there exists

finitely many τi ∈ T and constants λi such that

Rτ = τ +
∑

i

λiτi, with deg(τi) = deg(τ) and |τi|Ξ < |τ |Ξ. (3.2)
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The introduction in [11] of decorated trees with extended decorations allows precisely to design
a setting where the splitting map associated with the renormalization procedure enjoys a similar
property. One works in this setting with two degree maps deg and deg−, with deg− not taking
into account the extended decorations and involved in the definition of the Hopf algebra (T −,∆−)
that is part of the renormalization structure on T .

Although elementary, it is of fundamental importance that the maps M×
R and MR associated to

a degree preserving preparation map R are also degree preserving. This is what allows to prove
the next statement by induction.

Lemma 7 – For any degree preserving preparation map R one has

δRτ = (MRτ) ⊗ 1, (3.3)

and the co-interaction identity

∆MR =
(
MR ⊗M+

R

)
∆. (3.4)

One further has that M+
R commutes with the antipode S+.

Proof – Note that the co-interaction identity (3.4) is equivalent from (2.3) to the identity

∆M×
R =

(
M×

R ⊗M+
R

)
∆. (3.5)

This identity involves only multiplicative maps on R[T ], so it suffices to prove it for elements
of T of the form Ξ, Xk or Ia(τ). It is elementary to check it for Ξ and Xk. We prove
identities (3.3) and (3.5) for elements of T of the form Ia(τ) by induction on deg(τ)+ |τ |Ξ, for
a generic τ ∈ T . We use the symbol (⋆) above an = sign to emphasize the use of the induction
assumption in a sequence of equalities. Write

MRτ = τ +
∑

i

ciσi,

for constants ci, with |σi|Ξ < |τ |Ξ. As

deg(Iaτ) > deg(τ),

for all Iaτ ∈ T , one has

deg(Iaτ) + |τ |Ξ > deg(σi) + |σi|Ξ, ∀ i

from the fact that MR is degree preserving. This justifies the use of the induction hypothesis
in the (⋆) equality below.

∆M×
R (Iaτ) = ∆Ia(MRτ) = (Ia ⊗ Id)∆(MRτ) +

∑

|ℓ+m|<deg(Iaτ)

Xℓ

ℓ!
⊗

Xm

m!
I+
a+ℓ+m(MRτ)

(⋆)
= (IaMR ⊗M+

R )∆τ +
∑

|ℓ+m|<deg(Iaτ)

Xℓ

ℓ!
⊗

Xm

m!
M+

R I+
a+ℓ+m(τ)

=
(
M×

R ⊗M+
R

)
∆Ia(τ)

The bound on |ℓ+m| in the first line comes from the degree preserving property of MR: one
has deg(Iaτ) = deg(Iaσi). We have used the induction assumption about (3.5) for the first
term in the right hand side of the third equality and the induction assumption about (3.3) for
the second term in the right hand side of that equality coupled with the fact that

I+
b (MRτ) = M+

(
I+
b ⊗ Id

)
δRτ = M+

R

(
I+
b τ

)
, ∀ τ ∈ T .

Identity (2.6) defining δR then reads

(Id ⊗M+)(∆⊗ Id)δRσ = (MR ⊗M+
R )∆σ = ∆(MRσ),

and it follows from the explicit formula (2.5) that

δRσ = (Id ⊗M+)
(
Id ⊗ S+ ⊗ Id

)(
∆⊗ Id

)
∆(MRσ)

= (Id ⊗M+)
(
Id ⊗ S+ ⊗ Id

)(
Id ⊗∆+

)
∆(MRσ)

= (Id ⊗ 1∗1)∆(MRσ) = (MRσ)⊗ 1.
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where we have used the following property of the antipode S+

M+
(
S+ ⊗ Id

)
∆+ = 1∗1

the map 1∗ : T + → R is the co-unit, it is equal to 1 on 1 and zero otherwise. One sees that
M+

R and S+ commute using the inductive relation

S+
(
Iaτ

)
= −

∑

ℓ∈Nd

M+
(
I+
a+ℓ ⊗

Xℓ

ℓ!
S+

)
∆

for the antipode S+ and writing

M+
RS+(I+

a τ) = −
∑

ℓ∈Nd

M+

(
M+

RI+
a+ℓ ⊗

Xℓ

ℓ!
M+

RS+

)
∆τ = −

∑

ℓ∈Nd

M+

(
I+
a+ℓMR ⊗

Xℓ

ℓ!
S+M+

R

)
∆τ

= −
∑

ℓ∈Nd

M+

(
I+
a+ℓ ⊗

Xℓ

ℓ!
S+

)
∆MRτ = S+

(
I+
a MRτ

)
= S+M+

R (I+
a τ).

�

Similar computations are involved in Remark 4.2.6 and Proposition 4.2.8 of [7]. Note that it
follows from (3.3) that the multiplicative map M+

R satisfies in that case the relation

M+
R

(
I+
a (τ)

)
= I+

a (MRτ).

One then proves similarly as in the proof of Lemma 7 that M+
R satisfies the co-interaction identity

(
M+

R ⊗M+
R

)
∆+ = ∆+M+

R . (3.6)

Given an admissible model (g,Π) on T set

gR := g ◦M+
R , ΠR := Π ◦MR.

It follows from the fact that M+
R commutes with the antipode S+ that

(gR)−1 := g−1 ◦M+
R .

Corollary 8 – The pair
(
gR,ΠR

)
defines an admissible model on T .

Proof – On the one hand, identities (2.6) and (3.3) ensure that

ΠR
xτ =

(
ΠR ⊗ (gRx)

−1
)
∆τ =

{
ΠR ⊗

(
g−1
x ◦M+

R

)}
∆τ =

(
Π⊗ g−1

x

)
(MR ⊗M+

R )∆τ

(2.6)
=

(
Πx ⊗ g−1

x

)
δRτ

(3.3)
= Πx(MRτ).

(3.7)

It follows from this identity and the fact that MR is degree preserving that ΠR
x satisfies the

analytic estimates required from a model on T . On the other hand, the co-interaction identity
(3.6) gives

gRyx =
(
gRy ⊗ (gRx)

−1
)
∆+ =

(
gy ⊗ g−1

x

)(
M+

R ⊗M+
R

)
∆+

(3.6)
=

(
gy ⊗ g−1

x

)
∆+M+

R = gyx ◦M
+
R .

It follows from this identity and the fact that M+
R is degree preserving that gRyx satisfies the

analytic estimates required from a model on T . �

Theorem 9 – Assume T =
(
(T ,∆), (T +,∆+), (T −,∆−)

)
is the BHZ regularity structure asso-

ciated with a system of singular stochastic PDEs. Let B stands for a linear basis of T , and let

(g,Π) be an admissible model on T , with associated bracket map [ · ] in its paracontrolled represen-

tation (3.1). For any degree preserving preparation map R the admissible model
(
gR,ΠR

)
on T is

parametrized by the family
(
[MRτ ] ∈ Cdeg(τ)(Rd)

)
τ∈B, deg(τ)≤0

.
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Proof – The action of MR on the parametrization set of the space of admissible models is thus
given by

ΠRτ = Π(MRτ)
(3.4)
=

∑

1<σ≤τ

Pg(M+

R
(τ/σ))[MRσ] =

∑

1<σ≤τ

PgR(τ/σ)[MRσ].

The second equality follows from the fact that M+
R commutes with the antipode S+ and from

the formula (4.2) for gR. The term Pf1 is equal to zero for any f ∈ S ′(Rd). Therefore, one
can remove the term σ = 1. The fact that MRσ is a sum of terms of the same degree as the
degree of σ shows that the preceding identity gives a parametrization of the model associated
with ΠR by the [MRσ], for all σ with negative degree. �

Example – An action of a renormalization group was observed previously in Bruned’s work [9]
on the renormalization of branched rough paths. This kind of rough paths was introduced by

Gubinelli in [16]. Hairer & Kelly showed in [20] that they can be seen as geometric rough paths

over a larger space. See e.g. Cass & Weidner’s work [13] or Bailleul’s work [1] for a quick grasp on

branched rough paths.

The regularity of a branched rough path is quantified by an exponent γ ∈ (0, 1), and a γ-

branched rough path is indexed by decorated trees τ ; denote by |τ | the number of nodes in τ . Fix

γ ∈ (0, 1), and for a continuous function h on [0, 1] write ht for its value at time t. Tapia and

Zambotti exhibited in [23] a free transitive action of the product space of Hölder spaces

Hγ :=

{
g =

(
g(τ)

)
τ∈B

∈
∏

τ∈B,|τ |≤1/γ

Cγ|τ |([0, 1]) ; g0(τ) = 0

}
,

where B is a certain collection of γ-branched rough paths, on the space of all γ-branched rough

paths. One of the main results of [9] provides an explicit formula for the map gM ∈ Hγ sending

any γ-branched rough path X to X ◦M , for a renormalization map M associated in this particular

setting to a preparation map of BHZ, hence degree preserving, type. The map gM is given in

Theorem 4.4 of [9] and takes the form

gMt (τ) − gMs (τ) =
〈
Xts ◦M, τ

〉
− 〈Xts, τ〉. (3.8)

where X is the Lyons-Victoir extension of X . The latter is not so explicit, so Theorem 9 gives a

better description of the action of a renormalization map even in that setting. The paracontrolled

parametrization bypasses in particular the problem emphasized in Remark 4.6 of [9] related to the

nonlinear character of the Lyons-Victoir extension map. �

4 – The general case

We prove the second part of our main result, Theorem 2, in this section. Lemma 7 giving a simple
form for δR, the co-interaction identity (3.4) and the commutation of the M+

R with the antipode
S+ does not hold in the case of a general preparation map R so one cannot use the mechanics of
the proof of Theorem 9 in the general case. One can however give an explicit description of the
admissible model MR =

(
gR,ΠR

)
associated with R and infer from it an inductive description of

the bracket map [ · ]R associated with ΠR and giving a parametrization of the admissible model MR.

4.1 Renormalised model associated with a preparation map

We will use in the next statement a density argument in the space of models that requires the
introduction of a regularity structure T (ε), indexed by a positive regularity exponent ε. The only

difference between T (ε) and T is the notion of degree deg(ε) on T (ε) is such that deg(ε)(τ) =
deg(τ) − ε, for all τ ∈ T or τ ∈ T +\T +

0 . The exponent ε is chosen small enough for α − ε to be
positive for all α > 0. Given now an admissible model

(
g,Π

)
on T , set for all τ ∈ T and σ ∈ T +

ΠRτ := Π
(
MRτ

)
, (gR)−1(σ) := g−1

(
M+

Rσ
)
. (4.1)

The map ΠR satisfies the admissibility condition from the fact that MR commutes with the operators
Ia and the admissibility of the map Π.
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Proposition 10 – The pair
(
gR,ΠR

)
defines an admissible model on T (ε).

We have in particular
gR(σ) = g

(
S+M+

R S+σ
)
, ∀σ ∈ T +. (4.2)

We will see as a corollary of Theorem 12 that
(
gR,ΠR

)
is actually a model on T . Bruned has

proved in Section 3 of [8] a version of Proposition for continuous admissible models. The use of a
density argument allows to extend the result to all admissible models.

Proof – Smooth models are models for which all the Πτ and g(σ) are smooth functions. We
know from Theorem 2 in [4] or Theorem 5 in [5], giving paracontrolled parametrization of
the space of admissible models, that the set of smooth admissible models on T is dense in
the topology associated with the canonical injection of the set of models on T in the set of
models on T (ε). See also Theorem 2.14 in Singh and Teichmann’s work [22] for a similar
statement. It suffices then to prove that for any smooth model (g,Π) the pair

(
gR,ΠR

)
defines

an admissible model on T – this is what we prove in the following.

Identity (2.6) ensures that

ΠR
xτ =

(
ΠR ⊗ (gRx)

−1
)
∆τ =

{
ΠR ⊗

(
g−1
x ◦M+

R

)}
∆τ

=
(
Π⊗ g−1

x

)
(MR ⊗M+

R )∆τ

(2.6)
=

(
Πx ⊗ g−1

x

)
δRτ.

(4.3)

It follows from this identity and the fact that δR is upper triangular, Lemma 5, that ΠR
x satisfies

the analytic estimates required from a model on T . Note that this holds for all admissible
models (g,Π), smooth or not. (This point will be used in the proof of Corollary 13.)

Note that it follows from (4.3) and the admissibility of the model (g,Π) that one has for all
τ ∈ T and all x (

gRx
)−1(

I+
a τ

)
= g−1

x

(
M+

R

(
I+
a τ

))

= g−1
x

(
M+

(
I+
a ⊗ Id

)
δRτ

)

(2.1)
=

(
(−DaK ∗ Πx)(x) ⊗ g−1

x

)
δRτ

(4.3)
= −

(
DaK ∗ ΠR

x τ
)
(x).

(4.4)

Write for all x, y

gRyx :=
(
gRx ⊗

(
gRy

)−1
)
∆+,

and define now a multiplicative map from R[T ] into itself setting for all τ ∈ T

ĝRyx(τ) :=
(
Id ⊗ gRyx

)
∆τ.

Denoting by µβ the component of any µ ∈ T in Tβ in the grading
⊕

β∈A Tβ of T , the analytic

estimates required from gRyx for
(
gR,ΠR

)
to be a model on T are equivalent to having

∣∣∣
(
ĝRyx(σ)

)
β

∣∣∣ . |y − x|deg(σ)−β (4.5)

for all σ ∈ T and all β with β < deg(τ), for all x, y. We have

ĝRyx(Xi) = Xi + (xi − yi)1, ĝRyx(Ξ) = Ξ.

The following identity is where working with smooth models helps – continuous models would
make the job as well.

Lemma 11 – One has the identity

ĝRyx
(
Iaτ

)
= Ia

(
ĝRyxτ

)
−

∑

|ℓ|<deg(Iaτ)

(X + x− y)ℓ

ℓ!
ΠR

x

(
Ia+ℓ

(
ĝRyxτ

))
(y). (4.6)

Proof – Note the pointwise evaluation of ΠR
x at a given point y; we work with smooth models

to make sense of it – having a continuous model would be sufficient. We briefly recall how one
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can obtain (4.6) as the settings in [4] and [8] are not striclty speaking the same. The inductive
relation (2.7) on ∆ gives

ĝRyx
(
Iaτ

)
= Ia

(
ĝRyxτ

)
+

∑

|ℓ+m|<deg(I+
a τ)

Xℓ

ℓ!
gRyx

(
Xm

m!
I+
a+ℓ+m(τ)

)

= Ia

(
ĝRyxτ

)
+

∑

|k|<deg(I+
a τ)

(X + x− y)k

k!
gRyx

(
I+
a+k(τ)

) (4.7)

Rewriting gRyx under the form

gRyx =
((

(gRx)
−1 ◦ S+

)
⊗ (gRy )

−1
)
∆+,

in order to use relation (4.4) giving (gRx)
−1 and (gRy )

−1, one has

gRyx
(
Ib(τ)

)(2.9)
= (gRy )

−1
(
I+
b (τ)

)
−

∑

m,n∈Nd

({
(gRx)

−1I+
b+m+n ⊗

(−x)m

m!
(gRx)

−1
}
S+∆⊗

yn

n!
(gRy )

−1

)
∆τ

= (gRy )
−1

(
I+
b (τ)

)
−

∑

k∈Nd

(y − x)k

k!

(
(gRx)

−1I+
b+k ⊗

(
(gRx)

−1S+ ⊗ (gRy )
−1

)
∆+

)
∆τ

= (gRy )
−1

(
I+
b (τ)

)
−

∑

k∈Nd

(y − x)k

k!

(
(gRx)

−1I+
b+k ⊗ gRyx∆

+
)
∆τ

= (gRy )
−1

(
I+
b (τ)

)
−

∑

k∈Nd

(y − x)k

k!
(gRx)

−1
(
I+
b+k

(
ĝRyx(τ)

))
,

for all b. One gets identity (4.6) as follows from the preceding equality using the explicit

expression for (gRx)
−1 given in (4.4) and the relation ΠR

x ◦ ĝRyx = ΠR
y . Write ĝRyx(τ) =

∑
i λiτi,

with deg(τi) ≤ deg(τ) – note that ΠR
y τ = ΠR

x

(
ĝRyxτ

)
=

∑
i λiΠ

R
x τi, then

gRyx
(
I+
a+ℓ(τ)

)
= −

(
(Da+ℓK) ∗ (ΠR

yτ)
)
(y)−

∑

i

λi

∑

m∈Nd

(y − x)m

m!

(
gRx

)−1(
I+
a+ℓ+m(τi)

)

=
∑

i

λi



−

(
(Da+ℓK) ∗ (ΠR

xτi)
)
(y)−

∑

m∈Nd

(y − x)m

m!

(
gRx

)−1(
I+
a+ℓ+m(τi)

)




=
∑

i

λiΠ
R
x

(
I+
a+ℓ(τi)

)
(y) = ΠR

x

(
I+
a+ℓ

(
ĝRyx(τ)

))
(y).

Together with identity (4.7), this gives the recursive formula (4.6). �

An elementary induction as in the proof of Proposition 3.16 in [8] shows then that the size

bound (4.5) on ĝRyx(σ) holds for all σ = Ia(τ), with τ ∈ T . This works as follows. Let

α < deg(σ). If α ∈ R \ N, let us write ĝRyx
(
τ
)
= τ +

∑
i λ

i
yxτi, with constants λi

yx and

deg(τi) = αi < deg(τ),
∣∣(τi)αi

∣∣ . |x− y|deg(τ)−αi ;

then∣∣(ĝRyx(σ)
)
α

∣∣ =
∣∣(Ia

(
ĝRyx(τ)

))
α

∣∣ .
∑

i

1{αi+β−|a|=α}|x− y|deg(τ)+β−|a|−αi . |x− y|deg(σ)−α.

Now, if α ∈ N and α < deg(σ), then

∣∣(ĝRyx(σ)
)
α

∣∣ =

∣∣∣∣∣∣


 ∑

α≤|ℓ|<deg(σ)

(X + x− y)ℓ

ℓ!
ΠR

x

(
Ia+ℓ

(
ĝRyx(τ)

)
(y)




α

∣∣∣∣∣∣

.
∑

α≤|ℓ|<deg(σ)

|x− y||ℓ|−α
∑

γ≤deg(τ)

|x− y|γ−|ℓ|+β−|a|
∣∣(ĝRyx(τ)

)
γ

∣∣
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.
∑

α≤|ℓ|<deg(σ)

|x− y||ℓ|−α
∑

γ≤deg(τ)

|x− y|γ−|ℓ|+β−|a||x− y|deg(τ)−γ . |x− y|deg(σ)−α.

The multiplicativity of ĝRyx on R[T ] ensures that the bound (4.5) holds for all σ ∈ T . �

Remark – Proposition 10 can be proved in a different way, defining first a map δ+R : T + → T +

via the identity

(Id ⊗M+)(∆+ ⊗ Id)δ+R =
(
S+M+

RS+ ⊗M+
R

)
∆+.

The map (Id ⊗M+)(∆+ ⊗ Id) : T + ⊗T + → T + ⊗ T +, is indeed invertible, like in Lemma 3. The

defining relation for δ+R ensures that

gRyx =
(
gRy ⊗ (gRx)

−1
)
∆+ =

(
gy ⊗ g−1

x

)(
S+M+

RS+ ⊗M+
R

)
∆+

=
(
gyx ⊗ (gx)

−1
)
δ+R .

A deep and fairly non-trivial result of Hairer & Quastel ensures that the map δ+R is upper triangular

if the map δR is upper triangular – see Lemma B.1 in [21]. The size estimates on gRyx(σ), for any

σ ∈ T +, follows then from the preceding formula for gRyx and Hairer & Quastel’s result. It shows

directly that
(
gR,ΠR

)
is an admissible model on T at the price of using Lemma B.1 of [21] as a

blackbox. Our proof is elementary and does not use Hairer & Quastel’s result; it follows the proof

of Theorem 3.19 in [8]. We recover in Corollary 13 below the fact that
(
gR,ΠR

)
is an admissible

model on T rather than just a model on T (ε).

4.2 Parametrization of renormalized models

Assume now that we work with any preparation map R on T . The co-interaction identity (3.4)
and the fact that M+

R commutes with S+ are not guaranteed to hold anymore so the proof of
Theorem 9 breaks down. We use instead the map δR which provides a connection between the
renormalized model and the original model. We use the shorthand notation

δRτ =:
∑

σ≤Rτ

σ ⊗ τ/Rσ (4.8)

to describe the map δR. The sum is implicitly indexed by elements σ ∈ T in the basis B of T fixed
throughout this work.

We need to introduce some basic definitions/results on the paraproduct P used in the rep-
resentation result, Theorem 1, before stating our main result. Recall from [4] the definition of

the two-parameter extension P of the paraproduct operator in terms of the kernels Qi of the
Littlewood-Paley projectors – see e.g. Section 3.1 of [4]. For j ≥ 1, set

Pj :=
∑

−1≤i≤j−2

Qi,

and for a two variables real-valued distribution Λ on R
d × R

d, and j ≥ 1, set for all x ∈ R
d

(
QjΛ

)
(x) :=

〈
Λ, Pj(x− ·)⊗Qj(x− ·)

〉
.

The action of P on Λ is given by

PΛ :=
∑

j≥1

QjΛ.

It coincides with the paraproduct operator when applied to product distrutions Λy,z = a(y)b(z),
in the sense that

P
(
a(y)b(z)

)
= Pab.

We use here a formal notation to emphasize the dependence of a distribution on R
d × R

d on its
arguments. Recall also from [2] the definition of the operator

R(a, b, c) := Pa(Pbc)− Pabc, (4.9)

and the fact that it maps continuously Cα(Rd)× Cβ(Rd) × Cγ(Rd) into Cα+β+γ(Rd), for all α, β ∈
(0, 1) and γ ∈ (−3, 3). (See Proposition 3 in [2] – the parameters in the definition of the operators
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can be arranged so as to get the continuity of R for γ in any a priori fixed interval of regularity
exponents. The preceding interval (−3, 3) has thus no special meaning.) We need also a key
recursive identity which has been used in [4] – identity (2.5) therein. Rewriting the identity

ΠRτ =
∑

σ≤τ

gRx(τ/σ)Π
R
xσ

under the form
ΠR

xτ = ΠRτ −
∑

σ<τ

gRx(τ/σ)Π
R
xσ

and iterating, we get first

ΠR
xτ = ΠRτ −

∑

σ<τ

gRx(τ/σ)Π
Rσ +

∑

σ2<σ1<τ

gRx(τ/σ1)g
R
x(σ1/σ2)Π

R
xσ2

and after a finite number of iterations

ΠR
xτ = ΠRτ −

∑

n≥1

(−1)n
∑

σn<···<σ1<τ

gRx(τ/σ1) · · · g
R
x(σn−1/σn)Π

Rσn. (4.10)

Similarly, one has

Πxτ = Πτ −
∑

n≥1

(−1)n
∑

σn<···<σ1<τ

gx(τ/σ1) · · · gx(σn−1/σn)Πσn. (4.11)

If one uses relation (4.3) to write

ΠR
xτ =

∑

σ≤Rτ

g−1
x (τ/Rσ)Πxσ

we obtain from (4.11) the identity

ΠR
xτ =

∑

σ≤Rτ

g−1
x (τ/Rσ)Πσ −

∑

n≥1

(−1)n
∑

σn<···<σ1<σ≤Rτ

g−1
x (τ/Rσ)gx(σ/σ1) · · · gx(σn−1/σn)Πσn.

(4.12)

Theorem 12 – The formula

[τ ]R =
∑

n≥1

(−1)n−1
∑

1<τn+1<···<τ1<τ

R
(
gR(τ/τ1) · · · g

R(τn−1/τn) ; g
R(τn/τn+1) ; [τn+1]

R
)

+ P
((

ΠR
yτ

)
(z)

)
+ S(ΠRτ),

(4.13)

where P
((

ΠR
yτ

)
(z)

)
is given by

P
((

ΠR
yτ

)
(z)

)
=

∑

σ≤Rτ

Pg−1(τ/Rσ)[σ] +
∑

n≥1

∑

1<σn<···<σ1<σ≤Rτ

(−1)n−1

R
(
g−1(τ/Rσ) g(σ/σ1) · · · g(σn−1/σn) ; g(σm/σn+1) ; [σm+1]

)
,

(4.14)

defines inductively the bracket map [ · ]R in terms of the bracket map [ · ].

Proof – One can repeat safely part of the proof of Proposition 12 in [4]. We proceed by
induction on the size of the trees. By applying P to the identity (4.10), one has

P1

(
ΠRτ

)
=

∑

n≥1

(−1)n
∑

τn<···<τ1<τ

PgR(τ/τ1)...gR(τn−1/τn)Π
Rτn + P

((
ΠR

yτ
)
(z)

)
,

One has moreover

P1

(
ΠRτ

)
=: ΠRτ − S(ΠRτ),

where S(ΠRτ) is a smooth term depending continuously in any Hölder topology on the distri-
bution ΠRτ . In the end, we have
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ΠRτ =
∑

n≥1

(−1)n
∑

1<τn<···<τ1<τ

PgR(τ/τ1)...gR(τn−1/τn)Π
Rτn + P

((
ΠR

yτ
)
(z)

)
+ S(ΠRτ)

We replace τn by the following expression

ΠRτn =
∑

1<τn+1<τn

PgR(τn/τn+1)[τn+1]
R + [τn]

R,

and using the definition (4.9) of the operator R, we get

[τ ]R =
∑

n≥1

(−1)n−1
∑

1<τn+1<···<τ1<τ

R
(
gR(τ/τ1) · · · g

R(τn−1/τn) ; g
R(τn/τn+1) ; [τn+1]

R
)

+ P
((

ΠR
yτ

)
(z)

)
+ S(ΠRτ),

(4.15)

from the same ’fantastic’ telescopic sum as in the proof of Proposition 12 in [4]. The same
mechanics is at work in the proof of identity (4.14). Indeed, since one has from identity (4.12)

P
((

ΠR
yτ

)
(z)

)
=

∑

σ≤Rτ

Pg−1(τ/Rσ)[σ]−

∑

n≥1

(−1)m
∑

σn<···<σ1<σ≤Rτ

Pg−1(τ/Rσ) g(σ/σ1)···g(σn−1/σn)[σn],

and
Πσn =

∑

σn+1≤σn

Pg(σn/σn+1)[σn+1],

a telescopic sum appears and leaves formula (4.14). Formulas (4.15) and (4.14) give jointly
an inductive formula giving [τ ]R in terms of the [τ ′], with τ ′ ∈ T . �

Corollary 13 – The model
(
gR,ΠR

)
on T (ε) is actually a model on T .

Proof – Given τ ∈ T with deg(τ) ≤ 0, we know from Proposition 10 in [4] that the double sum
in (4.13) defines an element of Cdeg(τ)(Rd). Since the distribution Λ =

(
ΠR

yτ
)
(z) on R

d
y × R

d
z

satisfies from (4.3) the estimate
∥∥QjΛ

∥∥ . 2−jdeg(τ),

uniformly in j ≥ 1, Proposition 8 in [4] tells us that P
((

ΠR
yτ

)
(z)

)
is also an element of

Cdeg(τ)(Rd). All the brackets [τ ]R are thus elements of Cdeg(τ)(Rd), so
(
gR,ΠR

)
turns out to be

a model on T from Theorem 1, as the unique model on T associated to the brackets [ · ]R

provides canonically a model on T (ε) that needs to coincide with
(
gR,ΠR

)
, by uniqueness. �
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