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Abstract

We present a novel humanitarian supply chain approach to address disaster preparedness and
build response capacity in humanitarian supply chains when people’s vulnerability matters. Our
primary motivation comes from the fact that disasters in Brazil are often associated with un-
equal distribution of opportunities and social inequalities that end up pushing more vulnerable
people to risky areas or informal settlements. Moreover, investment in disaster management has
dropped over the past few years in Brazil. In this way, we wonder: how to use the somewhat
limited financial budget as effectively as possible towards meeting those that need the most
while addressing disaster preparedness activities? To answer this question, we develop an opti-
mization model to address location, capacity planning, prepositioning, local procurement, and
relief aid flows’ decisions. Differently from most existing research, we adopt the so-called Social
Vulnerability Index (SoVI) in the objective function to build enhanced response capacity in more
vulnerable areas when the lack of resources makes impassable to fulfil all victims’ needs at once.
Through a rich and real case-study based on the Brazilian Humanitarian Supply Chain, we come
up with critical insights that can help to improve the humanitarian supply chain practices in
the country. In particular, we show that the social benefit of using SoVI is as more significant
as the vulnerability increases, which reveals the importance of considering this index to design
more social-effective humanitarian supply chains.
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vulnerability index.
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1. Introduction

1.1. Context and Motivation

This paper addresses the design of a humanitarian supply chain to integrate logistics activities
in an effective and efficient decision support system to cope with multiple disaster events over
a dynamic time horizon. As the ultimate goal of humanitarian logistics is to mitigate human
suffering, an effective response must be able to supply victim needs for those who need it most at
the right time, in the right place, and in the right amount. When response involves procurement
activities, goods and services should be procured according to the “Six Rights” i.e., right quality,
right source, right cost, right quantities, right place, and right time (Logistics Cluster, 2015). In
either case, long, medium, and short term decisions should be coordinated to ensure an efficient
allocation of resources (Leiras et al., 2014), which means that there will be sufficient resources to
assist logistics activities wherever necessary. However, many disaster management approaches
focus only on short and medium-term decisions that span days and/or weeks to overcome the
harmful consequences of a single event at a time. Consequently, such approaches usually fail in
being protective and effective when multiple disasters occur repeatedly ‘in the same space’ and
their effects span a longer horizon.

Our motivation in pursuing this work comes from the fact that Brazil is currently among the
ten countries most affected by weather-related disasters in the last 20 years (UNISDR, 2015).
In addition, the Brazilian experience in coping with multiple disaster events over the past years
suggests that there is a lack of scientific reasoning in disaster management. Even though many
Brazilian disasters are recurrent events that often strike the same areas, the current National
System for Protection and Civil Defense (SINPDEC), which is in charge of the country’s disaster
management, still struggles nationwide to implement effective mitigation strategies across the
Brazilian territory. In fact, from 1997 to 2017, the total number of affected people has exceeded
48 million and the corresponding economic damages were estimated to be 12 USD billion as a
result of extreme events such as droughts, floods, landslides, and epidemics (EM-DAT, 2017).
The year 2018 accounted for 372 confirmed occurrences of floods, flash foods, and landslides in
which 110 events required Civil Defense action (Ramos et al., 2019). The continental dimension
of Brazil, comprising distinct geology, geomorphology, and climate, associated with insufficient
human and material resources, certainly poses unique humanitarian logistics challenges.

In addition, disasters in Brazil are often associated with unequal distribution of opportu-
nities and social inequalities that end up pushing poorer people to risky areas or to informal
settlements (Carmo and Anazawa, 2014), frequently located in slopes and floodplains that lack
basic infrastructure, thus increasing the chance of being stricken by natural hazards. For Costa
(2012), some priority actions that could contribute to disaster risk reduction in the country
include identification of disaster risk areas, cooperation between the three government levels
(country, state, and municipality), and “allocation of resources according to clear criteria and
towards those most in need”.
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SINPDED currently supports “Program 2040” − Risk and Disaster Management, which
in turn is part of the “Multiannual Plan 2016-2019”, whose main goal is to strengthen the
coordination amongst the typical activities of the disaster life cycle, i.e., preparedness, response,
recovery, and mitigation. This action plan is one of the first efforts towards a coordinated and
integrated humanitarian supply chain that is able to mitigate human suffering and preserve
their well-being in the long-term. Indeed, as remarkably pointed out in Valencio (2010), “Civil
defense reaches its institutional maturity when the State envisages its attributions as essentially
intersectoral and transversal coordinated, optimizing the use of material and human resources
to promote a safer space”.

Based on the challenges faced by SINPDEC we develop in this paper a mathematical tool
to support regional civil defenses to take forward the idea of enhancing/optimizing the current
status of their humanitarian logistics. In particular, we seek to integrate and coordinate logistics
activities in a longer time horizon than what is usually considered and through the prism of
multiple natural hazards when people’s vulnerability matters. We introduce a new way to
perceive effectiveness in humanitarian supply chains based on prioritizing allocation of scarce
resources to more vulnerable areas. This prioritization is based on quantifying the overall social
vulnerability of potential affected areas through the so-called Social Vulnerability Index or simply
SoVI (Cutter et al., 2003) thus using it to encourage solutions that target the most vulnerable
areas (effective) when there is no resources to meet all victims’ needs at once and, simultaneously,
fall within the financial budget (efficient).

1.2. Related studies

This study is mainly related to humanitarian supply chain optimization with prioritization
given by social vulnerability. Both academics and practitioners agreed that vulnerability ends
up determining if a given natural hazard will be disastrous or not for a certain group of people
(Chia-Chen Chen et al., 2007; Huafeng, 2016). Here, we rely on a broader concept of vul-
nerability that represents “the propensity across different population segments to be affected by
natural hazards and other shocks” (Sodhi, 2016), which is usually determined by physical, social,
economic, and environmental factors or processes (UNISDR, 2008, p. 22). Different disciplines
measure/quantify vulnerability in different ways (Makoka and Kaplan, 2005) and, apparently,
“the diversity and apparent lack of consistence in vulnerability research reflects the divergent
objectives of the research and the phenomena being explained” (Adger, 2006). In this paper,
we address vulnerability via the Social Vulnerability Index, which is a composite indicator that
reflects several dimensions, such as socioeconomic status, gender, employment, and education.
For many authors, SoVI can help to identify the most socially vulnerable communities (areas
or regions), which in turn may enhance resource allocation policies during the disaster life cy-
cle, e.g., providing an increased relief assistance for the most affected people during the course
of a disaster (Flanagan et al., 2011). Our motivation in using SoVI as a proxy for the vul-
nerability is twofold: (i) it is widely accepted and used in different contexts and applications
(Solangaarachchi et al., 2012; Arnette and Zobel, 2019); (ii) it is fairly robust and it can be
easily replicated (De Loyola Hummell et al., 2016).
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Despite its popularity across many disciplines, it seems that the only study that used SoVI
in humanitarian logistics was carry out by Arnette and Zobel (2019), who developed a simple
location model for asset prepositioning in the American Red Cross of Wyoming and Colorado
(USA) that takes into account hazard, exposure, and vulnerability. Hazard is evaluated as the
risk of occurrence of different natural hazards. Exposure is defined by population, displacement,
and sheltering needs, while vulnerability data is quantified using SoVI. In terms of adopting other
social indicators as proxy for vulnerability, our paper is related to Horner and Downs (2008),
which was the first study to approach the interrelationships between socioeconomic status and
relief distribution via the evaluation of people’s needs based on the percentage of people living
below the poverty line at Leon County in Florida, USA. The results revealed that the average
response time increases when higher-income individuals are included in the demand for relief aid,
as they generally live farther from central locations. This in turn encourages the establishment
of more geographically disperses distribution points, which may reduce the poorest households’
accessibility.

Also, El-Anwar et al. (2009) focused on the assignment of displaced families after a disaster to
alternative housing projects, evaluated according to four indexes designed to address sustainable
development, namely, environmental performance, social welfare, economic, and public safety.
The welfare index considers different indicators at the housing location, such as employment
and educational opportunities, housing quality/delivery time, health-care and basic services
opportunities, and access. They derived a max-min utility function for each proposed index and
then optimized all of them using scalarization. The proposed approach was illustrated with a
potential hurricane event in the Gulf Coast of the USA. El-Anwar et al. (2010) and El-Anwar
(2013) also focused on housing arrangements problems using a similar methodology.

Noyan et al. (2015) study might be seen as an extension of Horner and Downs (2008), in
which the concepts of accessibility and equity were characterized for a last-mile distribution
problem. Both concepts were incorporated into the optimisation model via the development
of metrics based on a set of socioeconomic indicators. The accessibility metric was evaluated
for the local distribution centres to points of distribution and for the demand locations to the
points of distribution. The authors assumed that accessibility depends only on physical factors
in the first case, whereas it depends on physical and socioeconomic factors in the second case.
Accessibility is finally quantified via the evaluation of an accessibility score that allows for the
updating of the post-disaster travel times based on the proportion of vulnerable population,
which was assumed to be composed by people with low mobility at the demand nodes, such as
disabled people, individuals older than 65, and women with children.

In terms of model contributions, our paper is mostly related to the work of Balcik and Bea-
mon (2008), Salmerón and Apte (2010), Jahre et al. (2016), Charles et al. (2016), Torabi et al.
(2018), and Rodríguez-Espíndola et al. (2018, 2020) which explicitly proposed how to capture
critical strategic (long-term) aspects of supply chains in their approaches, in contrast to most
papers that were essentially designed to cope with shorter-run goals and means for reaching
them from operational and/or tactical decision points of view only. Although the importance of
long-term planning in disaster management is well-recognized by the specialized literature, only
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a few studies have dedicated efforts in proposing analytical mathematical models with strategic
components. In fact, for Balcik and Beamon (2008), critical decisions of disaster preparedness,
such as facility location and relief prepositioning, indeed “ (· · · ) require long-term planning
to achieve a high-performance disaster response”. Salmerón and Apte (2010) also emphasized
the necessary long-term commitments in relief chains to enable an efficient response through
the capacity expansion of many assets including warehouses. Jahre et al. (2016) highlighted
the importance of their pioneering work in integrating emergency relief and longer-term oper-
ations for relief prepositioning to reduce response time and overall costs. They introduced a
warehouse location model for joint prepositioning and distribution model to represent a global
humanitarian supply chain. Charles et al. (2016) proposed a warehouse location, pre-positioning
and distributing relief problem at a strategic level whose main goal is to support logistics de-
cisions for a broad range of humanitarian organizations. Torabi et al. (2018) presented a new
framework to strategically integrate relief pre-positioning and procurement planning decisions in
humanitarian supply chains. Rodríguez-Espíndola et al. (2018, 2020) developed a novel disaster
flood-preparedness optimization model to take into account multiple actors and organizations
in Acapulco, Mexico. In their model, relief shortage is minimized along with logistics costs.

With the exception of Charles et al. (2016), the remaining studies focused on static (single-
period) settings and thus it is not clear how their proposed mathematical models could be
adapted and operationalized in dynamic problems, e.g., when multiple disasters may occur
simultaneously or successively over a finite number of time periods. Notice that one disaster
clearly influences others − from the logistics standpoint at least − whether they imply an
overlapping of logistics activities that usually share the same resources, such as financial budget,
prepositioned items, and relief centers. In this case, a multiple disaster management approach
that spans a relatively long-term horizon may suggest maintaining existing infrastructure in
operation (e.g., warehouses and relief centers) from previous disasters to be deployed in future
forthcoming events attempting to provide a faster response and save overall resources. It is also
possible to take advantage of the unused safe stock in a given relief center to supply people’s
needs in future periods, reducing the probability of shortage and avoiding waste of relief items.
Notice that these decisions can be conceived and implemented only in multiperiod settings.
Although Charles et al. (2016) built their optimization framework on a multiperiod basis, they
disregard several characteristics of strategic supply chain problems in disaster management, such
as relief centers’ location and capacity size of both types facilities. More importantly, all the
aforementioned studies focus on either the minimization of logistics costs or maximization of the
coverage without taking into account people’s vulnerabilities.

In this paper, we address the problem of building disaster preparedness and response capacity
via prepositioning networks driven by people’s vulnerability. Our multiperiod framework allows
us to represent several types of potential hazards that might hit a given geographical area over
a time horizon spanning months or years. For this purpose, we consider a multi-commodity and
multiperiod two-echelon network based on the disaster management structure of Brazil, which
comprises regional warehouses (distributions centers), local relief centers (temporary shelters),
and affected areas (where disasters are supposed to occur). In the optimization model, long-
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term preparedness decisions focus on the following logistics activities before disaster strikes:
warehouses location, capacity planning, and prepositioning of relief aid at warehouses. Medium
and short-term decisions take place post-disaster attempting to locate relief centers, perform
local procurement if necessary, and define the flow amounts of relief items at both echelons.
We use time scales of distinct lengths to coordinate the integration of strategic and tactical
decisions that should naturally be taken/updated in different periods during the time horizon.
For example, warehouse location and relief prepositioning span macrotime periods of months or
years, whereas relief centers location and local procurement span microtime periods of months
or weeks. Here we focus on a deterministic approach using past disasters from the last fourteen
years to estimate the needs of potential victims. For Charles et al. (2016), not only can this type
of approach “provide much clearer information on gaps than a stochastic or robust approach”
but it can also make it easier to convince practitioners to use a simpler approach since they
generally have little or no experience with optimization approaches. However, we also develop a
scenario-based two-stage stochastic programming version to investigate if here-and-now decisions
could bring useful insights to our humanitarian supply chain problem. For this purpose, each
year of disaster data was treated as one scenario, long-term decisions were assumed first-stage
variables, and medium/short-term decisions were considered second-stage variables.

Differently from most related papers in the humanitarian logistics field, our formulation ex-
plicitly considers capacity planning decisions to define ‘when’, ‘where’ and ‘how much’ warehouse
capacity should be expanded/contracted so as to promote a fast recovery via relief assistance
deployment wherever is needed, rather than providing the initial emergency needs (Liberatore
et al., 2014). This is also in accordance with the idea stated by Apte and Yoho (2011) that
“preparedness at an institutional level translates to the planning and preestablishment of ade-
quate capacity and resources that will enable efficient relief operations”. This way, we aim at
building preparedness and response capacity for handling multiple hazards over multiple periods
of time. Finally, the use of the Social Vulnerability Index drives the solution to prioritize areas
that might have insufficient capacity to prepare for and to respond to eminent disasters. Our
results are based on a real case-study of Brazilian disasters and they reveal that our approach
is indeed more effective in providing an enhanced response to more vulnerable areas. Finally, it
is worth mentioning that strategies to cope with the Brazilian case-study may benefit human-
itarian operations in other countries and regions in different geographies but that share rather
similar characteristics.

The remainder of the paper is structured as follows: Section 2 states the problem by giving
an overview of the Humanitarian Supply Chain in Brazil. Section 3 introduces the supply chain
optimization model. Section 4 characterizes the case-study area and presents a brief discussion
on data gathering and estimation. Section 5 shows the main results and elaborates on some
managerial insights. Finally, Section 6 summarizes the main contributions of the study and
points out some future research directions.

2. Problem Description: The motivation case of Brazil

This section offers and overview of the Brazilian Institutional Framework of the National
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System of Civil Protection and Defense to further present our problem description. Civil pro-
tection and defense in Brazil, legally established by law 12.608/2012, is organized into a system
called The National System of Civil Protection and Defense (Portuguese acronym: SINPDEC),
composed of a set of multisectoral bodies such as federal, state, and municipal agencies, as well
as public and private entities in the area of civil protection and defense (Wang et al., 2020).
SINPDEC may mobilize the civil society to act in an emergency or in a state of public calamity,
mainly coordinating logistical support for the development of civil protection and defense ac-
tions.

SINPDEC is currently structured in diverse agencies and entities that are responsible to carry
out all the activities involved in disaster management throughout the country. The National
Department for Civil Protection and Defense (Portuguese acronym: SEDEC) is the main body
that composes SINPDEC. In order to coordinate the planning, articulation, and execution of
civil defense and protection programs, projects, and actions, SEDEC is further divided into
four main departments/entities, as depicted in Figure 1. The activities of the National Center
for Risk and Disaster Management (Portuguese acronym: CENAD) comprise managing the
strategic actions of preparedness and response in the Brazilian territory and, eventually, in the
international scope. The Department of Liaison and Management (Portuguese acronym: DAG)
supports, supervises, and promotes programs and plans guidelines related to the National Policy
of Protection and Civil Defense (Portuguese acronym: PNPDEC) and for this reason its action
spans all the disaster life cycle. The Department of Disaster Mitigation (Portuguese acronym:
DMD) is oriented to develop and implement pre-disaster programs, including typical activities
of mitigation, prevention, and preparedness. Finally, the Department of Rehabilitation and
Reconstruction (Portuguese acronym: DRR) supports programs in the post-disaster phase in
terms of rehabilitation and reconstruction.

CORE AREAS OF

ACTIVITY

CENAD
NATIONAL

CENTER FOR

RISK AND

DISASTER

MANAGEMENT

DAG
DEPARTMENT

OF

LIAISON

AND

MANAGEMENT
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OF

REHABILITATION

AND
RECONSTRUCTION

DMD
DEPARTMENT

OF

DISASTER

MITIGATION

� PRE-DISASTER

� DISASTER

� POST-DISASTER

� PRE-DISASTER

PREVENTION

MITIGATION

PREPAREDNESS

� POST-DISASTER
� PRE-DISASTER

� DISASTER

SINPDEC
BRAZIL'S NATIONAL

SYSTEM FOR

PROTECTION AND

CIVIL DEFENSE

SEDEC
NATIONAL

DEPARTMENT OF CIVIL

DEFENSE

Figure 1: SINPDEC organization structure and main areas of activities of each department. Adapted from
<http://www.mi.gov.br/web/guest/sedec/organograma>.
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The Brazilian Civil Defense, represented by SEDEC, and the Brazilian Postal Office Service
(‘Correios’) established an agreement in July 2013 to create strategic stocks of humanitarian
assistance (food, water, medicine, among others) to fulfill victims needs in the aftermath of
a disaster in Brazililian territory. Such agreement was part of a disaster response program
devised by CENAD and coordinated by SEDEC. Initially stocks would be prepositioned in one
municipality of each main region of Brazil, namely, Recife (PE), Manaus (AM), Porto Alegre
(RS), Rio de Janeiro (RJ), and Brasília (DF) with the option to expand the stocks to other
municipalities. The main objective of such prepositioning strategy conceived/realized by the
Federal Instance (SEDEC) was to complement the initial emergency assistance provided by
municipalities and states. The bureaucratic process to assess relief items is shown in Figure 2.
First, the affected state or municipality requests relief assistance from SEDEC. Once SEDEC
recognizes the real need of the applicant, relief items are deployed from warehouses and sent to
the state/municipality which is responsible for performing the last-mile distribution.

PRE-DISASTER DISASTER/POST-DISASTER

AFFECTED
MUNICIPALITY

OR STATE

CONTACTS

SEDEC
SEDEC

RECOGNIZES THE

EVENT AS AN

EMERGENCY

SITUATION OR

PUBLIC CALAMITY

RELIEF ITEMS

ARE DEPLOYED

AND SENT TO

THE APPLICANT

CONSOLIDATION/
PREPOSITIONING

OF RELIEF ITEMS

IN WAREHOUSES

THE APPLICANT

(MUNICIPALITY) IS
RESPONSIBLE FOR THE

LAST-MILE DISTRIBUTION

PRE-DISASTER

Figure 2: Main procedure to request the prepositioned relief items.

Apparently, the prepositioning agreement was canceled due to the inherent complexity of
the logistics operations and their high costs. Instead, the Civil Defense has used a bidding
procurement strategy in which suppliers are a priori selected to fulfill victims’ needs within
192 hours for the North region and 96 hours for the remaining regions. However, most relief
goods are required within the first 72 critical hours in the disaster aftermath (Van Wassenhove,
2006), which makes this strategy less effective in mitigating human suffering and, for this reason,
potentially meaningless, especially if the affected municipality is socially vulnerable and struggles
to act in defense of its victims in the first few hours of a disaster aftermath. If, on the one hand,
prepositioning has the disadvantage of being sometimes prohibitively complicated and expensive
(Balcik and Beamon, 2008), on the other hand, this practice is one of the most effective strategies
to deal with both localized/dispersed slow and sudden-onset disasters. In fact, Figure 3 depicts
a disaster classification based on time and location characteristics and provides examples of
Brazilian disasters in each category. It also shows which logistics activities are more important
(desirable) according to Apte and Yoho (2011). Basically, using the definition provided in
previous studies (Heidtke, 2007; Apte and Yoho, 2011; Apte, 2014), we define prepositioning as
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the storage of relief aid in some moment in time before disaster strikes. Proactive deployment
refers to moving relief aid into an area in advance of victims’ needs requests to reduce lead time in
response to a pre-existing event. Phase deployment is a “just in time” practice in which relief aid
is pushed to a disaster area only when it is needed and in the required amount. Finally, surge
(transportation or capacity) relies on “prepositioning” excess capacity rather than inventory
attempting to be possible to mobilize resources in case of a disaster.

TIME
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SLOW-ONSET SUDDEN-ONSET
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I: Localized and slow-onset disaster III: Localized and sudden-onset disaster

II: Dispersed and slow-onset disaster IV: Dispersed and sudden-onset disaster

Example: 2011 Floods and landslides in
Serrana Region of Rio de Janeiro, Brazil

Example: 2015 flooding in Acre 
state, Brazil

Example: January 2017 yellow
fever in Minas Gerais, Brazil

Example: 1979/1985 drought in the
Northwest of Brazil
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Surge
Phased deployment
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Prepositioning
Surge

Phased deployment

Proactive deployment

Prepositioning

Surge
Phased deployment
Proactive deployment

Prepositioning
Surge

Phased deployment

Proactive deployment

Figure 3: Classification of disasters and recommended logistics policies and examples of real Brazilian disasters.

The prepositioning policy is a ‘very desirable’ or a ‘desirable’ policy regardless of location and
time. In addition, it might also stimulate other strategies in some sense, e.g., it is not possible to
move relief aid before acquiring them in advance, thus making the proactive deployment strategy
also dependent on a previous inventory of (prepositioned) goods. However, prepositioning must
account for a number of challenging logistics decisions concerning warehouses and goods to be
cost-effective, such as location and size of warehouses to store goods and types and quantity of
goods that need to be stored. As the establishment of warehouses usually involves expensive
long-term decisions (construction of buildings or rental contracts/agreements), it is not desirable
to change its size or location in a medium or short-term horizon. At the same time, disasters
timing, location, type, and impact/size might vary a lot and rapidly, specially in a continental-
sized country that presents marked climatological differences among several regions and states
like Brazil. This in turn also impacts the proper location, type, and quantity of relief goods
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that should be stored to be further deployed in the aftermath of a disaster. Determining a
prepositioned strategy for one particular disaster independently from potential others, may
result in an unnecessarily expensive warehousing network.

As a developing economy, Brazil struggles to raise sufficient resources to apply in prepared-
ness and response activities. The Brazilian Government investment in disaster management has
dropped over the past few years, and in 2018 Brazil has seen the lowest investment since 2008
(Ribeiro, 2018), making an effective use of the limited budget available for relief operations all
the more relevant. Last but not least, Brazil is experiencing the longest period of increasing
inequality and the proportion of the population in condition of poverty rose from 25.7% to
26.5% between 2016 and 2017 (IBGE, 2018; The World Bank, 2018). Poverty indeed increases
vulnerability to disasters mainly by limiting coping and resistance strategies. However, there
do not appear to be any prioritization schemes in place for more vulnerable areas or communi-
ties, even though past disasters have affected disproportionately more people who belonged to
socially-vulnerable classes (Freitas et al., 2012).

In this paper, we thus develop a new approach to account for the aforementioned potential
drawbacks of the previous papers and challenges of complex humanitarian supply chains, such
as the Brazilian one. Our main assumptions are derived from the Brazilian case, but the model
is sufficiently general to be applied in other similar contexts. Given a set of parameters, such as
costs, capacities, and victims’ needs, our main goal is to determine the best possible configuration
of a network composed by two echelons, warehouses and relief centers, attempting to help as
many victims as possible. The responsiveness of the humanitarian supply chain is increased with
the possibility of purchasing relief aid items, in the disaster aftermath, via local procurement,
assuming that there are local suppliers able to offer the items, and that the installed relief
centers can manage the purchased items. However, local procurement exhibits some drawbacks,
e.g., it generally faces quality problems, it might lead to supply shortages, and it can generate
competition between organizations, resulting in high prices for the relief aid items (PAHO, 2001).

Considering that there is a budget constraint to perform all the logistics operations, we claim
that it would be more effective to allocate the rather scarce resources to supply the needs of the
areas that need the most, while other actors (NGOs) and strategies (in-kind donations) could
be used to assist less vulnerable areas. In the end, our aim is to help more vulnerable areas
to improve their response capacities seen here as the capacity of having its needs met in the
disaster aftermath. With our approach, we show that even with an excessively scarce financial
budget, it would be possible to provide a decent coverage to the most vulnerable areas.

3. A Humanitarian Supply Chain Design Model

Our model entails strategic (long-term) and tactical (mid- and short-term) decisions. We
assume that the operational level are mostly related to the very short-term decisions made
from day-to-day, such as last mile distribution/routing, which are not considered in this paper.
Long-term decisions span longer periods of time (e.g., years) and are updated in the so-called
macrotime periods. These decisions involve installing warehouses, determining the warehouses’
capacity, expanding or uninstalling warehouses’ capacities, performing propositioning of relief
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aid and determining their inventory levels at established warehouses, and deciding on the total
logistics expenditures as well as the budget surplus at the end of each macrotime period. Mid-
and short-term decisions usually span shorter periods of time (e.g., months). These decisions
are updated in the so-called microtime periods. They entail setting up relief centers (where
they should be installed and at what capacity), determining the quantity of relief aid to be
purchased at relief centers via local procurement, the flow of relief aid from/to warehouses and
relief centers, as well as inventory levels at operational relief centers; and finally deciding on
how the victims’ needs will be met. The objective is to maximize the overall number of supplied
victims weighted by their corresponding social vulnerability index.

The assumptions invoked by the model are as follows. The same warehouse cannot be
installed more than once during the timeline of the disaster. Once installed at a given initial
capacity, the warehouses can be expanded or uninstalled from the second macrotime horizon
onward. There is a maximum expansion capacity per macrotime period. It is possible to
partly or totally reduce the capacity of a given warehouse from the second macrotime period
onward. The same warehouse cannot be expanded and uninstalled at the same macrotime
horizon. In this paper, we assume warehouses must be built to preposition relief aid goods
and the warehouses’ capacities are decisions that must be made based on an initial capacity
(lower bound) and a maximum capacity (upper bound). For this reason, there is no fixed cost
associated with the installation of a warehouse. Instead, all the costs of installing, operating,
expanding, and uninstalling a warehouse are variables and depend linearly on its built capacity.
All these capacities are given in square metres (m2) to follow the construction unit cost (CUC),
which is given in monetary units per square metres. On the other hand, relief centers represent
current facilities that usually have different social functions (e.g., schools and gymnasiums and
with an existing physical structure). Therefore, we assume that there is a fixed cost to adapt a
given facility to serve as a relief center and a variable cost to operate it that depends linearly
on its capacity. In order to maintain the same capacity unit for all types of facilities, relief
centers’ capacity is also given in square metres. The establishment of warehouses implies that
a minimum amount of relief aid must be prepositioned. Prepositioning is limited according to
its availability in units, which is based on the Brazilian bidding process mentioned in Section
3. The relief aid flows are allowed in any direction, i.e., between warehouses/relief centers, from
warehouses to relief centers, and from relief centers to warehouses. All the relief aid flows are
limited to the current capacity of warehouses and relief centers. Initial inventory in warehouses
and relief centers is zero without loss of generality. The stock of relief aid is limited to the current
capacity of warehouses and relief centers. There is also a maximum quantity of each type of relief
aid that can be left in stock in warehouses and relief centers to reflect, e.g., limited cold storage
capacity. Victims’ needs can be met via prepositioned relief goods and/or local procurement
at relief centers. Prepositioning is supposed to be performed before the disaster strikes, while
local procurement is activated in the disaster aftermath. Deploying the stock of prepositioned
relief aid at warehouses to fulfill victims’ needs requires sending the goods to the installed relief
centers first, thus paying shipping costs. In the end, relief centers can rely on relief goods that
come from warehouses and relief goods that were purchased via local procurement. The total
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amount of relief aid in a given relief center can be allocated to one or more affected areas. One
affected area can be assigned to one or more relief centers. There is a cost of assigning affected
areas to relief centers that is linear with the distance between them. Relief aid goods purchased
via local procurement are available in very limited quantities and their costs are higher than
the purchase costs of the prepositioning strategy. The quantity of relief aid goods purchased at
relief centers must also be within the current capacity of the relief center. All the aforementioned
logistics activities incur costs. There is a per-macrotime-period financial budget to conduct these
activities. Budget surpluses can be carried out from one macrotime period to another without
any financial loss.

Our optimization model is based on the following indices and sets: c ∈ C for relief aid items;
n ∈ N for candidate nodes for warehouses; m ∈ M for candidate nodes for relief centers;
k ∈ N ∪M for the set of all nodes; a ∈ A for affected areas; t ∈ T for macrotime periods; and
τ ∈ Θt for microtime periods in t. The parameters and decision variables are described next,
followed by the optimization model. It is worth mentioning that all costs are given in Brazilian
Reais (BRL).

Parameters
γw−newnt Cost of opening warehouse n at macrotime period t (BRL/m2).
γw−ont Cost of operating warehouse n at macrotime period t (BRL/m2).
γw−ent Cost of expanding warehouse n at macrotime period t (BRL/m2).
γw−unt Cost of uninstalling (part of) the capacity associated with warehouse n

at macrotime period t (BRL/m2).
γrc−newmτ Fixed cost of opening relief center m at microtime period τ (BRL/m2).
γrc−omτ Cost of operating relief center m at microtime period τ (BRL/m2).
ιwcnt Inventory cost of relief aid c at warehouse n at macrotime

period t (BRL/unit).
ιrccmτ Inventory cost of relief aid c at relief center m at microtime

period τ (BRL/unit).
µcmτ Local procurement cost of relief aid c at relief center m

at microtime period τ (BRL/unit).
ρcnt Prepositioning cost of relief aid c at warehouse n at macrotime

period t (BRL/unit).
χckk′τ Shipping cost of aid c between nodes k and k′ at microtime

period τ (BRL/unit).
ζamτ Cost of fully assigning affected area a to relief center m at

microtime period τ (BRL).
vaτ Number of victims at affected area a at microtime period τ (people).
v′aτ Relative number of victims at affected area a at microtime period τ

evaluated as vaτ∑
a′ va′τ

.

dcaτ Victims’ needs associated with relief aid c in affected area a
at microtime period τ (units).

12



hw−max
cn Inventory capacity for relief aid c at warehouse n (units).
hrc−max
cm Inventory capacity for relief aid c at relief center m (units).
pmin
nt Minimum prepositioning level at warehouse n at macrotime period t (units).
pmax
ct Prepositioning capacity for relief aid c at macrotime period t (units).
q0
n Initial capacity for warehouse n (m2).
qw−max
n Maximum expansion capacity of warehouse n (m2).
qrc−max
n Maximum capacity of relief center m (m2).
qrc−min
n Minimum capacity of relief center m (m2).
urc−max
cmτ Maximum quantity of relief aid c that can be purchased via local

procurement by relief center m at microtime period τ (units).
βt Financial budget available during macrotime period t (BRL).
SoVIa Social vulnerability index associated with affected area a.
fc Conversion factor for relief aid c.

Continuous Variables
Iwcnt Inventory of relief aid c at warehouse n at macrotime period t

(units).
Irccmτ Inventory of relief aid c at relief center m at microtime period τ

(units).
Pcnt Amount of relief aid c prepositioned at warehouse n at

macrotime period t (units).
Qwnt Capacity of warehouse n at macrotime period t (m2)
Qw−ent Expanded capacity for warehouse n at macrotime period t (m2).
Qw−unt Uninstalled capacity for warehouse n at macrotime period t (m2).
Qrcmτ Capacity of relief center m at microtime period τ (m2).
U rccmτ Amount of relief aid c procured at relief center m at

microtime period τ (units).
Xckk′τ Flow of relief aid c between nodes k and k′ at microtime

period τ (units).
Zamτ Fraction of the victims’ needs associated with affected area a

that is assigned to relief center m at microtime period τ .
Gt Total logistics expenditures in macrotime period t (BRL).
Wt Unused financial budget in macrotime period t (BRL).
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Binary Variables
Y w
nt = 1, if warehouse n is installed at macrotime period t;

= 0, otherwise.
Y w−e
nt = 1, if warehouse n is expanded at macrotime period t;

= 0, otherwise.
Y w−u
nt = 1, if (part of) warehouse n is uninstalled at macrotime period t;

= 0, otherwise.
Y rc
mτ = 1, if relief center m is installed at microtime period t;

= 0, otherwise.
Y rc−o
mτ = 1, if relief center m is operating at microtime period t;

= 0, otherwise.

The objective function (1) maximizes the effectiveness of the response, the extent to which
it manages to cover as many victims’ needs as possible. Differently from most papers in the
existing literature, we employ the Social Vulnerability Index, SoVI, to prioritize supplying so-
cially disadvantaged areas in case of insufficient resources to cover all victims’ needs at once.
The static nature of the index pushes the victims’ needs coverage on an aggregate level, i.e.,
there will be an encouragement to fulfill victims’ needs of more vulnerable affected areas over
less vulnerable areas regardless of the microtime period when they arise. We thus say that
a more social-effective response prioritizes supplying affected areas that exhibit worse SoVIs.
The SoVI index for the Brazilian municipalities is a numerical value that falls within the in-
terval [−9.275, 27.673] (De Loyola Hummell et al., 2016), in which higher values mean higher
vulnerability levels. The original SoVI values associated with the affected areas considered in
our case-study were further standardized using a log-transformation procedure such that all the
transformed values are strictly positive coefficients in the objective function. These details are
discussed in Section 4. Notice that our ‘coverage-maximization’ is not greedily driven by the
SoVIa coefficient because the relative number of victims vaτ is also weighted in the objective
function.

max
∑
a∈A

∑
m∈M

∑
t∈T

∑
τ∈θt

SoVIa · v′aτ · Zamτ . (1)

Constraint (2) guarantees that a warehouse cannot be installed more than once during the
macrotime horizon. The constraints (3) and (4) ensure that warehouses cannot be expanded or
uninstalled unless they were established in previous periods, respectively. The next constraint (5)
guarantees that a warehouse cannot be simultaneously installed, expanded or uninstalled at the
macrotime period t.
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∑
t∈T

Y w
nt ≤ 1, ∀n ∈ N . (2)

Y w−e
nt ≤

t∑
t′=1

Y w
nt′ , ∀n ∈ N ∧ t ∈ T . (3)

Y w−u
nt ≤

t∑
t′=1

Y w
nt′ , ∀n ∈ N ∧ t ∈ T . (4)

Y w
nt + Y w−e

nt + Y w−u
nt ≤ 1, ∀n ∈ N ∧ t ∈ T . (5)

Constraint (6) states that it is necessary to guarantee a minimum amount of prepositioned
stock in warehouse n to be economically viable to install it at macrotime period t, e.g., it does
not make sense to install a warehouse to store a gallon of water. In addition, constraint (7)
ensures that the overall prepositioned relief aid respects the actual capacity of the warehouse.
The conversion factor fc is used to compare different physical quantities. In constraint (7),
for example, the prepositioned stock is given in units of relief aid, whereas the capacity of
the warehouse is given in m2. Therefore, fc transforms the units of relief aid in m2, since its
dimension is exactly [ m2

units ]. Constraint (8) states the prepositioning capacity per type of relief
aid.

∑
c∈C

Pcnt ≥ pmin
nt · Y w

nt , ∀n ∈ N ∧ t ∈ T . (6)

∑
c∈C

fc · Pcnt ≤ Qwnt, ∀n ∈ N ∧ t ∈ T . (7)

∑
n∈N

Pcnt ≤ pmax
ct , t ∈ T ∧ ∀c ∈ C . (8)

Constraint (9) defines the capacity level of warehouse n at macrotime period t > 1 as the
capacity in the previous macrotime period t − 1, plus the expanded capacity Qw−ent and minus
the uninstalled capacity Qw−unt . Constraint (10) defines the capacity level for warehouses in the
first macrotime period. Constraints (11) defines the upper bound for the warehouse capacity n
at macrotime period t. The set of constraints (12) and (13) define the warehouse expanded and
uninstalled capacity, respectively.

Qwnt = q0
n · Y w

nt +Qwn(t−1) +Qw−ent −Qw−unt , ∀n ∈ N ∧ t ∈ T \{1}. (9)

Qwnt = q0
n · Y w

nt , ∀n ∈ N ∧ t = 1. (10)

Qwnt ≤
(
q0
n + (t− 1) · qw−max

n

)
·

t∑
t′=1

Y w
nt′ , n ∈ N ∧ t ∈ T . (11)

Qw−ent ≤ qw−max
n · Y w−e

nt , ∀n ∈ N ∧ t ∈ T . (12)

Qw−unt ≤
(
q0
n + (t− 1) · qw−max

n

)
· Y w−u

nt , n ∈ N ∧ t ∈ T . (13)
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The set of constraints (14)−(15) force the flows either leaving or arriving at warehouse n to
be within the warehouse capacity, respectively. These two constraints also force all flows to be
zero if there is no warehouse installed, i.e., Qwnt = 0. Constraint (16) expresses the flow balance of
the prepositioned relief aid c in warehouse n at macrotime period t. The LHS consists of (i) the
amount of prepositioned stock; (ii) the stock of the immediate previous period; (iii) the amount
of relief aid that comes from relief centers and other warehouses, respectively. The RHS entails,
in this order, (i) the amount of relief aid that goes to either other warehouses or relief centers;
and (ii) the amount of relief aid that remains in inventory. Without loss of generality, Iwcn0 = 0,
for all c and n. The block of constraints (17) and (18) guarantee that the stock in warehouse n
falls within its capacity and the maximum stock for each relief aid type and warehouse is not
violated, respectively.

∑
c∈C

∑
k∈N ∪M

∑
τ∈Θt

fc ·Xcnkτ ≤ Qwnt, ∀n ∈ N ∧ t ∈ T (14)

∑
c∈C

∑
k∈N ∪M

∑
τ∈Θt

fc ·Xcknτ ≤ Qwnt, ∀n ∈ N ∧ t ∈ T . (15)

Pcnt + Iwcn(t−1) +
∑

k∈N ∪M
k 6=n

∑
τ∈θt

Xcknτ =
∑

k∈N ∪M
k 6=n

∑
τ∈θt

Xcnkτ + Iwcnt, ∀c ∈ C ∧ n ∈ N ∧ t ∈ T .

(16)∑
c∈C

fc · Iwcnt ≤ Qwnt, ∀n ∈ N ∧ t ∈ T . (17)

Iwcnt ≤ hw−max
cn , ∀c ∈ C ∧ n ∈ N ∧ t ∈ T . (18)

Constraint (19) expresses the conservation flow of the victims’ needs at the relief centers’
level over the microtime periods. The LHS consists of, in this order, (i) the amount of relief aid
that remains in stock; (ii) the flow of relief aid that goes to warehouses and other relief centers;
and (iii) the overall victims’ needs fulfilled by the relief centers. The RHS entails, in this order,
(i) the stock of the immediate previous period; (ii) the amount of relief aid that comes from
warehouses and other relief centers; and (iii) the amount of relief aid purchased at the actual
relief center via local procurement. Without loss of generality, Irccm0 = 0, for all c and m.

Irccmτ +
∑

k∈N ∪M
k 6=m

Xcmkτ +
∑
a∈A

[dcaτ · Zamτ ] = Irccm(τ−1) +
∑

k∈N ∪M
k 6=m

Xckmτ + U rccmτ ,

∀c ∈ C ∧m ∈M ∧ τ ∈ θt ∧ t ∈ T . (19)

Constraint (20) guarantees that the relief centers do not cover more than the existing victims’
needs. Notice that more than one relief center can be assigned to cover (full or part of) the needs
of the same affected area. Constraint (21) states that relief centers could cover only a fraction
of the needs of each affected area. Constraint (22) determines the capacity usage of the relief
center m at microtime period τ . If Qrcmτ = 0, then Zamτ = 0, i.e., the relief center m cannot
meet victims’ needs of the affected area a at this microtime period.
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∑
m∈M

Zamτ ≤ 1, ∀a ∈ A ∧ τ ∈ θt ∧ t ∈ T (20)

0 ≤ Zamτ ≤ 1, ∀a ∈ A ∧m ∈M ∧ τ ∈ θt ∧ t ∈ T . (21)∑
c∈C

∑
a∈A

dcaτ · fc · Zamτ ≤ Qrcmτ , ∀m ∈M ∧ τ ∈ θt ∧ t ∈ T . (22)

Constraint (23) states that there is a minimum capacity to install the relief centers. Con-
straint (24) defines the maximum capacity for the relief center m if it is operating (Y rc−o

mτ = 1);
otherwise (Y rc−o

mτ = 0), Qrcmτ = 0. Constraint (25) defines the status of the relief centers.

Qrcmτ ≥ qrc−min
m · Y rc−o

mτ , ∀m ∈M ∧ τ ∈ θt ∧ t ∈ T . (23)

Qrcmτ ≤ qrc−max
m · Y rc−o

mτ , ∀m ∈M ∧ τ ∈ θt ∧ t ∈ T . (24)

Y rc
mτ ≥ Y rc−o

mτ − Y rc−o
m(τ−1), ∀m ∈M ∧ τ ∈ θt ∧ t ∈ T . (25)

The block of constraints (26) and (27) force the flows either arriving or leaving at relief center
m to be within the relief center capacity, respectively. These two constraints also force all flows
to be zero if Qrcmr = 0.

∑
c∈C

∑
k∈N ∪M

fc ·Xckmτ ≤ Qrcmr, ∀m ∈M ∧ τ ∈ θt ∧ t ∈ T , (26)

∑
c∈C

∑
k∈N ∪M

fc ·Xcmkτ ≤ Qrcmr, ∀m ∈M ∧ τ ∈ θt ∧ t ∈ T . (27)

Constraint (28) defines the upper bound for the inventory levels in the relief centers. Note
that this constraint ensures that it is not possible to carry on relief aid from one microtime
period to another unless the relief center is operating in these successive microtime periods.
Constraint (29) guarantees that the stock plus the amount of purchased relief aid via local
procurement falls within the capacity of the relief center. Similarly, constraint (30) limits the
maximum amount of relief aid that can be purchased in the disaster aftermath via local pro-
curement.

Irccmτ ≤ hrc−max
cm · Y rc−o

mτ , ∀c ∈ C ∧m ∈M τ ∈ θt ∧ t ∈ T . (28)∑
c∈C

(fc · Irccmτ + fc · U rccmτ ) ≤ Qrcmτ , ∀m ∈M ∧ t ∈ T . (29)

U rccmτ ≤ urc−max
cmτ · Y rc−o

mτ , ∀c ∈ C ∧m ∈M τ ∈ θt ∧ t ∈ T . (30)

Constraint (31) states the financial budget to perform the logistics operations. If it is not
possible to use any budget surplus, decision variableWt can be set to zero for all t ∈ T . Another
possibility would be to simply state Gt ≤ βt, ∀t ∈ T .
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βt +Wt−1 −Wt = Gt, ∀t ∈ T (31)

in which the overall logistics costs are defined as follows:

Gt =
∑
n∈N

γw−newnt · q0
n · Y w

nt +
∑
n∈N

γw−ont ·Qwnt +
∑
n∈N

γw−ent ·Qw−ent +
∑
n∈N

γw−unt ·Qw−unt + (32)

+
∑
c∈C

∑
n∈N

ιwcnt · Iwcnt +
∑
c∈C

∑
n∈N

ρcnt · Pcnt+ (33)

+
∑
m∈M

∑
τ∈Θt

γrc−newmτ · Y rc
mτ +

∑
m∈M

∑
τ∈Θt

γrc−omτ ·Qrcmτ +
∑
c∈C

∑
m∈M

∑
τ∈Θt

µcmτ · U rccmτ+ (34)

+
∑
a∈A

∑
m∈M

∑
τ∈Θt

ζamτ · Zamτ +
∑
c∈C

∑
m∈M

∑
τ∈Θt

ιrccmτ · Irccmτ+ (35)

+
∑
c∈C

∑
k∈N ∪M

∑
k′∈N ∪M
k′ 6=k

∑
τ∈Θt

χckk′τ ·Xckk′τ (36)

Term (32) refers to the cost of installing, operating, expanding, and uninstalling a warehouse,
respectively. Term (33) evaluates, in this order, the costs due to the inventory left in warehouses
and the prepositioning of relief aid in the established warehouses. Term (34) assesses the cost of
opening a relief center, operating it, and performing local procurement. Term (35) determines
the cost of assigning the needs of an affected area to a relief center, and inventory left in relief
centers, respectively. It is worth mentioning that the cost of assigning an affected area to a relief
centre simply encourages the establishment of relief centers as close as possible to the affected
areas, thus improving victims’ accessibility to humanitarian assistance. Finally, shipping costs
are determined by expression (36).

4. Case-Study and Overview of Data Collection

Brazil is the fifth country in territorial extension on the planet, with a surface of 8,515
767,049 square kilometers. It occupies almost half of the South American continent and has
a vast border region with all the nations of South America, with the exception of Chile and
Ecuador (de Figueiredo, 2016). Brazil is a Federative Republic and it is divided into 26 states,
1 federal district and and 5,570 municipalities. It has six well-defined regions divided according
to geographical and cultural aspects (Ribeiro, N.d.), named North: Acre (AC), Amapá (AP),
Amazonas (AM), Pará (PA), Rondônia (RO), Roraima (RR), and Tocantins (TO); Northeast:
Alagoas (AL), Bahia (BA), Ceará (CE), Maranhão (MA), Paraíba (PB), Pernambuco (PE),
Piauí (PI), Rio Grande do Norte (RN), and Sergipe (SE); South: Paraná (PR), Rio Grande do
Sul (RS), and Santa Catarina (SC); Southeast: Espírito Santo (ES), Minas Gerais (MG), Rio
de Janeiro (RJ), and São Paulo (SP); Central-West: Goiás (GO), Mato Grosso (MT), and Mato
Grosso do Sul (MS).

Typical Brazilian natural hazards are considered the ‘extensive risk’ type, i.e., most of them
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present low-severity risk but they are very frequent, and they can be highly localized events,
although not exclusively (UNISDR, 2017). In this study, we consider the most relevant types of
natural hazards (in terms of overall affected people) that hit the Brazilian territory in the period
2003-2016, as follows: floods, runoff, flash floods, heavy rainfall, gales, hailstorm, landslides,
drought, seasonal drought, and tornado (Anuario, 2012; CENAD, 2014). This information
was collected from the Integrated System of Disasters Information (SEDEC-CEPED/UFSC,
2018), whose aim is to computerize various data sources from SEDEC and make them available.
Afterwards, the data was consolidated and analyzed by the authors towards building a realistic
case, which is acknowledged to be a missing aspect of several research papers (Sabbaghtorkan
et al., 2019). Figure 4 shows the front page (left) and the page for assessing the data on the
number of victims, in which we can select a given time range of the realized disaster, the type
of disaster and the Brazilian state.

Figure 4: The figure shows (right) the “Integrated System of Disasters Information” web page, also called “S2iD”
(Sistema Integrado de Informacoes sobre Desastres in Portuguese), and (left) the web page for the selection
of the data on the number of victims of a realized disaster for a given time range and state (left). Source:
https://s2id.mi.gov.br/. Accessed in July 2019.

With these data in hands, we first analyzed the cumulative number of homeless and displaced
people as a consequence of the aforementioned eleven types of disasters from 01/01/2003 to
31/12/2016 for all the 26 states plus the Federal District, as depicted in Figure 5. In our
numerical study, we took into account all those states whose corresponding number of victims
is greater or equal to 1% of the total number of homeless and displaced people, which means
that AL, RO, MS, MT, SE, GO, AP, TO, RR, and DF were not considered in the analyses. The
capital of the remaining 17 states were treated as potential candidates to allocate warehouses,
as depicted in Figure 6.
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Figure 5: Absolute and relative cumulative number of homeless and displaced victims in the 26 Brazilian states
and in the Federal District from 01/01/2003 to 31/12/2016.
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Figure 6: Brazil’s map and candidates to warehouses (capital of the 17 states considered in the analysis).

We then identified all the affected areas for each one of the 17 states and considered only
those whose corresponding number of victims is greater or equal to 0.5% of the total number of
homeless and displaced people in the period under analysis. It is worth noting that the affected
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areas correspond to Brazilian mesoregions or intermediary geographic regions, which is a group
of several municipalities in geographical proximity that share common characteristics (see details
in Appendix A). A total of 53 areas were then selected and treated as affected areas and candi-
dates to locate relief centers, as illustrated in Figure 7. The cut-off at 0.5% was also based on
the trade-off between model tractability and realism. In total, we considered 4,955,748 victims
out of 5,720,819, which represents almost 87% of the historical number. We thus consolidated
the number of homeless and displaced victims for each affected area and month (January to
December) for the 14 years of data (2003-2016). Finally, to determine the number of victims of
our instance composed of 2 macrotime periods (years) and 6 microtime periods (blocks of two
months, January/February, March/April, May/June, July/August, September/October, and
November/December), we proceeded as follows: we took the average of the monthly number
of victims over 2003-2009 (7 years of data) for all affected areas and added the correspond-
ing average number of victims for the first six blocks of two months to obtain the bimonthly
number of victims of macrotime period 1 (year 1). Analogously, we took the average of the
monthly number of victims over 2010-2016 (7 years of data) for all affected areas and added the
corresponding average number of victims for the second six blocks of two months to have the
bimonthly number of victims of macrotime period 2 (year 2). Figure 8 depicts the bimonthly
average number of victims per affected area.
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Figure 7: Brazil territory and the selected 53 affected areas. Notice that the names of the affected areas were
kept in their original language (Portuguese).
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Figure 8: Average number of victims over the period ranging from 01/01/2003 to 31/12/2016 for each microtime
period in 53 affected areas.

Insight 1. Historical data on the number of homeless and displaced victims reveals its large
dispersion over the bi-month-periods of each year, suggesting that a single-period approach could
fail to accurately represent the problem.

Given the number of homeless and displaced people in Figure 7, we determined their needs
for water, food, hygiene kits, cleaning kits, dormitory kits, and mattresses. Each unit of water
represents a container with 5 litres for one person. A food, hygiene and cleaning kit covers a
four-person family. A kit of dormitory products serves only one person and a mattress serves
one person (ATA, 2016).

The Social Vulnerability Index (SoVI) for each affected area is shown in Figure 9. These
figures were obtained by using a log-transformation to only have positive values, as follows:
SoVI= log(SoVIo+1.1−min[SoVIo]), in which SoVIo is the original SoVI value, and min[SoVIo]
is the minimum SoVI among the 53 affected areas. Logarithmic transformation is one of the most
used data transformation procedures, especially when the data vary a lot on the relative scale,
which is our case. In fact, the original SoVI values vary from −0.14 to 21.02 and the coefficient
of variation (standard deviation/mean value) is 54.43%. After the log transformation, our SoVI
data vary from 0.04 to 1.35 and the coefficient of variation is 28.39%. With this gain in terms
of variance reduction, our data is more fairly comparable.
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Figure 9: Social Vulnerability Index (SoVI) after transformation of the 53 affected areas.

Insight 2. The SoVI associated with the fifty three most affected municipalities show that most
of them exhibit a worrying level of social vulnerability.

The details on the evaluation of the other parameters of the optimization models can be
obtained by emailing the authors.

5. Case-study results

This section presents the case-study results whose main goal is to evaluate the performance of
the proposed model based on real Brazilian disasters described in the previous section. We also
provide managerial insights that could be useful to (re)think some current disaster management
strategies/policies. For this purpose, we first focus on the detailed analysis of our case-study
solutions (Subsection 5.1). Afterwards, we analyze the relief service levels for different budget
levels (see Definition 1) and, consequently, the role of the SoVI index in driving these decisions
(Subsection 5.2). Finally, we assess the value of the here-and-now solutions by solving a scenario-
based two-stage stochastic programming model (Subsection 5.2). Throughout this section, we
assume that the financial budget of our base-case problem is the reference budget reduced by
40%, with is aligned with our motivation in using SoVI to prioritize the allocation of resources
with rather limited financial budgets (see Appendix B for details).

Definition 1. The relief service level of affected area ‘a’ in microtime period ‘τ ’ is evaluated as
follows:

αaτ = 100%×
∑
m

Zamτ . (37)
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We used GAMS 25.1.1 to code the optimization model and CPLEX 12.8 to solve the instances
on a computer Intel core i7 processor with 16 GB RAM under Windows 10 operating system.
The stopping criterion was either the elapsed time exceeding 14,400 seconds or the relative
optimality gap smaller than 0.01. The average (resp., largest) solution time across the all our
proposed instances was 3,213 (resp. 7,926) seconds. The scenario-based model was solved by a
heuristic procedure implemented in the same language (Appendix F shows the details).

5.1. Results and Discussion

The base-case solution resulted in the establishment of only 5 warehouses to preposition relief
aid (see Table 1 and Figure 10); four of them are located in the Northeast region, specifically at
São Luís (Maranhão state), João Pessoa (Paraíba state), Teresina (Piauí state), and Natal (Rio
Grande do Norte state), while one warehouse is located at Belo Horizonte (Minas Gerais state),
which belongs to the Southeast region. Not coincidentally, the installation costs in all these
states are less expensive than in the remaining locations, suggesting that the centralization of
the prepositioning strategy in the Northeast region is consequence of the high cost of establishing
and operating warehouses in the other regions. Similar results were found for different budget
levels; in particular, it is worth mentioning that João Pessoa was selected to host a warehouse
for budget reductions from 20% to 90% because it is the least expensive location across all
the 17 candidates. All the warehouses of our base-case instance operate with their maximum
capacity during the entire horizon of two years; also, the warehouses at São Luís and João
Pessoa expand their capacities by 76% and 100%, respectively. Because of the few number of
operational warehouses, most of them end up serving several relief centers; this is particularly
true for the warehouse at São Luís that sends relief aid to 35 different RCs in year two. The
amount of relief aid delivered (last column of Table 1) gives an idea of the capacity of the relief
centers to meet the needs of their corresponding affected areas; e.g., for the relief centers served
by the warehouse at Belo Horizonte, this figure would be 43.42%.

Table 1: Established warehouses, capacities, and utilization.
Established
warehouses

Macrotime
period

Warehouse
capacity (m2)

Warehouse
utilization? (%)

Expansion??
(m2)

Number of relief
centers served

Number of relief
centers served??? (%)

Amount of relief aid
delivered???? (%)

São Luís 1 71,901 100 0 27 50.94 14.56
Belo Horizonte 1 51,469 100 0 29 54.72 34.52
João Pessoa 1 22,579 100 0 2 3.770 234.7
Teresina 1 22,579 100 0 14 26.42 14.18
Natal 1 22,579 100 0 20 37.74 10.98

São Luís 2 126,688 100 54,788 35 66.04 19.10
Belo Horizonte 2 51,469 100 0 29 54.72 43.42
João Pessoa 2 45,158 100 22,579 18 33.96 17.14
Teresina 2 22,579 100 0 16 30.19 15.93
Natal 2 22,579 100 0 19 35.85 7.780
? Based on the total prepositioned capacity in m2.
?? All the expansion capacities were performed in the second macrotime period.
??? According to the total number of RCs installed.
???? According to the overall victims’ needs of the RCs served.
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Figure 10: Spatial distribution of warehouses and relief centers.

Insight 3. The strategic decision on where to locate the warehouses is heavily driven by their
installation and operational costs. Therefore, less expensive locations are generally selected to
host this type of facility.

Relief centers play different roles in the humanitarian supply chain. They can provide hu-
manitarian assistance to the victims either via prepositioned goods that are sent to them, or via
local procurement to complement the assistance not covered by the prepositioned goods. All
the affected areas that will be covered by humanitarian assistance must necessarily be assigned
to an established relief center after the disaster has occurred. These facilities can serve as trans-
shipment points from where emergency goods can travel to warehouses and other relief centers.
Also, decentralizing RCs helps to reduce the distance (time) that victims must travel (wait) to
receive humanitarian assistance. For all these reasons, it is not surprising that all the 53 relief
centers are operational in at least two microtime periods, as can be seen in the penultimate
column of Table 2 and in Figure 10. The results also reveal that 48% of the RCs are operational
over the horizon on average; 55% of the RCs operate during 6 or more microtime periods; up to
70% of the RCs are operational at microtime periods 1 (January/February of macrotime period
1) and 7 (January/February of macrotime period 2), which is the period of the year in which
rainfalls and landslides are more frequent in the South and Southeast regions. The so-called
Megadisaster of at the Serrana region of Rio de Janeiro in January 2011 is an example; it was
the largest disaster ever recorded in Brazil in number of fatalities, and among the ten worst
landslides worldwide caused by a natural disaster since 1900 (Alem et al., 2016). Finally, the

26



last column of Table 2 reveals that most installed RCs end up serving several affected areas. In
particular, Sul Baiano, Litoral Norte Espírito-Santense, and Metropolitana de Curitiba serve, in
this order, 13, 13, and 15 affected areas, being operational for 8, 9, and 10 microtime periods,
respectively, suggesting that the more affected areas are served by a given RC, the higher the
chance of this RC being operational.

Table 2: Relief centers’ status over the microtime periods.
Relief center location Microtime periods (bimonthly) # of op. micro-

time periods?
# of affected

areas??1 2 3 4 5 6 7 8 9 10 11 12
Vale do Acre � � ⊗ 3 2
Centro Amazonense � � ⊗ 3 6
Sudoeste Amazonense � � � ⊗ � 5 6
Sul Amazonense � ⊗ � ⊗ � ⊗ 6 9
Metropolitana de Salvador � � ⊗ � ⊗ 5 3
Nordeste Baiano � � � ⊗ ⊗ � ⊗ ⊗ 8 6
Sul Baiano � ⊗ ⊗ ⊗ ⊗ ⊗ � � 8 13
Centro-Sul Cearense � ⊗ ⊗ � � 5 7
Jaguaribe � � 2 3
Noroeste Cearense � ⊗ ⊗ 3 1
Norte Cearense � ⊗ ⊗ � � 5 10
Central Espírito-Santense � � ⊗ ⊗ ⊗ � ⊗ 7 8
Litoral Norte Espírito-Santense � � ⊗ ⊗ ⊗ ⊗ ⊗ � ⊗ 9 13
Noroeste Espírito-Santense � � ⊗ ⊗ ⊗ � 6 5
Sul Espírito-Santense � ⊗ � � � 5 5
Centro Maranhense � ⊗ ⊗ � � 5 5
Leste Maranhense � ⊗ ⊗ � � ⊗ 6 10
Norte Maranhense � ⊗ � ⊗ � 5 12
Oeste Maranhense � ⊗ ⊗ � ⊗ ⊗ � 7 5
Metropolitana de Belo Horizonte � � ⊗ ⊗ � ⊗ 6 3
Norte de Minas � � ⊗ ⊗ ⊗ ⊗ � ⊗ 8 8
Sul/Sudoeste de Minas � � ⊗ ⊗ ⊗ ⊗ ⊗ � 8 8
Vale do Rio doce � ⊗ ⊗ � ⊗ ⊗ � ⊗ 8 11
Zona da Mata � � ⊗ � ⊗ 5 5
Baixo Amazonas � ⊗ ⊗ � ⊗ ⊗ 6 8
Sudeste Paraense � ⊗ ⊗ � � ⊗ � 7 10
Sudoeste Paraense � ⊗ � ⊗ 4 2
Mata Paraibana � � ⊗ � � ⊗ ⊗ 7 11
Agreste Pernambucano � ⊗ ⊗ ⊗ � 5 6
Mata Pernambucana � � � 3 4
Centro-Norte Piauiense � ⊗ ⊗ 3 2
Norte Piauiense � ⊗ 2 4
Metropolitana de Curitiba � ⊗ ⊗ ⊗ ⊗ � ⊗ ⊗ ⊗ ⊗ 10 15
Sudeste Paranaense � ⊗ � ⊗ ⊗ 5 6
Sudoeste Paranaense � � ⊗ � ⊗ ⊗ ⊗ ⊗ 8 7
Oeste Potiguar � ⊗ ⊗ 3 2
Centro Fluminense � � ⊗ ⊗ � 5 4
Metropolitana do Rio de Janeiro � � ⊗ ⊗ ⊗ � 6 4
Noroeste Fluminense � � ⊗ ⊗ � 5 6
Norte Fluminense � ⊗ ⊗ � ⊗ ⊗ 6 8
Sul Fluminense � � ⊗ ⊗ � ⊗ ⊗ 7 8
Centro Oriental Rio-Grandense � ⊗ ⊗ � ⊗ ⊗ ⊗ 7 7
Metropolitana de Porto Alegre � � ⊗ ⊗ ⊗ � ⊗ ⊗ 8 8
Noroeste Rio-Grandense � � ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ 9 6
Sudeste Rio-Grandense � � ⊗ � � ⊗ ⊗ 7 4
Sudoeste Rio-Grandense � � ⊗ � ⊗ ⊗ ⊗ 7 9
Grande Florianópolis � � � ⊗ ⊗ � 6 7
Norte Catarinense � ⊗ ⊗ ⊗ � 5 6
Oeste Catarinense � ⊗ ⊗ ⊗ ⊗ ⊗ � ⊗ 8 9
Sul Catarinense � ⊗ ⊗ � � � 6 8
Vale do Itajaí � � ⊗ ⊗ � ⊗ 6 12
Litoral Sul Paulista � � � 3 3
Metropolitana de São Paulo � ⊗ ⊗ � 4 4

Total number of operational RCs 36 20 33 9 2 32 38 34 12 16 28 28 − −

Note: Symbol � indicates that RC was installed and is already operational; symbol ⊗ indicates that RC is operational
because it was installed in a microtime period before.
? Number of microtime periods for which RCs are operational.
?? Number of affected areas (totally or partially) served by operational RCs.

Table 3 shows that average RCs’ utilization is higher in the South and Southeast regions
of the country, which is due to two main factors: (i) the representativeness of these regions in
the total number of disaster victims during the period considered in the analysis; and (ii) the
high levels of social vulnerability of some of its affected areas. In fact, about 58% of the total
amount of victims’ needs are due to the South (30.9%) and the Southeast (27%) regions, while
the North and the Northeast regions account for 20.1% and 22%, respectively. Regarding the
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spatial distribution of SoVI, note that although the North and the Northeast regions have a
greater social vulnerability on average, the South and the Southeast regions have the three most
vulnerable affected areas, namely Sudeste Rio-Grandense (SoVI = 1.3475), Metropolitana do
Rio de Janeiro (SoVI = 1.2845), and Metropolitana de São Paulo (SoVI = 1.2474).

Table 3: Utilization of relief centers for each Brazilian region as the ratio (in %) between the number of operational
RCs and the total number of RCs candidates.

Relief Microtime periods
Average

centers? 1 2 3 4 5 6 7 8 9 10 11 12

North 7 42.86 57.14 85.71 14.29 14.29 14.29 85.71 100.0?? 14.29 14.29 28.57 14.29 40.48
Northeast 17 70.59 64.71 100.0 17.65 5.88 29.41 41.18 35.29 17.65 23.53 47.06 29.41 40.20
South 13 46.15 15.38 53.85 15.38 69.23 84.62 76.92 76.92 53.85 69.23 84.62 61.54 58.97
Southeast 16 93.75 18.75 18.75 18.75 56.25 93.75 93.75 68.75 6.250 12.50 43.75 87.50 51.04

Average − 63.34 39.00 64.58 16.52 36.41 55.52 74.39 70.24 23.01 29.89 51.00 48.18 47.67
? Total number of RCs candidates per region.
?? In this case all the 7 RCs candidates were operational.

Insight 4. It would be useful to evaluate the possibility of keeping the RCs that serve a significant
number of affected areas operational throughout the year, or at least in the period of the year
in which the probability of having more disasters is greater, which may depend on the region.
This could reduce the response time associated with their establishment in the post-disaster, thus
speeding up the deployment of humanitarian assistance.

Table 4 shows that victims’ needs are fulfilled via a hybrid strategy entailing prepositioning
(71.63%) and local procurement (28.37%). Although the unit local procurement cost of all
emergency goods is 50% higher than their unit cost of prepositioning in our base-case, the
latter strategy incurs in higher opening/operational costs and, in addition, transportation costs
from warehouses to relief centers must be taken into account. The procurement of emergency
products in the post-disaster, on the other hand, considers only their purchasing cost. Therefore,
for some relief goods, it is worth to adopt local procurement. Note that, for example, the
needs for single mattresses are 44.34% satisfied via procurement. In fact, as this relief aid
occupies the largest area per square meter (1.44 m2/unit), prepositioning would imply the need
of establishing more and/or larger warehouses, which could increase logistics costs substantially.
In order to more thoroughly analyze the role of local procurement, we ran additional tests
considering different local procurement costs and/or availability of relief goods. As expected,
when the local procurement costs increase, yet slightly, this strategy is an even less appealing
option to meet victims’ needs. In particular, increasing these costs beyond 16% implies a steep
decrease in the percentage of needs satisfied by means of local procurement (≈ 47%). In such a
case, relief service levels are marginally deteriorated (≈ 1.8%) because prepositioning is 15.78%
incremented. In most cases, mattresses are still locally procured even with a further increase in
the local procurement costs, which confirms our previous findings and highlights the importance
of this strategy to help meeting the needs of this bulky relief aid (see Appendix C for details). As
the local procurement strategy is strongly driven by its costs and availability, and considering
that costs can be very high and goods are not necessarily available in a disaster aftermath,
relying on this strategy can disrupt the effectiveness of the humanitarian assistance.
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Insight 5. One strategy to improve the effectiveness of the humanitarian assistance in case of
scarce resources should be encouraging to raise in-kind donations of relief goods that are generally
local procured, such as water, mattress, and dormitory kits in the disaster aftermath, thus the
disaster budget could prioritize the prepositioning of other emergency goods and/or in a greater
quantity in the preparedness phase, thus helping to reduce the dependency of local procurement.

Table 4: Quantity of relief aid units prepositioned at warehouses and local procured at relief centers.
Relief Victims’ Victims’ Prepositioned Prepositioned Local procured Local procured
aid needs needs met relief aid relief aid? (%) relief aid relief aid? (%)

Water 708,170 451,743 254,211 56.27 197,532 43.73
Food 177,043 112,936 112,936 100.0 − −
Mattress 708,170 451,743 251,419 55.66 200,324 44.34
Dormitory 708,170 451,743 369,065 81.70 82,678 18.30
Hygiene 177,043 112,936 112,936 100.0 − −
Cleaning 177,043 112,936 112,936 100.0 − −

Total 2,655,638 1,694,035 1,213,502 71.63 480,533 28.37
? Both values were evaluated according to the overall victims’ needs met.

The base-case results also show that the warehouse in Belo Horizonte centralizes 49.94% of
the relief aid flow that are shipped to the operational relief centers, followed by the warehouses
located in São Luis (22.68%), João Pessoa (11.06%), Teresina (10.02%), and Natal (6.30%). In
particular, the warehouse in Belo Horizonte ships relief aid to 29 different relief centers; 16 of
which in the Southeast region, altogether corresponding to 53% of the overall flow. Overall, only
a few arcs are necessary to shipping relief aid from warehouses to relief centers. In our base-
case results, this figure represents less than 15% of the feasible arcs. This makes the problem
more robust to potential transportation disruptions. We confirmed this result by conducting
a sensitivity analysis on both transportation costs and network, in which up to 20% of the
arcs were considered damaged or blocked, and transportation costs were 25% higher. Results
reveal that the optimal solution of our base-case problem is indeed only marginally affected by
worsening these two transportation conditions (costs and network). In fact, in all cases, the
same five warehouses were established and the configuration of relief centers was quite similar.
Moreover, the strategy adopted to supply victims’ needs did not present any significant variation
and/or trend (see Appendix D for details).

Figure 11 shows an example of how the various logistics activities (prepositioning, local
procurement and distribution) relate to supply victims’ needs from the Belo Horizonte warehouse
and the Sul/Sudoeste de Minas relief center. 606,070 units of relief aid goods are prepositioned at
Belo Horizonte warehouse. 45,191 (7.5%) are then shipped to the Sul/Sudoeste de Minas relief
center, 5,454 units are locally procured, and 4,499 units are received from other warehouses,
totaling 55,144 items at this RC. 22,673 units (41.1%) are used to cover the victims’ needs
associated with 8 affected areas, such as Metropolitana de Belo Horizonte, Leste Maranhense,
and Metropolitana de São Paulo. The remaining 32,471 units (58.9%) are distributed to 5
relief centers, e.g. Metropolitana de Curitiba, Sudeste Paranaense, Grande Florianópolis, Norte
Catarinense and Vale do Itajaí. These relief centers, in turn, are responsible for serving many
other affected areas. For instance, Sudeste Paranaense (partially) satisfies the needs of Sudoeste
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Amazonense, Mata Pernambucana, Sudoeste Paranaense, Oeste Catarinense, Vale do Itajaí
besides its own. Metropolitana de Curitiba helps meeting the needs of 15 affected areas, and so
forth.

Warehouse in 
Belo Horizonte

Procurement = 5,454

2,723 

Metropolitana de
Belo Horizonte

Vale do Rio 
Doce

Sul/Sudoeste
 de Minas

Metropolitana do 
Rio de Janeiro

Sul Fluminense

Metropolitana de 
Porto Alegre

Metropolitana 
de São Paulo
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12,319 

99 
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Affected areas
Relief centers

Metropolitana 
de Curitiba
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Prepositioning = 606,070

Total victims’ needs = 22,673
Total flow = 32,471
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Other RCs
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Other WHs
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Sudeste 
Paranaense

Grande 
Florianópolis

Figure 11: Example of how the various logistics activities (prepositioning, procurement and distribution) relate
to supply victims’ needs focusing on the warehouse located in Belo Horizonte.

5.2. Implications of reduced budget levels

Figure 12 portrays the relief service levels of all the 53 affected areas in decreasing order of
vulnerability for budget levels 20%, 40%, 60%, 80%, and 90% reduced. For comparison purposes,
the relief service level without considering the priority given by SoVI, which is equivalent to set
SoVI = 1 in the objective function (1), is also plotted. Afterwards, we assess the social benefit
of using SoVI within our humanitarian supply chain, which is based on Definition 2.

Definition 2. The social benefit of using SoVI for affected area ‘a’ in microtime period ‘τ ’ is
the relative difference between the relief service level with and without using SoVI, i.e.,

βaτ = 100%× (αaτ − α′aτ )
α′aτ

, (38)

in which αaτ (α′aτ ) is the relief service level with (without) using SoVI.

Notice that the social benefit of using SoVI is precisely the distance between the blue line
and the red line depicted in Figure 12. Also, it is worth noting that some affected areas will have
a positive benefit while others will experience a negative social benefit, meaning that, in this
case, using SoVI leads to worsened relief service levels. Here, it is important to make sure that
more vulnerable areas will have a positive benefit on average, though. Therefore, we evaluated
the average social benefit for the areas belonging to the following categories: ‘top 5’, ‘top 10’,
‘top 15’, ‘top 20’, ‘top 30’, and ‘top 40’ most vulnerable affected ares, understanding ‘more
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vulnerable’ areas as having higher SoVIs. We also present the global or average relief service
level over all the 53 affected areas. All these figures are summarized in Table 5.
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Figure 12: Relief service levels of the 53 affected areas when budgets are 20%, 40%, 60%, 80%, and 90% reduced.
The exact values are depicted in Table E of Appendix E.

Table 5: Average relief service levels (α in %) and average social benefit (β in %) according to each vulnerability
category for varying budget levels.

Budget level Metric Top 5 Top 10 Top 15 Top 20 Top 30 Top 40 Global relief
service level

No reduction
SoVI 100.0 100.0 100.0 100.0 100.0 100.0 100.0
No SoVI 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Social Benefit 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20% reduction
SoVI 100.0 100.0 100.0 100.0 96.26 92.24 81.57
No SoVI 88.46 84.77 85.26 85.86 84.99 85.40 85.85
Social Benefit 17.18 31.75 30.54 27.35 22.22 14.26 0.4425

40% reduction
SoVI 100.0 100.0 98.14 95.77 89.30 84.19 72.39
No SoVI 72.97 69.12 69.68 67.26 67.15 68.88 69.14
Social Benefit 38.87 59.87 53.22 52.46 36.77 25.35 8.847

60% reduction
SoVI 100.0 96.45 88.26 80.70 71.56 62.94 52.32
No SoVI 56.70 54.00 55.12 53.95 53.29 52.60 52.04
Social Benefit 60.89 52.98 43.41 34.41 22.98 12.61 −0.5822

80% reduction
SoVI 65.93 56.90 55.26 52.26 46.45 40.18 33.07
No SoVI 32.56 33.74 30.91 30.86 30.12 29.77 28.45
Social Benefit 45.69 29.38 31.59 27.75 21.34 13.54 6.867

90% reduction
SoVI 41.35 39.83 35.04 33.61 28.73 26.32 21.36
No SoVI 18.25 20.05 20.40 20.91 19.84 19.71 19.08
Social Benefit 37.59 28.06 20.23 17.00 11.91 8.727 3.439

The radar charts show that, as expected, the relief service levels gradually shrink to the
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center as budget levels decrease, as it is not possible to fulfill all the victims’ needs with reduced
budgets. However, there are significant differences between the charts with/without considering
the priority given by the index SoVI. While the red line chart (without SoVI) contracts in almost
all directions equally, the left side of the blue line chart (with SoVI) clearly shrinks first, indi-
cating that relief service levels are better in more vulnerable affected areas. This is particularly
evident in the top 5 most vulnerable areas, i.e., Sudeste Rio-Grandense, Metropolitana do Rio
de Janeiro, Metropolitana de São Paulo, Mata Paraíbana, and Oeste Maranhense, respectively.
These areas maintain the maximum relief service level even when the budget is 60% reduced. On
the other hand, when SoVI is disregarded, the average relief service level of these municipalities
is only 56.70%, confirming that the social-effectiveness of the humanitarian assistance substan-
tially improves with the incorporation of SoVI as a prioritization weight. In the situation of
extreme scarcity of resources, e.g., when there is no more than 10% of the budget, the inclusion
of SoVI as a prioritization measure enhances the social benefit by an average of 37.59%, 28.06%,
and 20.23% for the top 5, top 10, and top 25 most vulnerable areas. This comes with a price,
though, since the average social benefit of the 15 least vulnerable areas is −11.12%.

Figure 13 illustrates the spatiality of the relief service levels of the top 20 most vulnerable
affected areas for budget levels reduced by 40% (map A), 60% (map B), 80% (map C), and
90% (map D). In general, our SoVI approach provides a decent coverage for those affected
areas when resources are limited. Most areas indeed display relatively good relief service levels;
around 80%− 100% for budget reductions up to 60%, around 60%− 40% for budget levels 80%
reduced; and around 20%− 40% in the extreme case of 90% reduction. Even with little budget,
some areas exhibit surprisingly good relief service levels, e.g., Sudeste Rio-Grandense (60.27%),
Mata Paraibana (77.40%), and Oeste Potiguar (50%), as shown in map D. Although the SoVI
approach provides better relief service levels for more vulnerable communities on average, there
are some exceptions. For example, Central Espírito-Santense, the sixth least vulnerable area,
has a service level 33.33% better than Oeste Maranhense, the fifth most vulnerable area. One
explanation for this behavior, for this particular case, is the fact that our objective function also
encourages the fulfillment of municipalities with greater needs; therefore, as Central Espírito-
Santense has 13,015 victims over the two macrotime periods and Oeste Maranhense has 7,088,
priority was given to the former.
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Figure 13: Relief service levels for different budgets.

Insight 6. The overall great social benefit of using SoVI reveals the importance of considering
this index in designing more social-effective humanitarian supply chains. In particular, the
SoVI strategy: (a) becomes more effective as the budget level is reduced; however, after a given
threshold (reduction above 80% in our case), the social benefit of using SoVI is less pronounced;
(b) improves the average relief service-level of most affected areas at the expense of a marginal
deterioration of that of the remaining ones; (c) is very effective in improving the worst-case
relief service-levels of the top 5 most vulnerable areas.

5.3. Wait-and-see versus here-and-now solutions based on historical information

Our deterministic approach and the solutions analyzed so far are based on the premise
that the number of victims (and their needs) is known before making any decision. More
precisely, this number is supposed to be accurately represented by the average values obtained
from 14 years of disaster data. This deterministic modelling paradigm in which (disaster) data
is first observed and decisions can only be made afterwards in hindsight is called wait-and-
see. Another modelling paradigm, hereafter called here-and-now, would be assuming that we
do not know the exact number of victims, but we have to make strategic decisions such as
warehouse location and prepositioning without it. Therefore, these decisions must be robust for
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any particular outcomes and optimal on average over all possible realizations. After observing the
disaster data, short-term decisions such as local procurement and service levels can be adjusted
to accommodate any disaster data optimally. One question that may arise in this context is
whether there is a significant difference between the solutions given by these two approaches.
To answer this question we perform a comparison analysis amongst (i) the solution of our

deterministic base-case instance (our benchmark solution), (ii) the wait-and-see solutions, and
(iii) the here-and-now solutions, focusing on long-term decisions concerning warehouse location
and prepositioning, and short-term decisions of local procurement and relief service levels. The
wait-and-see solutions are computed by solving deterministic one-macrotime-period problems,
each one associated with a given year, say ξ, of disaster data, for ξ = 2003, 2004, · · · , 2016,
totalling 14 problems (and solutions). The here-and-now solution is obtained via solving a
scenario-based two-stage stochastic programming problem in which the disaster data for each
year is treated as one scenario. In this case, all the macrotime decision variables are defined as
first-stage ones, whereas the microtime decision variables are treated as second-stage ones. We
also run a here-and-now problem with 5 scenarios as a combination of the 14 original scenarios to
obtain better-quality solutions since the instance with 14 scenarios is difficult to solve. Further
details are given in Appendix F.

Table 6 shows the warehouse location decisions of the base-case, wait-and-see, and here-
and-now approaches. Observations on Tables 6 and 7 are summarized as follows. Although the
overall number of installed warehouses of the wait-and-see solutions varies from 3 (years 2003,
2006, and 2016) to 7 (years 2004 and 2008), the average number is 5, which coincides with the
optimal number given by the base-case instance. Clearly, the warehouse location follows the
same rationale in all approaches: less expensive locations are generally selected to host this type
of facility, as already inferred in Insight 3. Interestingly, the solutions of the worst-case (the
highest number of victims) and best-case (the lowest number of victims) scenarios are quite
similar. Notice that João Pessoa and Teresina show up in all cases, and São Luís and Natal
show up in 88.24% of the instances, indicating that this aspect of the solution is not supposed
to change substantially regardless at which stage this decision has to be made or how much
information is available at that stage. Although both the prepositioning and local procurement
levels vary a lot amongst all the strategies, it is clear that the latter strategy is preferred in most
cases. One remarkable exception is the wait-and-see years 2006 and 2016, and the here-and-now
solution with all the 14 scenarios. In the first case, notice that because local procurement was
preferred, only 3 warehouses were needed. In the second case, the favoritism towards the local
procurement strategy is attributed to its poor solution quality, mainly reflected by the relief
service levels of only 50.08%. The overall analysis of the relief service levels reveals that our
SoVI approach is deemed important for serving more vulnerable areas in pessimistic situations.
For example, the global relief service level of the wait-and-see year 2009 (worst-case scenario) is
30.90%, against 83.28% attributed to the top 5 more vulnerable areas; the years 2008 and 2013
(second and third worst years in terms of overall victims) exhibit a similar behavior.
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Insight 7. The warehouse location decision does not vary much across the different approaches.
This decision is robust even when the flexibility of the wait-and-see paradigm is allowed. Although
the prepositioning and local procurement solutions considerably vary amongst the approaches,
their qualitative behavior mostly follows the same rationale of favoring prepositioning to obtain
better relief service levels. Last, the relief service levels of the top 5 most vulnerable areas are
rather stable across wait-and-see and here-and-now approaches. Therefore, even under uncer-
tainty, the deterministic solutions, particularly our base-case one, would work well to guide the
policy makers on where to locate the warehouses and how to serve the most vulnerable areas.

Table 6: Warehouse location decisions of the base-case, wait-and-see, and here-and-now approaches.
Rio Branco Fortaleza São Luís Belo Horizonte João Pessoa Recife Teresina Natal São Paulo Total

Base-case (benchmark) − − 1 1 1 − 1 1 − 5

Wait-and-see year 2003 − − 1 − 1 − 1 − − 3
Wait-and-see year 2004 1 1 1 1 1 − 1 1 − 7
Wait-and-see year 2005 − − 1 − 1 − 1 1 1 5
Wait-and-see year 2006 − − − − 1 − 1 1 − 3
Wait-and-see year 2007 − 1 1 − 1 − 1 − − 4
Wait-and-see year 2008 − 1 1 1 1 1 1 1 − 7
Wait-and-see year 2009 − − 1 1 1 − 1 1 − 5
Wait-and-see year 2010 − 1 1 1 1 − 1 1 − 6
Wait-and-see year 2011 − 1 1 1 1 − 1 1 − 6
Wait-and-see year 2012 − 1 1 1 1 − 1 1 − 6
Wait-and-see year 2013 − 1 1 1 1 − 1 1 − 6
Wait-and-see year 2014 − 1 1 1 1 − 1 1 − 6
Wait-and-see year 2015 − 1 1 1 1 − 1 1 − 6
Wait-and-see year 2016 − − − − 1 − 1 1 − 3
Here-and-now? (5 scenarios) − 1 1 1 1 − 1 1 6
Here-and-now?? (14 scenarios) − − 1 − 1 − 1 1 − 4

Frequency??? (%) 5.882 58.82 88.24 64.71 100.0 5.882 100.0 88.24 5.882 −

Worst-case scenario; Best-case scenario.
? Solved using a Fix-and-Optimize heuristic as the exact Branch-and-Cut (default CPLEX method) was unable
to provide a feasible solution after 36 hours of computation. The elapsed time was 12,300 seconds. See the details
of the heuristic method in Appendix F.
?? Solved using a Fix-and-Optimize heuristic as the exact Branch-and-Cut (default CPLEX method) was unable
to provide a feasible solution after 36 hours of computation. The elapsed time was 36 hours. See the details of
the heuristic method in Appendix F.
??? The frequency (in %) in which a given warehouse is installed over the 17 analyzed instances (base-case, 14
wait-and-see, and 2 here-and-now instances).
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Table 7: Prepositioning, local procurement, and relief service levels given by the base-case, wait-and-see, and
here-and-now approaches.

Prepositioned Prepositioned? Local procured Local procured? Global relief Top 5 Top 10 Top 15 Top 20
relief aid relief aid (%) relief aid relief aid (%) service level (%) (%) (%) (%) (%)

Base-case 606,751 71.64 240,267 28.36 72.39 100.0 100.0 98.14 95.77

Wait-and-see year 2003 285,411 56.72 217,742 43.28 100.0 100.0 100.0 100.0 100.0
Wait-and-see year 2004 564,115 70.75 233,254 29.25 90.23 100.0 100.0 100.0 100.0
Wait-and-see year 2005 398,501 56.29 309,436 43.71 100.0 100.0 100.0 100.0 100.0
Wait-and-see year 2006 163,961 34.72 308,340 65.28 100.0 100.0 100.0 100.0 100.0
Wait-and-see year 2007 307,920 48.10 332,283 51.90 99.62 100.0 100.0 100.0 100.0
Wait-and-see year 2008 576,496 71.05 234,886 28.95 54.25 83.33 76.94 62.00 65.45
Wait-and-see year 2009 460,435 59.79 309,606 40.21 30.90 83.28 59.97 49.54 43.08
Wait-and-see year 2010 478,557 57.56 352,794 42.44 50.12 67.60 55.30 51.10 54.92
Wait-and-see year 2011 472,876 57.53 349,025 42.47 73.53 100.0 100.0 100.0 100.0
Wait-and-see year 2012 471,922 57.75 345,321 42.25 66.80 100.0 100.0 100.0 93.91
Wait-and-see year 2013 471,922 57.16 353,622 42.84 56.61 100.0 94.69 93.78 83.06
Wait-and-see year 2014 471,922 57.37 350,648 42.63 90.38 100.0 100.0 100.0 100.0
Wait-and-see year 2015 472,468 56.96 357,062 43.04 76.54 100.0 100.0 97.50 98.08
Wait-and-see year 2016 121,867 30.97 271,595 69.03 100.0 100.0 100.0 100.0 100.0
Wait-and-see?? (average) 408,455 55.19 308,972 44.81 77.78 95.30 91.92 89.57 88.46
Here-and-now??? (5 scenarios) 488,971 67.34 237,138 32.66 75.81 99.33 98.20 96.34 93.19
Here-and-now???? (14 scenarios) 88,204 23.39 288,838 76.61 50.08 72.11 63.77 60.26 60.19

Worst-case scenario; Best-case scenario.
? Both values were evaluated according to the overall victims’ needs served.
?? The average wait-and-see (WS) over 14 wait-and-see solutions.
??? Solved using a Fix-and-Optimize heuristic as the exact Branch-and-Cut (default CPLEX method) was unable
to provide a feasible solution after 36 hours of computation. The elapsed time was 12,300 seconds. See the details
of the heuristic method in Appendix F.
???? Solved using a Fix-and-Optimize heuristic as the exact Branch-and-Cut (default CPLEX method) was unable
to provide a feasible solution after 36 hours of computation. The elapsed time was 36 hours. See the details of
the heuristic method in Appendix F.

6. Conclusions and Future research

We have presented a novel optimization framework to build disaster preparedness and re-
sponse capacity via prepositioning networks when people’s vulnerability matters. To this aim,
our model entails typical long- and medium-term disaster management decisions, such as loca-
tion of warehouses and relief centers, capacity expansion, and relief aid flow. In the absence of
sufficient resources to supply all victims’ needs, our approach encourages the prioritization of
more vulnerable areas, which is aligned with the well-established idea that the more vulnerable
populations have both a reduced capacity for and a decrease ability to cope with disasters. Our
approach was applied to real-data from Brazilian disasters ranging from 2003-2016, encompass-
ing eleven recurrent events that hit Brazil year after year. Our results brought about key insights
that can be useful to re-think the humanitarian supply chain in the country. In particular, we
have showed that the social benefit of using SoVI is particular significant for decreased budget
levels and the top 5 most vulnerable areas, which reinforces the importance of considering this
index to design more social-effective humanitarian supply chains. Moreover, SoVI might also
help to improve worst-case relief service levels at the expense of a marginal deterioration of that
of the remaining areas. Future research includes developing other objective functions to take
into account different vulnerability dimensions other than the social, as well as other challeng-
ing aspects of humanitarian operations (Ferrer et al., 2018). The resulting optimization model
will naturally be a multi-objective one, for which specialized methods should be developed to
find the efficient frontier (Gutjahr and Nolz, 2016). The integration of our proposed disaster
preparedness framework to allocation of resources in other contexts (Moreno et al., 2019, 2020;
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Doan and Shaw, 2019), or from a multi-agency coordination perspective (Rodríguez-Espíndola
et al., 2020) is another promising topic of investigation.
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Appendix A

The affected areas (mesoregions) for each one of the 17 states in descending order of the
relative figures over the total number of victims is showed in Table A. We then consider all those
affected areas whose corresponding relative number of victims is greater or equal to 0.5%.All the
remaining 53 areas were treated as affected areas and thus candidates to locate relief centers.

Table A: Brazilian affected areas and respective number of victims in 2003-2016.
Affected area Victims* % Affected area Victims* %

Centro Amazonense 473463 8.510 Sul Cearense** 20708 0.3722
Vale do Itajaí 385660 6.932 Sertão Paraibano** 20217 0.3634
Metropolitana de Porto Alegre 375316 6.746 Agreste Paraibano** 18691 0.3360
Metropolitana do Rio de Janeiro 189526 3.407 Centro-Sul Paranaense** 18395 0.3306
Zona da Mata 186023 3.344 Vale São-Franciscano da Bahia** 18110 0.3255
Vale do Rio Doce 153465 2.758 Campinas** 17758 0.3192
Norte Catarinense 147269 2.647 Metropolitana de Fortaleza** 16758 0.3012
Sul Amazonense 139383 2.505 Vale do Paraiba Paulista** 16383 0.2945
Mata Pernambucana 127242 2.287 Baixadas** 16285 0.2927
Sul Baiano 122465 2.201 Centro Norte Baiano** 16276 0.2926
Metropolitana de Curitiba 119697 2.152 São Francisco Pernambucano** 15834 0.2846
Sudoeste Amazonense 119244 2.143 Macro Metropolitana Paulista** 15443 0.2776
Noroeste Fluminense 115090 2.069 Sertão Pernambucano** 12648 0.2273
Centro Maranhense 97766 1.757 Leste Potiguar** 12436 0.2235
Baixo Amazonas 97385 1.750 Jequitinhonha** 12338 0.2218
Metropolitana de São Paulo 91882 1.652 Oeste de Minas** 11862 0.2132
Central Espírito-Santense 91064 1.637 Sul Maranhense** 11112 0.1997
Norte Maranhense 90490 1.627 Sudoeste Piauiense** 10688 0.1921
Metropolitana de Belo Horizonte 86094 1.548 Noroeste de Minas** 9315 0.1674
Sudoeste Rio-Grandense 81859 1.471 Norte Pioneiro Paranaense** 9215 0.1656
Metropolitana de Salvador 78730 1.415 Centro Ocidental Rio-Grandense** 8787 0.1579
Leste Maranhense 75361 1.355 Noroeste Paranaense** 8300 0.1492
Centro Oriental Rio-Grandense 73489 1.321 Centro Oriental Paranaense** 7705 0.1385
Sul Espírito-Santense 71511 1.285 Nordeste Rio-Grandense** 7658 0.1376
Grande Florianópolis 69470 1.249 Itapetininga** 7346 0.1320
Norte Piauiense 69384 1.247 Borborema** 7194 0.1293
Vale do Acre 64047 1.151 Bauru** 7107 0.1277
Noroeste Rio-Grandense 63571 1.143 Norte Central Paranaense** 6973 0.1253
Sudeste Paraense 62783 1.128 Marajó** 6656 0.1196
Sul Catarinense 62499 1.123 Central Potiguar** 6287 0.1130
Litoral Sul Paulista 61381 1.103 Presidente Prudente** 6112 0.1099
Norte Fluminense 60707 1.091 Nordeste Paraense** 5643 0.1014
Mata Paraíbana 57629 1.036 Ribeirão Preto** 5517 0.0992
Sul/Sudoeste de Minas 52752 0.9482 Extremo Oeste Baiano** 5507 0.0990
Oeste Potiguar 49602 0.8916 Campo das Vertentes** 5327 0.0958
Oeste Maranhense 49462 0.8891 Piracaia** 5271 0.0947
Norte de Minas 48957 0.8800 Agreste Potiguar** 5091 0.0915
Jaguaribe 48801 0.8772 Sudeste Piauiense** 4994 0.0898
Centro-Norte Piauiense 47576 0.8552 Triângulo Mineiro/Alto Paranaíba** 4940 0.0888
Sudeste Paranaense 45872 0.8245 Assis** 4477 0.0805
Oeste Catarinense 42624 0.7661 Central Mineira** 3089 0.0555
Sudoeste Paraense 40125 0.7212 Vale do Juruá** 3060 0.0550
Litoral Norte Espirítio-Santense 39676 0.7132 Centro Ocidental Paranaense** 1502 0.0270
Noroeste Cearense 38708 0.6958 São José do Rio Preto** 1194 0.0215
Norte Cearense 38053 0.6840 Metropolitana de Belém** 517 0.0093
Agreste Pernambucano 36506 0.6562 Marília** 381 0.0068
Noroestel Espírito-Santense 32840 0.5903 Araçatuba** 293 0.0053
Nordeste Baiano 32166 0.5782 Araraquara** 144 0.0026
Sudeste Rio-Grandense 32113 0.5772 Lagoa dos Patos** 76 0.0014

Sudoeste Paranaense 31755 0.5708 Total 5,563,412 100

Centro-Sul Cearense 30306 0.5447
Sul Fluminense 28742 0.5166
Centro Fluminense 28167 0.5063

Metropolitana de Recife** 27216 0.4892
Serrana** 26439 0.4752
Oeste Paranaense** 25661 0.4612
Norte Amazonense** 23612 0.4244
Vale do Mucuri** 23301 0.4188
Sertões Cearenses** 22225 0.3995
Centro Sul Baiano** 21590 0.3881

*Cumulative number of affected people in 2003-2016.
**Affected areas that were not considered in the analyses.

Appendix B

In order to establish a reference budget, we have solved the corresponding cost-minimization
problem subjected to full satisfaction of victims’ needs, replacing the ‘less-than or equal to’
constraints (20) by its ‘equal to’ version, as follow:
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Constraints (2)− (19), (21)− (30).

The solution for this problem gives a budget of 592,764,070 BRL for the first macrotime
period and 362,524,615 for the second macrotime period.

Appendix C

Table B shows the sensitivity analysis of the local procurement costs (parameter µcmτ ),
and availability of relief aid for local procurement (parameter urc−max

cmτ ). Cases 1− 7 refer to the
instances in which the local procurement costs increase from 1.75 to 3.25 times the corresponding
prepositioning cost. Cases 7 − 14 refer to the instances in which the local procurement costs
increase from 1.75 to 3.25 times the corresponding prepositioning cost and, simultaneously, the
availability of relief aid for local procurement increases from 0.4 to 1.0 times the corresponding
victims’ needs.

Table B: Sensitivity analysis of the local procurement costs.
Local procu- Availa- Prep. Proc. Victims’ needs Victims’ needs Global relief Top 5 relief Top 10 relief Top 15 relief Top 20 relief
-rement cost bility cost covered via covered via service service service service service service

(µcmτ ) (urc−max
cmτ ) (%) prep. (%) local proc. (%) level (%) level (%) level (%) level (%) level (%) level (%)

Base-case 1.5 · ρcnt 0.3 · dcaτ 32.04 16.39 45.70 18.09 72.39 100.0 100.0 98.14 95.77

Case 1 1.75 · ρcnt 0.3 · dcaτ 33.72 14.71 52.91 9.621 71.11 100.0 100.0 97.92 95.61
Case 2 2.0 · ρcnt 0.3 · dcaτ 33.18 16.30 53.97 7.393 71.39 100.0 100.0 97.81 95.52
Case 3 2.25 · ρcnt 0.3 · dcaτ 32.61 17.69 52.94 7.129 70.66 100.0 100.0 97.81 95.52
Case 4 2.5 · ρcnt 0.3 · dcaτ 32.21 18.50 52.08 6.710 69.63 100.0 100.0 97.81 94.72
Case 5 2.75 · ρcnt 0.3 · dcaτ 31.65 19.94 51.18 6.574 68.81 100.0 100.0 96.56 93.33
Case 6 3.0 · ρcnt 0.3 · dcaτ 31.27 20.81 50.43 6.292 67.66 98.18 98.26 94.84 90.60
Case 7 3.25 · ρcnt 0.3 · dcaτ 31.81 18.81 50.57 5.248 65.84 94.29 90.45 88.52 85.72
Case 8 1.75 · ρcnt 0.4 · dcaτ 32.70 19.07 54.62 10.10 72.20 100.0 100.0 99.40 96.72
Case 9 2.00 · ρcnt 0.5 · dcaτ 29.80 27.86 48.77 16.14 70.74 100.0 100.0 99.68 96.43
Case 10 2.25 · ρcnt 0.6 · dcaτ 28.01 33.38 50.14 13.46 71.61 100.0 100.0 99.99 96.66
Case 11 2.5 · ρcnt 0.7 · dcaτ 26.44 38.99 48.26 14.14 71.36 98.18 97.84 98.21 95.32
Case 12 2.75 · ρcnt 0.8 · dcaτ 25.11 42.37 46.18 13.97 68.19 94.29 91.80 90.03 86.86
Case 13 3.00 · ρcnt 0.9 · dcaτ 25.42 40.78 45.59 12.33 67.23 94.29 92.63 91.09 87.65
Case 14 3.25 · ρcnt dcaτ 24.42 43.31 43.94 12.08 65.75 94.29 90.02 88.24 85.51
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Appendix D

We have conducted a sensitivity analysis on the transportation cost and network. To that
end, we have analyzed 7 new instances for varying transportation costs and network damaged
levels, as presented in Table C. The first three instances (Case 1 − Case 3) have the same
transportation costs, but the transportation network is 5%, 10%, and 20% damaged, respectively.
This means there are fewer arcs to perform transportation. The last three instances (Case 4 −
Case 7) have a 25% increase in transportation costs and the transportation network is 0%, 5%,
10%, and 20% damaged, respectively.

Table C: Sensitivity analysis of the transportation costs and transportation network.
Transp. cost Damage? Transp. cost?? Prep. cost Local proc. Transp. Needs covered Needs covered

(χckk′τ ) (%) increase (%) (%) cost (%) cost (%) via prep. (%) via local proc. (%)

Base-case χckk′τ 0% − 32.04 16.39 0.5840 45.70 18.09

Case 1 χckk′τ 5% 0.0984 32.12 16.27 0.5846 45.82 17.97
Case 2 χckk′τ 10% 4.023 32.23 16.12 0.6075 45.95 17.84
Case 3 χckk′τ 20% 16.67 32.09 16.22 0.6814 45.79 17.90
Case 4 1.25 · χckk′τ 0% 21.97 32.07 16.27 0.7124 45.74 17.97
Case 5 1.25 · χckk′τ 5% 23.12 32.07 16.27 0.7191 45.75 17.96
Case 6 1.25 · χckk′τ 10% 26.72 32.02 16.32 0.7401 45.67 18.02
Case 7 1.25 · χckk′τ 20% 45.56 32.32 15.79 0.8501 46.16 17.45

? Randomly generated.
?? In comparison to the base-case.

Appendix E

Tables D and E summarize the optimal solutions for different budget levels.

Table D: Warehouse location for different budget levels.
Warehouse State No reduction 20% reduction 40% reduction 60% reduction 80% reduction 90% reduction

Rio Branco AC 1 - - - - -
Salvador BA 1 - - - - -
Fortaleza CE 1 1 - - 1 -
São Luís MA 1 1 1 1 - -
Belo Horizonte MG 1 1 1 - - -
Belém PA 1 1 - - - -
João Pessoa PB 1 1 1 1 1 1
Recife PE 1 - - - - -
Teresina PI 1 1 1 1 - -
Natal RN 1 1 1 - 1 -
Porto Alegre RS 1 - - - - -

Total 11 7 5 3 3 1
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Table E: Global relief service levels of the affected areas for different budget levels.
20% reduction 40% reduction 60% reduction 80% reduction 90% reduction

SoVI No SoVI Social SoVI No SoVI Social SoVI No SoVI Social SoVI No SoVI Social SoVI No SoVI Social
benefit benefit benefit benefit benefit

Sudeste Rio-Grandense 100.0 79.39 21.50 100.0 72.73 27.27 100.0 56.86 63.01 72.73 27.27 45.45 60.27 18.18 45.45
Metropolitana do Rio de Janeiro 100.0 83.33 16.67 100.0 69.76 39.10 100.0 64.34 56.42 66.67 33.33 33.33 34.34 30.76 12.06
Metropolitana de São Paulo 100.0 88.89 11.11 100.0 58.47 64.58 100.0 39.08 108.25 54.53 22.22 44.44 22.22 11.11 11.11
Mata Paraíbana 100.0 100.0 0.0000 100.0 85.71 14.29 100.0 85.71 14.29 85.71 74.54 51.33 77.40 31.18 106.8
Oeste Maranhense 100.0 90.68 36.63 100.0 78.18 49.13 100.0 37.50 62.50 50.00 5.409 53.89 12.50 0.0000 12.50
Oeste Potiguar 100.0 81.39 72.79 100.0 64.22 127.7 100.0 50.00 50.00 50.00 48.53 1.559 50.00 25.00 25.00
Sudoeste Paraense 100.0 75.06 56.15 100.0 52.47 117.3 100.0 35.90 70.71 28.57 26.51 2.404 28.57 14.29 14.29
Sudeste Paraense 100.0 82.54 39.31 100.0 70.49 70.78 95.76 54.73 42.17 40.00 30.00 10.00 40.00 20.00 20.00
Centro-Norte Piauiense 100.0 78.18 49.13 100.0 65.68 61.63 85.40 62.50 25.00 62.50 36.26 26.38 39.67 25.00 25.00
Noroeste Rio-Grandense 100.0 88.22 14.20 100.0 73.45 26.90 83.33 53.33 37.51 58.33 33.33 25.00 33.33 25.00 8.333
Noroeste Cearense 100.0 72.01 52.01 100.0 61.45 80.79 66.67 50.00 16.67 33.33 20.32 59.42 16.67 16.67 0.0000
Nordeste Baiano 100.0 90.00 10.00 90.00 82.54 29.31 80.00 63.00 33.33 60.00 20.00 40.00 30.00 20.00 10.00
Sul/Sudoeste de Minas 100.0 84.93 26.54 100.0 75.84 35.63 81.82 59.97 53.18 63.64 27.27 36.36 36.36 27.27 9.091
Vale do Rio Doce 100.0 94.96 10.15 96.43 73.39 39.49 73.73 70.98 3.861 60.00 30.00 30.00 30.00 27.25 3.796
Centro Maranhense 100.0 89.35 41.87 85.71 60.79 14.29 57.14 42.86 14.29 42.86 28.57 14.29 14.29 14.29 0.0000
Metropolitana de Salvador 100.0 90.00 10.00 90.00 66.84 24.62 70.00 55.57 10.00 50.00 33.92 25.54 30.00 29.06 1.033
Metropolitana de Belo Horizonte 100.0 80.00 20.00 90.00 64.60 31.73 60.00 48.63 27.51 42.94 26.45 25.52 30.00 26.45 5.515
Sudoeste Amazonense 100.0 90.00 10.00 90.00 62.54 49.31 66.90 56.44 15.67 50.00 30.00 20.00 30.00 20.00 10.00
Litoral Sul Paulista 100.0 90.00 10.00 90.00 62.54 49.31 60.00 52.39 0.4525 40.00 30.00 10.00 40.00 20.00 20.00
Agreste Pernambucano 100.0 88.33 38.89 83.33 43.46 96.02 33.33 39.22 -16.67 33.33 33.33 0.0000 16.67 16.67 0.0000
Sul Catarinense 100.0 91.30 27.97 91.67 68.37 16.67 66.67 56.11 11.37 50.00 33.33 16.67 33.33 25.00 8.333
Zona da Mata 100.0 90.91 9.091 88.60 75.10 25.95 63.78 67.88 -9.744 54.55 36.36 18.18 31.42 27.27 9.091
Norte Maranhense 100.0 70.91 65.51 83.33 54.24 16.67 33.33 33.33 0.0000 33.33 22.40 31.77 16.67 16.67 0.0000
Leste Maranhense 98.50 89.35 35.98 71.43 60.78 0.0000 57.14 42.86 14.29 42.86 4.531 59.33 0.0000 0.0000 0.0000
Mata Pernambucana 85.71 76.29 27.71 71.43 60.78 41.87 57.14 57.14 0.0000 52.06 36.70 16.18 28.57 28.57 0.0000
Jaguaribe 80.00 80.00 0.0000 60.00 67.70 -20.00 40.00 40.00 0.0000 0.0000 3.145 -20.00 0.0000 0.0000 0.0000
Oeste Catarinense 91.67 89.19 3.525 83.33 71.78 13.58 58.33 57.61 0.7892 41.67 25.00 16.67 25.00 25.00 0.0000
Vale do Itajaí 90.91 90.91 0.0000 81.82 72.73 9.091 51.84 48.25 11.69 37.64 38.43 -3.486 27.27 27.27 0.0000
Norte de Minas 90.91 90.91 0.0000 81.82 75.04 0.0000 54.55 66.52 -27.27 36.36 36.36 0.0000 27.27 27.27 0.0000
Norte Piauiense 50.00 62.72 -50.00 50.00 62.93 -50.00 50.00 50.00 0.0000 0.00 50.00 -50.00 0.0000 0.0000 0.0000
Baixo Amazonas 90.00 89.47 -5.571 80.36 82.40 0.000 40.00 50.00 -10.00 30.00 40.00 -10.00 30.00 30.00 0.0000
Centro Amazonense 90.99 86.70 10.60 75.00 77.12 -8.333 50.00 50.00 0.0000 33.33 33.33 0.0000 25.00 25.00 0.0000
Metropolitana de Porto Alegre 83.33 83.33 0.000 75.00 75.00 0.0000 50.00 61.25 -16.67 33.33 39.11 -16.67 25.00 25.00 0.0000
Vale do Acre 83.33 83.33 0.000 66.67 56.71 24.76 16.67 44.28 -50.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Sul Baiano 83.33 91.67 -8.333 75.00 75.00 0.0000 50.00 50.00 0.0000 30.90 40.08 -10.77 25.00 27.08 -8.333
Sudoeste Paranaense 83.33 86.46 -8.333 66.67 76.17 -16.67 41.67 50.00 -8.333 25.00 41.67 -16.67 25.00 25.00 0.0000
Norte Catarinense 83.33 91.67 -8.333 66.67 78.19 -16.67 41.67 58.17 -25.00 25.00 28.24 -8.33 25.00 25.00 0.0000
Grande Florianópolis 76.30 91.67 -15.37 66.67 77.12 -16.67 41.67 60.83 -25.00 25.00 33.33 -8.33 25.00 25.00 0.0000
Norte Cearense 50.00 78.94 -50.00 50.00 61.51 -33.33 16.67 33.33 -16.67 0.0000 9.214 -16.67 0.0000 0.0000 0.0000
Sul Fluminense 77.78 83.18 -11.11 66.67 81.36 -22.22 22.22 47.27 -33.33 11.11 22.22 -11.11 11.11 11.11 0.0000
Noroestel Espírito-Santense 72.73 81.10 -9.091 63.64 72.73 -9.091 36.36 52.52 -18.18 18.18 25.82 -9.09 9.091 19.72 -18.18
Sul Amazonense 70.00 84.60 -20.00 51.74 68.65 -28.26 27.88 45.89 -32.12 10.00 20.00 -10.00 10.00 10.00 0.0000
Centro Oriental Rio-Grandense 75.00 83.33 -8.333 58.33 70.87 -16.67 33.33 56.31 -25.00 25.00 33.33 -8.333 16.67 25.00 -8.333
Norte Fluminense 75.00 97.09 -25.00 50.00 67.32 -25.00 25.00 45.50 -37.50 12.50 12.50 0.0000 0.0000 12.50 -12.50
Metropolitana de Curitiba 75.00 96.72 -25.00 50.00 71.02 -25.00 33.33 52.27 -25.00 25.00 25.00 0.0000 16.67 25.00 -8.333
Centro-Sul Cearense 60.00 86.78 -40.00 40.00 71.87 -60.00 0.0000 45.15 -60.00 0.0000 20.00 -20.00 0.0000 0.0000 0.0000
Litoral Norte Espirítio-Santense 60.00 85.14 -30.00 40.00 64.50 -30.00 30.00 59.06 -30.00 20.00 25.55 -10.00 10.00 25.55 -20.00
Central Espírito-Santense 50.00 83.33 -33.33 41.67 72.73 -33.33 25.00 61.68 -41.67 23.63 33.33 -9.703 16.67 27.76 -16.67
Sudeste Paranaense 44.44 80.60 -44.44 33.33 74.58 -55.56 22.22 48.17 -33.33 11.11 22.22 -11.11 0.0000 22.22 -22.22
Sul Espírito-Santense 22.22 95.81 -77.78 11.11 69.49 -66.67 11.11 41.65 -44.44 0.0000 22.22 -22.22 0.0000 11.11 -11.11
Sudoeste Rio-Grandense 18.18 87.05 -72.73 18.18 63.64 -45.45 0.0000 48.18 -54.55 0.0000 27.27 -27.27 0.0000 21.99 -27.27
Noroeste Fluminense 11.11 88.89 -77.78 11.11 69.69 -66.67 11.11 59.89 -66.67 0.0000 33.33 -33.33 0.0000 22.22 -22.22
Centro Fluminense 0.0000 83.33 -83.33 0.0000 72.34 -83.33 0.0000 38.24 -66.67 0.0000 16.67 -16.67 0.0000 0.0000 0.0000
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Appendix F

This appendix presents the two-stage stochastic approach developed to analyze alternative
here-and-now solutions when a set of scenarios, say ξ ∈ Ξ, is used to represent the victims’ needs.
The parameters dependent on ξ are as follows. vaτξ is the number of victims in affected area a
at microtime period τ (people) in scenario ξ; v′aτξ is the relative number of victims in affected
area a at microtime period τ in scenario ξ, which is evaluated as vaτξ∑

a′ va′τξ
; dcaτξ is the victims’

needs associated with relief aid c in affected area a at microtime period τ (units) in scenario ξ;
and πξ is the probability of occurrence of scenario ξ. The first-stage decision variables are Pcnt,
Qwnt, Qw−ent , Qw−unt , Iwcnt, Gt, Wt, Y w

nt , Y w−e
nt , and Y w−u

nt . The second-stage decision variables are
Irccmτξ, Qrcmτξ, U rccmτξ, Xckk′τξ, Zamτξ, Y rc

mτξ, and Y
rc−o
mτξ , which all depend on scenario ξ ∈ Ξ. The

scenario-based two-stage stochastic programming version is posed as follows.

max
∑
ξ∈Ξ

∑
a∈A

∑
m∈M

∑
t∈T

∑
τ∈θt

SoVIa · πξ · v′aτξ · Zamτξ. (39)

s.t. Constraints (2)− (13), (17)− (18), (31)∑
c∈C

∑
k∈N ∪M

∑
τ∈Θt

fc ·Xcnkτξ ≤ Qwnt, ∀n ∈ N ∧ t ∈ T ∧ ξ ∈ Ξ. (40)

∑
c∈C

∑
k∈N ∪M

∑
τ∈Θt

fc ·Xcknτξ ≤ Qwnt, ∀n ∈ N ∧ t ∈ T ∧ ξ ∈ Ξ. (41)

Pcnt + Iwcn(t−1) +
∑

k∈N ∪M
k 6=n

∑
τ∈θt

Xcknτξ =
∑

k∈N ∪M
k 6=n

∑
τ∈θt

Xcnkτξ + Iwcnt,

∀c ∈ C ∧ n ∈ N ∧ t ∈ T ∧ ξ ∈ Ξ. (42)

Irccmτξ +
∑

k∈N ∪M
k 6=m

Xcmkτξ +
∑
a∈A

[dcaτξ · Zamτξ] = Irccm(τ−1)ξ +
∑

k∈N ∪M
k 6=m

Xckmτξ + U rccmτξ,

∀c ∈ C ∧m ∈M ∧ τ ∈ θt ∧ t ∈ T ∧ ξ ∈ Ξ. (43)∑
m∈M

Zamτξ ≤ 1, ∀a ∈ A ∧ τ ∈ θt ∧ t ∈ T ∧ ξ ∈ Ξ. (44)

0 ≤ Zamτξ ≤ 1, ∀a ∈ A ∧m ∈M ∧ τ ∈ θt ∧ t ∈ T ∧ ξ ∈ Ξ. (45)∑
c∈C

∑
a∈A

dcaτξ · fc · Zamτξ ≤ Qrcmτξ, ∀m ∈M ∧ τ ∈ θt ∧ t ∈ T ∧ ξ ∈ Ξ. (46)

Qrcmτξ ≥ qrc−min
mξ · Y rc−o

mτξ , ∀m ∈M ∧ τ ∈ θt ∧ t ∈ T ∧ ξ ∈ Ξ. (47)

Qrcmτξ ≤ qrc−max
mξ · Y rc−o

mτξ , ∀m ∈M ∧ τ ∈ θt ∧ t ∈ T ∧ ξ ∈ Ξ. (48)

Y rc
mτξ ≥ Y rc−o

mτξ − Y
rc−o
m(τ−1)ξ, ∀m ∈M ∧ τ ∈ θt ∧ t ∈ T ∧ ξ ∈ Ξ. (49)∑

c∈C

∑
k∈N ∪M

fc ·Xckmτξ ≤ Qrcmrξ, ∀m ∈M ∧ τ ∈ θt ∧ t ∈ T ∧ ξ ∈ Ξ. (50)

∑
c∈C

∑
k∈N ∪M

fc ·Xcmkτξ ≤ Qrcmrξ, ∀m ∈M ∧ τ ∈ θt ∧ t ∈ T ∧ ξ ∈ Ξ. (51)

Irccmτξ ≤ hrc−max
cmξ · Y rc−o

mτξ , ∀c ∈ C ∧m ∈M τ ∈ θt ∧ t ∈ T ∧ ξ ∈ Ξ. (52)∑
c∈C

(
fc · Irccmτξ + fc · U rccmτξ

)
≤ Qrcmτξ, ∀m ∈M ∧ t ∈ T ∧ ξ ∈ Ξ. (53)

U rccmτξ ≤ urc−max
cmτξ · Y rc−o

mτξ , ∀c ∈ C ∧m ∈M τ ∈ θt ∧ t ∈ T ∧ ξ ∈ Ξ. (54)
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Gt ≥
∑
n∈N

γw−newnt · q0
n · Y w

nt +
∑
n∈N

γw−ont ·Qwnt +
∑
n∈N

γw−ent ·Qw−ent +
∑
n∈N

γw−unt ·Qw−unt

+
∑
c∈C

∑
n∈N

ιwcnt · Iwcnt +
∑
c∈C

∑
n∈N

ρcnt · Pcnt

+
∑
m∈M

∑
τ∈Θt

γrc−newmτ · Y rc
mτξ +

∑
m∈M

∑
τ∈Θt

γrc−omτ ·Qrcmτξ +
∑
c∈C

∑
m∈M

∑
τ∈Θt

µcmτ · U rccmτξ

+
∑
a∈A

∑
m∈M

∑
τ∈Θt

ζamτ · Zamτξ +
∑
c∈C

∑
m∈M

∑
τ∈Θt

ιrccmτ · Irccmτξ

+
∑
c∈C

∑
k∈N ∪M

∑
k′∈N ∪M
k′ 6=k

∑
τ∈Θt

χckk′τ ·Xckk′τξ, ∀t ∈ T ∧ ∀ξ ∈ Ξ. (55)

The objective function (39) maximizes the expected effectiveness of the response. The block
of constraints (40)−(55) is similar to its deterministic version developed in Section 3, but it
must now be valid for all ξ ∈ Ξ.

Solution method. The scenario-based version was first solved by the default Branch-and-Cut
(CPLEX) method during 36 hours without returning any feasible solution when the number of
scenarios was greater than 3. This is due to the random recourse structure of the two-stage
model. In fact, it is well-known that this class of problems is indeed more challenging to solve
(Hanasusanto et al., 2016) than fixed recourse formulations. Therefore, we developed a Fix-
and-Optimize (FXO) heuristic strategy to take advantage of the model’s structure that involves
multiple scenarios. The motivation was to be able to solve smaller (possibly easier) subproblems
by decomposing the problem into scenarios, considering that the deterministic version had been
well-solved. FXO starts with an initial feasible solution and tries to improve it iteratively by
solving the subproblems generated by a defined partition criteria. The considered partition
criteria was by scenario. The pseudo-code of our FXO heuristic is outlined in Algorithm 1. Note
that since the partition is by scenario we do not fix the binary variables related to warehouse
location and thus we only need to provide an initial solution for the binary variables Y rc

mτξ and
Y rc−o
mτξ . Such variables were initially set to 0.
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Algorithm 1 Fix-and-Optimize algorithm.
1: Initialization: Generate an initial solution. Fix all the variables in their current values. Define

the partition Pξ for the discrete variables Y rcmτξ and Y rc−omτξ by scenario.
2: Incumbent solution := initial solution; OF_incumbent := objective function of the initial solution;

iter := 0; time := 0; IterLimit := 100; timeLimit := 36 hours.
3: LastImprovement:=0; ξ′ := 1.
4: while iter < IterLimit and time < timeLimit do
5: for ξ = 1 to |Ξ| do
6: if ξ = ξ′ and LastImprovement=1 then
7: Stop.
8: else
9: Unfix variables from set Pξ.

10: Solve the resulting subproblem.
11: if OF_MIP < OF_incumbent then
12: LastImprovement := 0; ξ′ := ξ.
13: Incumbent solution := MIP solution.
14: OF_incumbent:= OF_MIP.
15: end if
16: Fix all variables according to the incumbent solution.
17: end if
18: end for
19: LastImprovement:=1;
20: time := current elapsed time;
21: end while
Note. OF_MIP: objective function of the subproblem; OF_incumbent: objective function of the incumbent
solution; IterLimit: maximum number of iterations; timeLimit: maximum elapsed time.

Here-and-now instance. Two here-and-now instances were considered. The first instance
considered 1 macrotime period and 14 scenarios. The number of victims associated with those
scenarios was generated according to the consolidated number of homeless and displaced victims
for each affected area over the past 14 years of disaster data (2003-2016). In the second instance,
a scenario reduction was performed to have a smaller set of scenarios and, hopefully, an easier
optimization problem to solve. The scenario reduction technique is based on the similarity of
the optimal structure of the wait-and-see solutions related to the warehouse location. Therefore,
we ran all the 14 wait-and-see problems and analyzed their corresponding solutions, as shown
in Table 6. We then identified five distinct groups of scenarios, whose optimal structure is quite
similar amongst themselves: (1) 2003, 2006, and 2009; (2) 2004 and 2008; (3) 2005 and 2009; (4)
2010−2015; and (5) 2007. The scenarios were then evaluated as the average number of victims
within each group, totalling 5 scenarios. The two here-and-now instances, ‘14-sce’ and ‘5-sce’,
assume the scenarios are equiprobable. Both instances were solved using the compact two-stage
formulation and the FXO heuristic. However, the compact formulation did not even provide a
feasible solution within a time limit of 36 hours. On the other hand, FXO provided a feasible
solution in both cases within the same time limit. The instance of 5 scenarios stopped after
12,300 seconds, while the instance of 14 scenarios stopped after 14 hours of processing. Although
it is not possible to determine the optimality gap of both instances, the objective function values
makes it possible to infer that the solution quality of 5-sce is very good because it is very close to
the solution of the wait-and-see approach (4.72 versus 4.74, respectively). From the stochastic
programming theory, we know that the wait-and-see objective function value (WS) can be seen
as an upper bound on the stochastic programming objective function value (RP), i.e., RP ≤WS
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(maximization problem). Therefore, the best possible objective function value for RP would be
4.74. On the other hand, the objective function value of 14-sce is 3.53, which is 25% worse than
WS. In addition, the global relief service level of 14-sce is only 50.08, whereas the global service
level of 5-sce is 72.81%, indicating that the victims’ needs coverage might be further improved
in the first case.
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