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Abstract

We consider the problem of learning a d-variate function f defined on the cube [−1, 1]d ⊂ R
d,

where the algorithm is assumed to have black box access to samples of f within this domain.
Denote Sr ⊂

(
[d]
r

)
; r = 1, . . . , r0 to be sets consisting of unknown r-wise interactions amongst

the coordinate variables. We then focus on the setting where f has an additive structure, i.e.,
it can be represented as

f =
∑

j∈S1

φj +
∑

j∈S2

φj + · · ·+
∑

j∈Sr0

φj,

where each φj; j ∈ Sr is at most r-variate for 1 ≤ r ≤ r0. We derive randomized algorithms that
query f at carefully constructed set of points, and exactly recover each Sr with high probability.
In contrary to the previous work, our analysis does not rely on numerical approximation of
derivatives by finite order differences.

Key words: Sparse additive models, sampling, hash functions, sparse recovery

Mathematics Subject Classifications (2010): 41A25, 41A63, 65D15

1 Introduction

Approximating a function from its samples is a fundamental problem with rich theory developed
in areas such as numerical analysis and statistics, and which also has numerous practical applica-
tions such as in systems biology [15], solving PDEs [7], control systems [45], optimization [34] etc.
Concretely, for an unknown d-variate function f : G → R, one is given information about f in the
form of samples (xi, f(xi))

n
i=1. Here, the xi’s belong to a compact subset G ⊂ R

d. The goal is to

construct a smooth estimate f̂ : G → R such that the error between f̂ and f is small. In this paper
we focus on the high dimensional setting where d is large. We will consider the scenario where the
algorithm has black box access to the function, and can query it at any point within G. This setting
appears for instance in materials science [14], where x represents some material and f(x) some of
its properties of interest (like thermal or electric conductivity). The local-density approximations
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in density functional theory can be used to compute to high accuracy such properties of a given
material. The sampling then corresponds to running a costly numerical PDE-solver. Since such
simulations are typically expensive to run, one would like to minimize the number of queries made.
This setting is different from the regression setting typically considered in statistics wherein the
xi’s are generated apriori from some unknown distribution over G.

Curse of dimensionality. It is well known that provided we only make smoothness assumptions
on f (such as differentiability or Lipschitz continuity), then the problem is intractable, i.e., has
exponential complexity (in the worst case) with respect to the dimension d. For instance if f ∈
Cs(G), then any algorithm needs in the worst case n = Ω(δ−d/s) samples to uniformly approximate
f with error δ ∈ (0, 1), cf. [27, 40]. Furthermore, the constants behind the Ω-notation may also
depend on d. A detailed study of the dependence on d was performed in the field of Information
Based Complexity for f ∈ C∞(G) in a more recent work [28]. The authors show that even here, n =
Ω(2⌊d/2⌋) samples are needed in the worst case for uniform approximation within an error δ ∈ (0, 1)
(with no additional dependence on d hidden behind the Ω-notation). This exponential dependence
on d is commonly referred to as the curse of dimensionality. The above results suggest that in
order to get tractable algorithms in the high dimensional regime, one needs to make additional
assumptions on f . To this end, a growing line of work over the past decade has focused on the
setting where f possesses an intrinsic, albeit unknown, low dimensional structure, with much smaller
intrinsic dimension than the ambient dimension d. The motivation is that one could now hope to
design algorithms with complexity at most exponential in the intrinsic dimension, but with mild
dependence on d.

1.1 Sparse additive models (SPAMs)

A popular class of functions with an intrinsic low dimensional structure are the so-called sparse
additive models (SPAMs). These are functions that are decomposable as the sum of a small number
of lower dimensional functions. More precisely, for Sr ⊂

([d]
r

)
; r = 1, . . . , r0, the function f : G → R

is of the form

f =
∑

j∈S1

φj(xj) +
∑

(j1,j2)∈S2

φ(j1,j2)(xj1 , xj2) + · · · +
∑

(j1,...,jr0)∈Sr0

φ(j1,...,jr0)(xj1 , . . . , xjr0 ) (1.1)

with each |Sr| ≪
(d
r

)
, and r0 ≪ d. We can interpret the tuples in Sr as rth order interactions terms.

Let us remark, that usually the terminology Sparse additive models is used for the case r0 = 1, but
we prefer to use it here in the general sense of (1.1).

These models appear in optimization under the name partially separable models (cf., [16]).
They also arise in electronic structure computations in physics (cf., [3]), and problems involving
multiagent systems represented as decentralized partially observable Markov decision processes (cf.,
[12]). There exists a rich line of work that mostly study special cases of the model (1.1). We review
them briefly below, leaving a detailed comparison with our results to Section 8.

The case r0 = 1. In this setting, (1.1) reduces to a sparse sum of univariate functions. This
model has been studied extensively in the non parametric statistics literature with a range of
results on estimation of f (cf., [19, 21, 22, 24, 30, 32]) and also on variable selection, i.e., identifying
the support S1 (cf., [19, 32, 42]). The basic idea behind these approaches is to approximately
represent each φj in a suitable basis of finite size (for eg., splines or wavelets) and then to find
the coefficients in the basis expansion by solving a least squares problem with smoothness and
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sparsity penalty constraints. Koltchinskii et al. [22] and Raskutti et al. [30] proposed a convex
program for estimating f in the Reproducing kernel Hilbert space (RKHS) setting, and showed
that f lying in a Sobolev space with smoothness parameter α > 1/2 can be estimated at the L2

rate k log d
n + kn−

2α
2α+1 . This rate was shown to be optimal in [30]. There also exist results for

variable selection, i.e., identifying the support S1. These results in non parametric statistics are
typically asymptotic in the limit of large n, also referred to as sparsistency [19, 32, 42]. Recently,
Tyagi et al. [36] derived algorithms that query f , along with non-asymptotic sampling bounds for
identifying S1. They essentially estimate the (sparse) gradient of f using results from compressed
sensing (CS), at few carefully chosen locations in G.

The case r0 = 2. This setup has received relatively less attention than the aforementioned
setting. Radchenko et al. [29] proposed an algorithm VANISH, and showed that it is sparsistent,
i.e., recovers S1,S2 in the limit of large n. The ACOSSO algorithm [35] can handle this setting,
with theoretical guarantees (sparsistency, convergence rates) shown when r0 = 1. Recently, Tyagi
et al. [37, 38] derived algorithms that query f , and derived non-asymptotic sampling bounds for
recovering S1,S2. Their approach for recovering S2 was based on estimating the (sparse) Hessian
of f using results from CS, at carefully chosen points in G. The special case where f is multilinear
has been studied considerably; there exist algorithms that recover S1,S2, along with convergence
rates for estimating f in the limit of large n [6, 29, 2]. There also exist non-asymptotic sampling
bounds for identifying S1,S2 in the noiseless setting (cf., [26, 20]); these works essentially make use
of the CS framework.

The general case. Much less is known about the general setup where r0 ≥ 2 is possible. Lin
et al. [23] were the first to introduce learning SPAMs of the form (1.1), and proposed the COSSO
algorithm. Recently, Dalalyan et al. [10] and Yang et al. [44] studied (1.1) in the regression
setting and derived non-asymptotic error rates for estimating f . In particular, Dalalyan et al.
studied this in the Gaussian white noise model,while Yang et al. considered the Bayesian setup
wherein a Gaussian process (GP) prior is placed on f . When f is multilinear, the work of Nazer
et al. [26], which is in the CS framework, gives non-asymptotic sampling bounds for recovering Sr,
r = 1, . . . , r0.

1.2 Our contributions and main idea

Before proceeding, we will briefly mention our problem setup to put our results in the context; it is
described more formally later on in Section 2. We consider f : [−1, 1]d → R of the form (1.1) and

denote by S(1)
j the variables occurring in Sj . We assume, that S(1)

j are disjoint1 for 1 ≤ j ≤ r0.
Each component φ is assumed to be Hölder smooth, and is also assumed to be “sufficiently large”
at some point within its domain. Our goal is to query f at few locations in G = [−1, 1]d, and
recover the underlying sets of interactions Sr, for each r = 1, . . . , r0.

Our results. To our knowledge, we provide the first non-asymptotic sampling bounds for exact
identification of Sr, for each r = 1, . . . , r0, for SPAMs of the form (1.2). In particular, we derive a

1For r0 = 2, this represents no additional assumption. See discussion after Proposition 2.
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randomized algorithm that with high probability recovers each Sr, r = 1, . . . , r0 with

Ω

(
r0∑

i=3

[
ciii

i+2|Si|2 log2 d︸ ︷︷ ︸
Identifying Si

]
+ c2|S2| log

(
d2

|S2|

)
log d

︸ ︷︷ ︸
Identifying S2

+ c1|S1| log
(

d

|S1|

)

︸ ︷︷ ︸
Identifying S1

)
(1.2)

noiseless queries of f within [−1, 1]d. The same bound holds when the queries are corrupted with
(a) arbitrary bounded noise provided the noise magnitude is sufficiently small (see Theorem 8),
and (b) i.i.d. Gaussian noise, which we handle by resampling each query sufficiently many times,
and averaging (see Theorem 9). Here, ci’s depend on the smoothness parameters of φ’s, and in the
case of Gaussian noise, also depend on its variance.

We improve on the recent work of Tyagi et al. [37, 38], wherein SPAMs with r0 = 2 were
considered, by being able to handle general r0 ≥ 1. Moreover, we only require f to be Hölder
smooth while the algorithms in [37, 38] necessarily require f to be continuously differentiable.
Finally, our bounds improve upon those in [37, 38] when the noise is i.i.d. Gaussian. In this
scenario, our bounds are linear in the sparsity |S2|+ |S1| while those in [37, 38] are polynomial in
the sparsity.

The sampling scheme that we employ to achieve these bounds is novel, and is specifically
tailored to the additive nature of f . We believe this scheme to be of independent interest for other
problems involving additive models, such as in optimization of high dimensional functions with
partially separable structure.

Main idea. We identify each set Si in a sequential “top down” manner by first identifying Sr0 .
Once we find Sr0 , the same procedure is repeated on the remaining set of variables (excluding
those found in Sr0) to identify Sr0−1, and consequently, each remaining Si. We essentially perform
the following steps for recovering Sr0 . Consider some given partition of [d] into r0 disjoint subsets
A = (A1, . . . ,Ar0), a Bernoulli vector β ∈ {−1, 1}d and some given x ∈ [−1, 1]d. We generate
2r0 query points (xi)

2r0
i=1, where each xi is constructed using β,x and A. Then, for some fixed

sequence of signs s1, s2, . . . , s2r0 ∈ {−1, 1} (depending only on r0), we show for the anchored-
ANOVA representation of f (see Section 2 and Lemma 4) that

2r0∑

i=1

sif(xi) =
∑

(j1,...,jr0)∈A∩Sr0

βj1 . . . βjr0φ(j1,...,jr0)(xj1 , . . . , xjr0 ). (1.3)

Observe, that (1.3) corresponds to a multilinear measurement of a sparse vector with entries
φ(j1,...,jr0)(xj1 , . . . , xjr0 ), indexed by the tuple (j1, . . . , jr0). Indeed, this vector is |Sr0 | sparse. This
suggests that by repeating the above process at sufficiently many random β’s, we can recover an
estimate of this |Sr0 | vector by using known results from CS. Thereafter, we repeat the above pro-
cess for each A corresponding to a family of perfect hash functions (see Definition 1). The size
of this set is importantly at most exponential in r0, and only logarithmic in d. The x’s are then
chosen to be points on a uniform r0 dimensional grid constructed using A. This essentially enables
us to guarantee that we are able to sample each φ(j1,...,jr0) sufficiently fine within its domain, and
thus identify (j1, . . . , jr0) by thresholding.

Organization of paper. The rest of the paper is organized as follows. In Section 2, we set up the
notation and also define the problem formally. In Section 3, we begin with the case r0 = 1 as warm
up, and describe the sampling scheme, along with the algorithm for this setting. Section 4 considers
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the bivariate case r0 = 2, while Section 5 consists of the most general setting wherein r0 ≥ 2 is
possible. Section 6 contains (mostly) known results from compressed sensing for estimating sparse
multilinear functions from random samples. Section 7 then puts together the content from the
earlier sections, wherein we derive our final theorems. Section 8 consists of a comparison of our
results with closely related work, along with some directions for future work.

2 Notation and problem setup

Notation. Scalars will be usually denoted by plain letters (e.g. d), vectors by lowercase boldface
letters (e.g., x), matrices by uppercase boldface letters (e.g., A) and sets by uppercase calligraphic
letters (e.g., S), with the exception of [n], which denotes the index set {1, . . . , n} for any natural
number n ∈ N. For a (column) vector x = (x1 . . . xd)

T and an r-tuple j = (j1, j2, . . . , jr) ∈
(
[d]
r

)
, we

denote xj = (xj1 . . . xjr)
T ∈ R

r to be the restriction of x on j. For any finite set A, |A| denotes the
cardinality of A. Moreover, if A ⊆ [d], then ΠA(x) denotes the projection of x on A where

(ΠA(x))i =
{
xi ; i ∈ A,
0 ; i /∈ A, i ∈ [d]. (2.1)

The ℓp norm of a vector x ∈ R
d is defined as ‖x‖p :=

(∑d
i=1 |xi|p

)1/p
. A random variable β is

called Bernoulli variable if β = +1 with probability 1/2 and β = −1 with probability 1/2. A vector
β ∈ {−1,+1}d of independent Bernoulli variables is called Bernoulli vector. Similarly, a matrix
B ∈ {−1,+1}n×d is called Bernoulli matrix, if all its entries are independent Bernoulli variables.

Sparse Additive Models. For an unknown f : Rd → R, our aim will be to approximate f
uniformly from point queries within a compact domain G ⊂ R

d. From now on, we will assume G =
[−1, 1]d. The sets Sr ⊂

(
[d]
r

)
; r = 1, . . . , r0, will represent the interactions amongst the coordinates,

with Sr consisting of r-wise interactions. Our interest will be in the setting where each Sr is sparse,
i.e., |Sr| ≪ dr. Given this setting, we assume to have the following structure

f =
∑

j∈S1

φj +
∑

j∈S2

φj + · · ·+
∑

j∈Sr0

φj. (2.2)

It is important to note here that the components in Sr will be assumed to be truly r-variate,
in the sense that they cannot be written as the sum of lower dimensional functions. For example,
we assume that the components in S2 cannot be expressed as the sum of univariate functions.

Model Uniqueness and ANOVA-decompositions. We note now that the representation of f
in (2.2) is not necessarily unique and some additional assumptions are needed to ensure uniqueness.
For instance, one could add constants to each φ that sum up to zero, thereby giving the same f .
Moreover, if S2 contains overlapping pairs of variables, then for each such variable – call it p –
one could add/subtract functions of the variable xp to each corresponding φj such that f remains
unaltered. To obtain unique representation of f , we will work with the so-called Anchored ANOVA-
decomposition of f . We recall its notation and results in the form needed later and refer to [18] for
more details.

The usual notation of an ANOVA-decomposition works with functions indexed by subsets of
[d], instead of tuples from [d]. As there is an obvious one-to-one correspondence between r-tuples
and subsets of [d] with r elements, we prefer to give the ANOVA-decomposition in its usual form.
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Let µj , j = 1, . . . , d be measures defined on all Borel subsets of [−1, 1] and let U ⊆ [d]. We let
dµU (xU ) =

∏
j∈U dµj(xj) be the product measure. We define

PUf(xU ) =

∫

[−1,1]d−|U|

f(x)dµ[d]\U (x[d]\U ).

The ANOVA-decomposition of f is then given as

f(x) = f∅ +
d∑

i=1

fi(xi) +

d−1∑

i=1

d∑

j=i+1

fi,j(xi, xj) + · · · + f1,...,d(x1, . . . , xd) =
∑

U⊆[d]

fU (xU ),

where
fU (xU ) =

∑

V⊆U
(−1)|U |−|V |PV f(xV ). (2.3)

In the case of dµj(xj) = δ(xj)dxj , where δ is the Dirac distribution, we obtain the Anchored-
ANOVA decomposition

f(x) =
∑

U⊆[d]

fU (xU ),

where f∅ = f(0) and fU(xU ) = 0 if xj = 0 for some j ∈ U.
The standard theory of ANOVA decompositions is usually based on Hilbert space theory. As

we prefer to work with continuous functions, we give the following representation theorem. The
proof can be found in the Appendix.

Proposition 1. Let f ∈ C([−1, 1]d). Then there is a unique collection of (fU )U⊆[d], such that

a) fU ∈ C([−1, 1]|U |),

b) f can be represented as

f(x) =
∑

U⊆[d]

fU (xU ), x ∈ [−1, 1]d, (2.4)

where xU ∈ [−1, 1]|U | is the restriction of x onto indices included in U ,

c) fU (xU ) = 0 if xj = 0 for some j ∈ U .

The Anchored ANOVA-decomposition (2.4) can be used to ensure uniqueness of representation
of f of the form (2.2). For the clarity of presentation, we will later distinguish between three
settings. The first one is univariate with r0 = 1, the second one with r0 = 2 allows also for
bivariate interactions between the variables. Finally, in the multivariate case r0 > 2, arbitrary
higher-order interactions can occur. We will present a detailed proposition about the corresponding
ANOVA-decomposition in each of the sections separately.

Assumptions. We will specify the assumptions in each of the settings discussed later in more
detail. But, in general, we will work with two groups of conditions.

1. Smoothness. We will assume throughout the paper that the components of the ANOVA-
decomposition are Hölder smooth with exponent α ∈ (0, 1] and constant L > 0, i.e.,

|φ(x)− φ(y)| ≤ L ‖ x− y ‖α2
for all admissible x,y.
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2. Identifiability. Furthermore, our aim is the identification of the possible interactions between
the variables. We are therefore not only interested in the approximation of f but also on
the identification of the sets S1,S2, . . . ,Sr0 . Naturally, this is only possible if the non-zero
functions in the Anchored-ANOVA decomposition are significantly large at some point. We
will therefore assume that

‖φ‖∞ = sup
x

|φ(x)| > D

for some D > 0.

Problem parameters and goal. Based on the above setup, we will consider our problem specific
parameters to be

(a) smoothness parameters: L > 0, α ∈ (0, 1],

(b) identifiability parameters: D,

(c) intrinsic/extrinsic dimensions: d, r0, |S1|, . . . , |Sr0 |.

These parameters will be assumed to be known by the algorithm. The goal of the algorithm will
then be to query f within [−1, 1]d, and to identify the sets S1, . . . , Sr0 exactly. Using standard
methods of approximation theory and sampling along canonical subspaces, one may recover also
the components in (2.2). We give some more details on this issue in Section 8.

3 The univariate case

As a warm up, we begin with the relatively simple setting where r0 = 1, meaning that f is a sum
of only univariate components. It means that f admits the representation

f = µ+
∑

p∈S1

φp(xp). (3.1)

To ensure the uniqueness of this decomposition, we set µ = f(0) and assume that φp(0) = 0 for all
p ∈ S1.

Assumptions. We will make the following assumptions on the model (3.1).

1. Smoothness. The terms in (3.1) are Hölder continuous with parameters L > 0, α ∈ (0, 1], i.e.,

|φp(x)− φp(y)| ≤ L|x− y|α for all p ∈ S1 and all x, y ∈ [−1, 1].

2. Identifiability. For every p ∈ S1 there is an x∗p ∈ [−1, 1], such that |φp(x∗p)| > D1.

Sampling scheme. Our sampling scheme is motivated by the following simple observation. For
any fixed x ∈ [−1, 1]d, and some β ∈ {−1,+1}d, consider the points x+,x− ∈ [−1, 1]d defined as

x+i =

{
xi ; βi = +1,
0 ; βi = −1

and x−i =

{
0 ; βi = +1,
xi ; βi = −1,

i ∈ [d]. (3.2)

Upon querying f at x+,x−, we obtain the noisy samples

f̃(x+) = f(x+) + η+, f̃(x−) = f(x−) + η−,

7



where η+, η− ∈ R denotes the noise. One can then easily verify that the following identity holds
on account of the structure of f

f̃(x+)− f̃(x−) =
∑

i∈S1

βi φi(xi)︸ ︷︷ ︸
z∗i (xi)

+η+ − η− = 〈β, z∗(x)〉 + η+ − η−. (3.3)

Note that z∗(x) = (z∗1(x1) . . . z
∗
d(xd))

T is |S1| sparse, and f̃(x+)−f̃(x−) corresponds to a noisy linear
measurement of z∗(x), with β. From standard compressive sensing results, we know that a sparse
vector can be recovered stably, from only a few noisy linear measurements with random vectors,
drawn from a suitable distribution. In particular, it is well established that random Bernoulli
measurements satisfy this criteria. We discuss this separately later on, for now it suffices to assume
that we have at hand an appropriate sparse recovery algorithm: SPARSE-REC.

We thus generate independent Bernoulli vectors β1,β2, . . . ,βn ∈ {−1,+1}d. For each βi, we
create x+

i ,x
−
i as described in (3.2) (for some fixed x), and obtain f̃(x+

i ), f̃(x
−
i ). Then, (3.3) gives

us the linear system



f̃(x+
1 )− f̃(x−

1 )
...
...

f̃(x+
n )− f̃(x−

n )




︸ ︷︷ ︸
y

=




βT1
...
...

βTn




︸ ︷︷ ︸
B

z∗(x) +




η+1 − η−1
...
...

η+n − η−n




︸ ︷︷ ︸
η

. (3.4)

SPARSE-REC will take as input y,B, and will output an estimate ẑ∗(x) to z∗(x). Provided that n
is large enough, we will typically have, for some ǫ ≥ 0, that ‖ ẑ∗(x)− z∗(x) ‖∞≤ ǫ holds. In such
a case, we will refer to SPARSE-REC as being “ǫ-accurate” at x.

Given the above, we now describe how to choose x ∈ [−1, 1]d. To this end, we adopt the
approach of [36], where the following grid on the diagonal of [−1, 1]d was considered

χ :=

{
x = (x x · · · x)T ∈ R

d : x ∈
{
−1,−m− 1

m
, . . . ,

m− 1

m
, 1
}}

. (3.5)

Our aim will be to obtain the estimate ẑ∗(x) at each x ∈ χ. Note that this gives us estimates to
φp(xp) for p = 1, . . . , d, with xp lying on a uniform one dimensional grid in [−1, 1]. Thus we can
see, at least intuitively, that provided ǫ is small enough, and the grid is fine enough (so that we are
close to φp(x

∗
p) for each p ∈ S1), we will be able to detect each p ∈ S1 by thresholding.

Algorithm outline and guarantees The discussion above is outlined formally in the form of
Algorithm 1. Lemma 1 below provides formal guarantees for exact recovery of support S1.

Lemma 1. Let SPARSE-REC be ǫ-accurate for each x ∈ χ with ǫ < D1/3, which uses n linear mea-

surements. Then for m ≥ (3L/D1)
1/α, Algorithm 1 recovers S1 exactly, i.e., Ŝ1 = S1. Moreover,

the total number of queries of f is 2(2m + 1)n.

Proof. Recall that we denote z∗(x) = (φ1(x1) . . . φd(xd))
T , and z∗i (xi) = φi(xi). For any given

p ∈ S1, we know that there exists x∗p ∈ [−1, 1] such that |φp(x∗p)| > D1. Also, on account of the

construction of χ, there exists x = (x . . . x)T ∈ χ such that |x− x∗p| ≤ 1/m. Then starting with the
fact that SPARSE-REC is ǫ accurate at x, we obtain

|ẑ∗p(x)| ≥ |φp(x)| − ǫ ≥ |φp(x∗p)| − |φp(x∗p)− φp(x)| − ǫ

≥ D1 −
L

mα
− ǫ ≥ 2D1

3
− ǫ.
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Algorithm 1 Algorithm for estimating S1

1: Input: d, |S1|, m, n, ǫ.

2: Initialization: Ŝ1 = ∅.
3: Output: Ŝ1.
4:

5: Construct χ as defined in (3.5) with |χ| = 2m+ 1.
6: Generate Bernoulli vectors β1,β2, . . . ,βn ∈ {−1,+1}d.
7: Form B ∈ R

n×d as in (3.4).
8: for x ∈ χ do
9: Generate x+

i ,x
−
i ∈ [−1, 1]d, as in (3.2), using x,βi for each i ∈ [n].

10: Using the samples (f̃(x+
i ), f̃(x

−
i ))

n
i=1, form y as in (3.4).

11: Obtain ẑ∗(x) = SPARSE-REC(y,B).

12: Update Ŝ1 = Ŝ1 ∪
{
p ∈ [d] : |(ẑ∗(x))p| > ǫ

}
.

13: end for

We used the reverse triangle inequality and the identifiability and smoothness assumptions on φp.
On the other hand, since SPARSE-REC is ǫ accurate at each point in χ, therefore for every q /∈ S1

and (c c . . . c) ∈ χ, we know that |ẑ∗q (c)| ≤ ǫ. It then follows readily for the stated choice of m, ǫ

that Ŝ1 contains each variable in S1, and none from Sc1.

4 The bivariate case

Next, we consider the scenario where r0 = 2, i.e., f can be written as a sum of univariate and
bivariate functions. We denote by Svar

2 the set of variables which are part of a 2-tuple in S2.
Inserting this restriction into Proposition 1, we derive the following uniqueness result (its proof is
postponed to the Appendix).

Proposition 2. Let f ∈ C([−1, 1]d) be of the form

f = µ+
∑

p∈S1

φp(xp) +
∑

j∈S2

φj(xj) +
∑

l∈Svar
2

φl(xl), (4.1)

where S1 ∩ Svar
2 = ∅. Moreover, let

a) µ = f(0),

b) φj(0) = 0 for all j ∈ S1 ∪ Svar
2 ,

c) φj(xj) = 0 if j = (j1, j2) ∈ S2 and xj1 = 0 or xj2 = 0.

Then the representation (4.1) of f is unique in the sense that each component in (4.1) is uniquely
identifiable.

Remark 1. In (4.1), we could have “collapsed” the terms corresponding to variables l in
∑

l∈Svar
2
φl(xl)

– for l occurring exactly once in S2 – uniquely into the corresponding component φj(xj). A similar
approach was adopted in [38], and the resulting model was shown to be uniquely identifiable. Yet
here, we choose to represent f in the form (4.1) for convenience, and clarity of notation. This also
leads to a less cumbersome expression, when we work with general interaction terms later.
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Assumptions. We now make the following assumptions on the model (4.1).

1. Smoothness. We assume each term in (4.1) to be Hölder continuous with parameters L >
0, α ∈ (0, 1], i.e.,

|φp(x)− φp(y)| ≤ L|x− y|α for all p ∈ S1 ∪ Svar
2 and for all x, y ∈ [−1, 1],

|φj(x)− φj(y)| ≤ L ‖ x− y ‖α2 for all j ∈ S2 and for all x,y ∈ [−1, 1]2.

2. Identifiability of S1,S2. We assume that for each p ∈ S1, there exists x∗p ∈ [−1, 1] so that
|φp(x∗p)| > D1 for some constant D1 > 0. Furthermore, we assume that for each j ∈ S2 there
exists x∗

j ∈ [−1, 1]2 such that |φj(x∗
j )| > D2.

Before describing our sampling scheme, we need some additional notation. For any β ∈ {−1, 1},
we denote β̄ = (−β). Moreover, 1β denotes the indicator variable of β, i.e., 1β = 1 if β = 1, and
1β = 0 if β = −1. Overall, our scheme proceeds in two stages. We first identify S2, and only then
S1.

Sampling lemma for identifying S2. We begin by providing the motivation behind our sam-
pling scheme for identifying S2. Consider some fixed mapping h : [d] → {1, 2} that partitions
[d] into A1 = {i ∈ [d] : h(i) = 1} and A2 = {i ∈ [d] : h(i) = 2}. Then for a given Bernoulli vector
β ∈ {−1, 1}d and x = (x1 . . . xd)

T ∈ [−1, 1]d, consider the points x1,x2,x3,x4 ∈ [−1, 1]d defined as

x1,i =

{
1βixi ; i ∈ A1,
1βixi ; i ∈ A2,

x2,i =

{
1β̄i

xi ; i ∈ A1,

1βixi ; i ∈ A2,

x3,i =

{
1βixi ; i ∈ A1,
1β̄i

xi ; i ∈ A2,
x4,i =

{
1β̄i

xi ; i ∈ A1,

1β̄i
xi ; i ∈ A2,

i ∈ [d]. (4.2)

The following lemma is the key motivation behind our sampling scheme.

Lemma 2. Denote A =
{
j ∈
([d]
2

)
: j ∈ {A1 ×A2} ∪ {A2 ×A1}

}
. Then for functions f of the

form (4.1), we have that

f(x1)− f(x2)− f(x3) + f(x4) =
∑

j∈S2:j1∈A1,j2∈A2

βj1βj2φj(xj) +
∑

j∈S2:j1∈A2,j2∈A1

βj1βj2φj(xj) (4.3)

=
∑

j∈A∩S2

βj1βj2φj(xj).

Proof. For any j ∈ S2, let us first consider the case where j1, j2 lie in different sets. For example,
let j1 ∈ A1 and j2 ∈ A2. Then the contribution of φj to the left-hand side of (4.3) turns out to be
for all possible values of βj1 , βj2 ∈ {−1,+1} equal to

φj(x1,j)− φj(x2,j)− φj(x3,j) + φj(x4,j)

= φj(1βj1xj1 ,1βj2xj2)− φj(1β̄j1
xj1 ,1βj2xj2)− φj(1βj1xj1 ,1β̄j2

xj2) + φj(1β̄j1
xj1 ,1β̄j2

xj2)

= βj1βj2(φj(xj1 , xj2)− φj(xj1 , 0)− φj(0, xj2) + φj(0, 0)) = βj1βj2φj(xj).

In case j1 ∈ A2 and j2 ∈ A1, then the contribution of φj turns out to be the same as above. Since
f is additive over j ∈ S2, thus the total contribution of S2 is given by the right-hand side of (4.3).
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Now, for all j ∈ S2 with j1, j2 lying in the same set, the contribution of φj turns out to be zero.
Indeed, if j1, j2 ∈ A1, the contribution of φj is

φj(x1,j)− φj(x2,j)− φj(x3,j) + φj(x4,j)

= φj(1βj1xj1 ,1βj2xj2)− φj(1β̄j1
xj1 ,1β̄j2

xj2)− φj(1βj1xj1 ,1βj2xj2) + φj(1β̄j1
xj1 ,1β̄j2

xj2) = 0.

The same is easily verified if j1, j2 ∈ A2. Lastly, let us verify that the contribution of φp for each
p ∈ S1 ∪ Svar

2 is zero. Indeed, when p ∈ A1, we get

φp(x1,p)− φp(x2,p)− φp(x3,p) + φp(x4,p) = φp(1βpxp)− φp(1β̄pxp)− φp(1βpxp) + φp(1β̄pxp) = 0

and the same is true also for p ∈ A2. This completes the proof.

Denoting z∗j (xj) = φj(xj) if j ∈ S2 and 0 otherwise, let z∗(x) ∈ R(
[d]
2 ) be the corresponding (|S2|

sparse) vector. For A ⊆
([d]
2

)
we denote z∗(x;A) ∈ R

([d]2 ) to be the projection of z∗(x) onto A.
Clearly z∗(x;A) is at most |S2| sparse too – it is in fact |S2 ∩ A| sparse. For a Bernoulli vector

β ∈ {−1,+1}d, let β(2) ∈ {−1,+1}(
[d]
2 ), where β

(2)
j

= βj1βj2 for each j = (j1, j2). Hence we see

that (4.3) corresponds to a linear measurement of z∗(x;A) with the Bernoulli vector β(2).

Sampling scheme for identifying S2. We first generate independent Bernoulli vectors β1,β2,
. . . ,βn ∈ {−1, 1}d. Then for some fixed x ∈ [−1, 1]d and a mapping h : [d] → {1, 2} – the
choice of both to be made clear later – we obtain the samples f̃(xi,p) = f(xi,p) + ηi,p, i ∈ [n] and
p ∈ {1, 2, 3, 4}. Here, xi,1,xi,2,xi,3,xi,4 are generated using x,βi, h as outlined in (4.2). As a direct
implication of Lemma 2, we obtain the linear system




f̃(x1,1)− f̃(x1,2)− f̃(x1,3) + f̃(x1,4)
...
...

f̃(xn,1)− f̃(xn,2)− f̃(xn,3) + f̃(xn,4)




︸ ︷︷ ︸
y∈Rn

=




β
(2)
1

T

...

...

β
(2)
n

T




︸ ︷︷ ︸
B∈Rn×(

d
2)

z∗(x;A) +




η1,1 − η1,2 − η1,3 + η1,4
...
...

ηn,1 − ηn,2 − ηn,3 + ηn,4




︸ ︷︷ ︸
η∈Rn

.

(4.4)
By feeding y,B as input to SPARSE-REC, we then obtain the estimate ẑ∗(x;A) to z∗(x;A). Assuming
SPARSE-REC to be ǫ-accurate at x, we will have that ‖ ẑ∗(x;A)− z∗(x;A) ‖∞≤ ǫ holds. Let us
mention that A from Lemma 2 is completely determined by h but we avoid denoting this explicitly
for clarity of notation.

At this point, it is natural to ask, how one should choose x and the mapping h. To this end, we
borrow the approach of [11], which involves choosing h from a family of hash functions, and creating
for each h in the family a uniform grid. To begin with, we introduce the following definition of a
family of hash functions.

Definition 1. For some t ∈ N and j = 1, 2, . . . , let hj : [d] → {1, 2, . . . , t}. We call the set
Hd
t = {h1, h2, . . .} a (d, t)-hash family if for any distinct i1, i2, . . . , it ∈ [d], there exists h ∈ Hd

t such
that h is an injection when restricted to i1, i2, . . . , it.

Hash functions are commonly used in theoretical computer science and are widely used in finding
juntas [25]. One can construct Hd

t of size O(tet log d) using a standard probabilistic argument. The
reader is for instance referred to Section 5 in [11], where for any constant C1 > 1 the probabilistic
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construction yields Hd
t of size |Hd

t | ≤ (C1 + 1)tet log d with probability at least 1 − d−C1t, in time
linear in the output size.

Focusing on the setting t = 2 now, say we have at hand a family Hd
2 of size O(log d). Then

for any (i, j) ∈
(
[d]
2

)
, there exists h ∈ Hd

2 so that h(i) 6= h(j). For each h ∈ Hd
2, let us define

e1(h), e2(h) ∈ R
d, where

(ei(h))q :=

{
1 ; h(q) = i,
0 ; otherwise

for i = 1, 2 and q ∈ [d].

Then we create a two dimensional grid with respect to h

χ(h) :=

{
x ∈ [−1, 1]d : x = c1e1(h) + c2e2(h); c1, c2 ∈

{
−1,−m− 1

m
, . . . ,

m− 1

m
, 1
}}

. (4.5)

Equipped with χ(h) for each h ∈ Hd
2, we now possess the following approximation property. For any

j ∈
(
[d]
2

)
and any (x∗j1 , x

∗
j2
) ∈ [−1, 1]2, there exists h ∈ Hd

2 with h(j1) 6= h(j2) and a corresponding
x ∈ χ(h) so that |x∗j1 − xj1 |, |x∗j2 − xj2 | ≤ 1/m.

Informally speaking, our idea is the following. Assume that SPARSE-REC is ǫ-accurate for each
h ∈ Hd

2, x ∈ χ(h). Also, say m, ǫ are sufficiently large and small respectively. Hence, if we estimate
z∗(x;A) at each h ∈ Hd

2 and x ∈ χ(h), then for every j ∈ S2, we are guaranteed to have a point

x at which the estimate |ẑ∗j (xj)| is sufficiently large. Moreover, for every j 6∈ S2, we would always

(i.e., for each h ∈ Hd
2 and x ∈ χ(h)) have |ẑ∗

j
(xj)| sufficiently small; more precisely, |ẑ∗

j
(xj)| ≤ ǫ

since φj ≡ 0. Consequently, we will be able to identify S2 by thresholding, via a suitable threshold.

Sampling scheme for identifying S1. Assuming S2 is identified, the model (4.1) reduces to the
univariate case on the reduced set P := [d] \ Svar

2 with S1 ⊂ P. We can therefore apply Algorithm

1 on P by setting the coordinates in Pc = Ŝvar
2 to zero. Indeed, we first construct for some m ∈ N

the following set

χ =
{
(c c . . . c)T ∈ R

P : c ∈
{
−1,−m− 1

m
, . . . ,

m− 1

m
, 1
}}

⊂ [−1, 1]P . (4.6)

Then, for any given β ∈ {−1, 1}P , and x ∈ χ, we construct x+, x− ∈ R
d using β,x as follows

x+i =

{
xi ; βi = +1 and i ∈ P,
0 ; otherwise,

x−i =

{
xi ; βi = −1 and i ∈ P,
0 ; otherwise,

i ∈ [d]. (4.7)

Note that x+i , x
−
i = 0 for i /∈ P. Then, similarly to (3.3), we have that

f̃(x+)− f̃(x−) =
∑

i∈P
βi φi(xi)︸ ︷︷ ︸

z∗i (xi)

+η+ − η− = 〈β, z∗P (x)〉 + η+ − η−, (4.8)

where z∗P (x) ∈ R
P is the restriction of z∗(x) onto P, and is |S1| sparse. Thereafter, we proceed as

in Algorithm 1 by forming a linear system as in (3.4) (where now B ∈ R
n×|P|) at each x ∈ χ, and

employing an ǫ-accurate SPARSE-REC to estimate z∗P(x).

Algorithm outline and guarantees. Our scheme for identifying S2 is outlined formally as the
first part of Algorithm 2. The second part involves the estimation of S1. Lemma 3 provides exact
recovery guarantees for S2 and S1 by Algorithm 2.
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Algorithm 2 Algorithm for estimating S2,S1

1: Input: d, |S2|, m2, n2, ǫ2. // Estimation of S2

2: Initialization: Ŝ2 = ∅.
3: Output: Ŝ2.
4:

5: Generate independent Bernoulli vectors β1,β2, . . . ,βn2 ∈ {−1,+1}d.
6: Form B ∈ R

n2×(d2) as in (4.4).
7: Construct a (d, 2) hash family: Hd

2.
8: for h ∈ Hd

2 do
9: Construct χ(h) as defined in (4.5) with |χ(h)| = (2m2 + 1)2.

10: for x ∈ χ(h) do
11: Generate xi,1,xi,2,xi,3,xi,4 ∈ [−1, 1]d, as in (4.2), using x,βi for each i ∈ [n2].
12: Using the samples (f̃(xi,1), f̃(xi,2), f̃(xi,3), f̃(xi,4))

n2
i=1, form y as in (4.4).

13: Obtain ẑ∗(x;A) = SPARSE-REC2(y,B).

14: Update Ŝ2 = Ŝ2 ∪
{
j ∈ A : |ẑ∗j (xj)| > ǫ2

}
.

15: end for
16: end for
17:

18: Input: d, |S1|, Ŝvar
2 , m1, n1, ǫ1. // Estimation of S1

19: Initialization: Ŝ1 = ∅, P = [d] \ Ŝvar
2 .

20: Output: Ŝ1.
21: Construct χ ⊂ [−1, 1]P with |χ| = 2m1 + 1, as in (4.6).
22: Generate independent Bernoulli vectors β1,β2, . . . ,βn1 ∈ {−1,+1}P .
23: Form B ∈ R

n1×|P| as in (3.4).
24: for x ∈ χ do
25: Generate x+

i ,x
−
i ∈ [−1, 1]d, as in (4.7), using x,βi for each i ∈ [n1].

26: Using the samples (f̃(x+
i ), f̃(x

−
i ))

n1
i=1, form y as in (3.4).

27: Obtain ẑ∗(x) = SPARSE-REC1(y,B) where ẑ∗(x) ∈ R
P .

28: Update Ŝ1 = Ŝ1 ∪
{
p ∈ P : |(ẑ∗(x))p| > ǫ1

}
.

29: end for

Lemma 3. Let Hd
2 be a (d, 2) hash family, and let SPARSE-REC2 be ǫ2-accurate for each h ∈ Hd

2,

x ∈ χ(h) with ǫ2 < D2/3, which uses n2 linear measurements. If m2 ≥
√
2
(
3L
D2

)1/α
, then Algorithm

2 recovers S2 exactly, i.e., Ŝ2 = S2. Moreover, assuming Ŝ2 = S2 holds, and SPARSE-REC1 is
ǫ1-accurate (using n1 measurements), then if m1, n1, ǫ1 satisfy the conditions of Lemma 1, we have

Ŝ1 = S1. Lastly, the total number of queries of f made is 4(2m2 + 1)2n2|Hd
2|+ 2(2m1 + 1)n1.

Proof. For any given j ∈ S2 there exists x∗
j ∈ [−1, 1]2 with |φj(x∗

j )| ≥ D2. Moreover, since Hd
2 is a

(d, 2) hash family, there exists h ∈ Hd
2 that is an injection on j. Consequently, there exists x ∈ χ(h)

such that ‖ xj − x∗
j ‖2≤

√
2

m2
. This in turn implies by Hölder continuity of φj that

|φj(xj)− φj(x
∗
j )| ≤ L

2α/2

mα
2

. (4.9)

Since SPARSE-REC2 is ǫ2-accurate for each h ∈ Hd
2, x ∈ χ(h), we know that at the aforementioned
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x, the following holds via reverse triangle inequality

|ẑ∗j (xj)| ≥ |φj(xj)| − ǫ2. (4.10)

Using (4.9), (4.10) and the reverse triangle inequality, we get by the choice of ǫ2 and m2

|ẑ∗
j
(xj)| ≥ |φj(x∗

j )| − L
2α/2

mα
2

− ǫ2 ≥ D2 − L
2α/2

mα
2

− ǫ2 ≥
2D2

3
− L

2α/2

mα
2

≥ D2

3
.

Also, for any j /∈ S2, we have for all h ∈ Hd
2, x ∈ χ(h) that |ẑ∗

j
(xj)| ≤ ǫ2 < D2/3 (since φj ≡ 0).

Hence, the stated choice of ǫ2 guarantees identification of each j ∈ S2, and none from
(
[d]
2

)
\ S2.

The proof for recovery of S1 is identical to Lemma 1, and hence omitted.

Remark 2. On a top level, Algorithm 2 is similar to [38, Algorithms 3,4] in the sense that they
all involve solving ℓ1 minimization problems at base points lying in χ(h) defined in (4.5) (for
identification of S2), and χ defined in (4.6) (for identification of S1). The difference however lies
in the nature of the sampling schemes. The scheme in [38, Algorithms 3,4] relies on estimating
sparse Hessians, gradients of f via their linear measurements, through random samples in the
neighborhood of the base point. In contrast, the sampling scheme in Algorithm 2 is not local; for
instance during the identification of S2, at each base point x ∈ χ(h), the points xi,1,xi,2,xi,3,xi,4 for
any given i ∈ [n2] can be arbitrarily far from each other. The same is true during the identification
of S1.

5 The multivariate case

Finally, we treat also the general case where f consists of at most r0-variate components, where
r0 > 2 is possible. To begin with, let S1,S2, . . . ,Sr0 be such that Sr ⊂

(
[d]
r

)
for r ∈ [r0]. Here Sr

represents the r wise interaction terms. We now need some additional notation and assumptions.

1. For r ≥ 1, let S(1)
r denote the set of variables occurring in Sr with S(1)

1 = S1. We assume

that S(1)
p ∩ S(1)

q = ∅ for all p 6= q ∈ [r0].

2. For each 1 ≤ i < r ≤ r0, denote S(i)
r =

(S(1)
r
i

)
to be the sets of ith order tuples induced by Sr.

The multivariate analogue of Proposition 2 is provided by the following result.

Proposition 3. Let 1 ≤ r0 ≤ d and let f ∈ C([−1, 1]d) be of the form

f(x) = µ+
∑

j∈⋃r0r=2 S
(1)
r ∪S1

φj(xj) +
∑

j∈⋃r0r=3 S
(2)
r ∪S2

φj(xj)

+ · · ·+
∑

j∈S(r0−1)
r0

∪Sr0−1

φj(xj) +
∑

j∈Sr0

φj(xj), (5.1)

where all the functions φj are not identically zero. Moreover, let

(a) µ = f(0).

(b) For each 1 ≤ l ≤ r0 − 1, φj(xj) = 0 if j = (j1, . . . , jl) ∈
⋃r0
r=l+1 S

(l)
r ∪Sl, and xji = 0 for some

i ∈ [l].
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(c) φj(0) = 0 if j = (j1, . . . , jr0) ∈ Sr0 , and xji = 0 for some i ∈ [r0].

Then the representation (5.1) of f is unique in the sense that each component in (5.1) is uniquely
identifiable.

The proof of this result is similar to the proof of Proposition 2, and we leave it to the reader.

Remark 3. Let us note that for the special cases r0 ∈ {1, 2}, the statement of Proposition 3 reduces
to that of Proposition 2 for univariate/bivariate SPAMs. If r0 = 2, we observed earlier in Section 4

that the assumption S1 ∩S(1)
2 = ∅ can be made without loss of generality. However, for r0 > 2, this

is an additional assumption. It will allow to structure the recovery algorithm into recursive steps.

Assumptions. We will make the following assumptions on the model (5.1).

1. Smoothness. Each term in (5.1) is Hölder continuous with parameters L > 0, α ∈ (0, 1], i.e.,
for each i ∈ [r0],

|φj(x)− φj(y)| ≤ L ‖ x− y ‖α2 for all j ∈ Si ∪
r0⋃

l=i+1

S(i)
l and for all x,y ∈ [−1, 1]i. (5.2)

2. Identifiability of Si, i ∈ [r0]. We assume that for each i ∈ [r0] there exists a constant Di > 0,
such that for every j ∈ Si there exists x∗

j ∈ [−1, 1]i with |φj(x∗
j )| > Di.

We now generalize the sampling scheme given before for bivariate components to the setting of
multivariate components. Let us fix some mapping h : [d] → [r0] that partitions [d] into A1 =
{i ∈ [d] : h(i) = 1}, A2 = {i ∈ [d] : h(i) = 2} , . . . ,Ar0 = {i ∈ [d] : h(i) = r0}. Let us fix a Bernoulli
vector β ∈ {−1, 1}d and x = (x1 . . . xd)

T ∈ [−1, 1]d. For z ∈ [2r0 ] and i ∈ [d], we define

(xz)i = xz,i =

{
xi if βi = (−1)digit(z−1,h(i)−1),

0 otherwise,
(5.3)

where digit(a, b) ∈ {0, 1} is the bth digit of the dyadic decomposition of a for a, b ∈ N0. Further-
more, we denote by digit(a) the sum of digits of a ∈ N0, i.e.

a =
∞∑

i=0

digit(a, i) · 2i, digit(a) =
∞∑

i=0

digit(a, i).

Remark 4. It r0 = 1, it is easily verified, that the points (xz)
2
z=1 in (5.3) coincide with the points

x+,x− defined in (3.2) for univariate SPAMs. Similarly, for r0 = 2, the points (xz)
4
z=1 from (5.3)

agree with those defined in (4.2) for bivariate SPAMs. In the same way, the following lemma is
a generalization of (3.3) and Lemma 2 for (5.1). Indeed, if r0 = 1, there is only one mapping
h : [d] → {1}, and so A = [d].

Lemma 4. Denote A =
{
j ∈
([d]
r0

)
: h is injective on {j1, . . . , jr0}

}
. Then for functions f of the

form (5.1), we have that

2r0∑

z=1

(−1)digit(z−1)f(xz) =
∑

j∈A∩Sr0

βj1 . . . βjr0φj(xj). (5.4)
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Proof. We plug (5.1) into the left-hand side of (5.4) and obtain

2r0∑

z=1

(−1)digit(z−1)f(xz)

=
2r0∑

z=1

(−1)digit(z−1)
[
µ+

∑

j∈⋃r0r=2 S
(1)
r ∪S1

φj(xz,j) +
∑

j∈⋃r0r=3 S
(2)
r ∪S2

φj((xz)j) + · · ·+
∑

j∈Sr0

φj((xz)j)
]

= µ
2r0∑

z=1

(−1)digit(z−1) +
∑

j∈⋃r0r=2 S
(1)
r ∪S1

2r0∑

z=1

(−1)digit(z−1)φj(xz,j) + · · ·+
∑

j∈Sr0

2r0∑

z=1

(−1)digit(z−1)φj((xz)j)

= I0 + I1 + · · ·+ Ir0 .

We show first that I0 = I1 = · · · = Ir0−1 = 0. Indeed,

I0 = µ

2r0∑

z=1

(−1)digit(z−1) = µ

2r0−1∑

z=1

(
(−1)digit(2z−2) + (−1)digit(2z−1)

)

and the last expression vanishes as digit(2z − 1) = digit(2z − 2) + 1 for every z ∈ [2r0−1].

If j ∈ ⋃r0
r=2 S

(1)
r ∪ S1, we define the set Uj =

{
z ∈ [2r0 ] : βj = (−1)digit(z−1,h(j)−1)

}
and write

I1 =
∑

j∈⋃r0r=2 S
(1)
r ∪S1

2r0∑

z=1

(−1)digit(z−1)φj(xz,j) =
∑

j∈⋃r0r=2 S
(1)
r ∪S1

φj(xj)
∑

z∈[2r0 ]
βj=(−1)digit(z−1,h(j)−1)

(−1)digit(z−1)

=
∑

j∈⋃r0r=2 S
(1)
r ∪S1

φj(xj)
∑

z∈Uj
(−1)digit(z−1).

Each of the sums over Uj contains 2
r0−1 number of summands, half of which is equal to 1 and the

other half to −1. Therefore also I1 = 0.
Similarly, if j = (j1, j2) ∈

⋃r0
r=3 S

(2)
r ∪ S2, we set

Uj =
{
z ∈ [2r0 ] : βj1 = (−1)digit(z−1,h(j1)−1) and βj2 = (−1)digit(z−1,h(j2)−1)

}

and obtain

I2 =
∑

j∈⋃r0r=3 S
(2)
r ∪S2

φj((xz)j)
∑

z∈Uj

(−1)digit(z−1).

Half of the terms in the last sum is again equal to 1, the other half being equal to −1. Hence,
I2 = 0. Arguing along the same lines, we conclude I0 = I1 = · · · = Ir0−1 = 0.

Finally, if j = (j1, . . . , jr0) ∈ Sr0 , we define

Uj =
{
z ∈ [2r0 ] : βji = (−1)digit(z−1,h(ji)−1) for all i ∈ [r0]

}
.

If h is an injection on {j1, . . . , jr0}, we get that {h(j1), . . . , h(jr0)} = [r0] and Uj =
{
zj
}

is a
singleton with

∑

z∈Uj

(−1)digit(z−1) = (−1)digit(z
j−1) =

r0∏

i=1

(−1)digit(z
j−1,i−1) =

r0∏

i=1

(−1)digit(z
j−1,h(ji)−1) =

r0∏

i=1

βji .
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If, on the other hand, h is no injection on {j1, . . . , jr0}, Uj has even number of elements and using
the same argument as above we obtain

∑

z∈Uj

(−1)digit(z−1) = 0.

We conclude that

2r0∑

z=1

(−1)digit(z−1)f(xz) = I0 + I1 + · · ·+ Ir0 =
∑

j∈Sr0

φj(xj)
∑

z∈Uj

(−1)digit(z−1)

=
∑

j∈A∩Sr0

βj1 . . . βjr0φj(xj).

We denote again z∗j (xj) = φj(xj) if j ∈ Sr0 and 0 otherwise. Similarly, z∗(x) ∈ R
([d]r0) stands for

the corresponding |Sr0 |-sparse vector and z∗(x;A) ∈ R
([d]r0) for the projection of z∗(x) ontoA. Again,

z∗(x;A) is |Sr0 ∩ A|-sparse. Finally, for a Bernoulli vector β ∈ {−1,+1}d, let β(r0) ∈ {−1,+1}(
[d]
r0
)

where β
(r0)
j = βj1βj2 . . . βjr0 for each j = (j1, j2, . . . , jr0). Hence, (5.4) corresponds to a linear

measurement of z∗(x;A) with β(r0).

Sampling scheme for identifying Sr0. Similarly to the sampling scheme for identifying S2 in
the bivariate case, we generate independent Bernoulli vectors β1,β2, . . . ,βn ∈ {−1, 1}d. For fixed
x ∈ [−1, 1]d and h : [d] → [r0], we obtain the samples f̃(xi,z) = f(xi,z) + ηi,z, where i ∈ [n] and
z ∈ [2r0 ]. Here, xi,z are generated using xi,βi, h as outlined in (5.3).

As a direct implication of Lemma 4, we obtain the linear system




∑2r0
z=1(−1)digit(z−1)f̃(x1,z)

...

...∑2r0
z=1(−1)digit(z−1)f̃(xn,z)




︸ ︷︷ ︸
y∈Rn

=




β
(r0)
1

T

...

...

β
(r0)
n

T




︸ ︷︷ ︸
B∈Rn×(

d
r0
)

z∗(x;A) +




∑2r0
z=1(−1)digit(z−1)η1,z

...

...∑2r0
z=1(−1)digit(z−1)ηn,z




︸ ︷︷ ︸
η∈Rn

. (5.5)

By feeding y,B as input to SPARSE-REC, we will obtain the estimate ẑ∗(x;A) to z∗(x;A).
Assuming SPARSE-REC to be ǫ-accurate at x, we will have that ‖ ẑ∗(x;A)− z∗(x;A) ‖∞≤ ǫ holds.

The choice of x, h is along similar lines as in the previous section. Indeed we first construct
a (d, r0) hash family Hd

r0 so that for any j = (j1, . . . , jr0) ∈
(
[d]
r0

)
, there exists h ∈ Hd

r0 which is

injective on [j]. For each h ∈ Hd
r0 , let us define e1(h), e2(h), . . . , er0(h) ∈ R

d, where

(ei(h))q :=

{
1 ; h(q) = i,
0 ; otherwise

for i ∈ [r0] and q ∈ [d].

We then create the following r0 dimensional grid with respect to h.

χ(h) :=

{
x ∈ [−1, 1]d : x =

r0∑

i=1

ciei(h); c1, c2, . . . , cr0 ∈
{
−1,−m− 1

m
, . . . ,

m− 1

m
, 1
}}

. (5.6)
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Equipped with χ(h) for each h ∈ Hd
r0 , we now possess the following approximation property. For

any j ∈
([d]
r0

)
and any (x∗j1 , x

∗
j2
, . . . , x∗jr0 ) ∈ [−1, 1]r0 , there exists h ∈ Hd

r0 and a corresponding

x ∈ χ(h) so that |x∗j1 − xj1 |, |x∗j2 − xj2 |, . . . , |x∗jr0 − xjr0 | ≤ 1/m.
Here on, our idea for estimating Sr0 is based on the same principle that we followed in the

preceding section. Assume that SPARSE-REC is ǫ accurate for each h ∈ Hd
r0 , x ∈ χ(h), and that m,

ǫ are sufficiently large and small respectively. Hence, if we estimate z∗(x;A) at each h ∈ Hd
r0 and

x ∈ χ(h), then for every j ∈ Sr0 we are guaranteed to have a point x at which the estimate |ẑ∗j (xj)|
is sufficiently large. Moreover, for every j 6∈ Sr0 , we would always (i.e., for each h ∈ Hd

r0 , x ∈ χ(h))

have that |ẑ∗j (xj)| is sufficiently small; more precisely, |ẑ∗j (xj)| ≤ ǫ since φj ≡ 0. Consequently, we
will be able to identify Sr0 by thresholding, via a suitable threshold.

Sampling scheme for identifying Sr0−1. Say we have an estimate for Sr0 , lets call it Ŝr0 , and
assume Ŝr0 was identified correctly, so Ŝr0 = Sr0 . Then, we now have a SPAM of order r0 − 1 on

the reduced set of variables P = [d] \ Ŝ(1)
r0 . Therefore, in order to estimate Sr0−1, we simply repeat

the above procedure on the reduced set P by freezing the variables in Ŝ(1)
r0 to 0. More precisely, we

have the following steps.

• We will construct a (P, r0 − 1) hash family HP
r0−1, hence each h ∈ HP

r0−1 is a mapping
h : P → [r0 − 1].

• For each h ∈ HP
r0−1, define e1(h), e2(h), . . . , er0−1(h) ∈ R

P , where

(ei(h))q :=

{
1 ; h(q) = i and q ∈ P,
0 ; otherwise,

for i ∈ [r0 − 1] and q ∈ P,

and use (ei(h))
r0−1
i=1 to create a r0 − 1 dimensional grid χ(h) ⊂ [−1, 1]P in the same manner

as in (5.6).

• For h ∈ HP
r0−1, a Bernoulli vector β ∈ {−1, 1}P and x ∈ [−1, 1]P , we define xz ∈ R

d in (5.3)
as follows

(xz)i = xz,i =

{
xi ; if βi = (−1)digit(z−1,h(i)−1) and i ∈ P,
0 ; otherwise,

for i ∈ [d] and z ∈ [2r0−1].

(5.7)

Hence denoting A =
{
j ∈
( P
r0−1

)
: h is injective on {j1, . . . , jr0−1}

}
, since Ŝr0 = Sr0 , we ob-

tain as a result of Lemma 4 that

2r0−1∑

z=1

(−1)digit(z−1)f(xz) =
∑

j∈A∩Sr0−1

βj1 . . . βjr0−1φj(xj). (5.8)

Consequently, in the linear system in (5.5), we have B ∈ R
n×( |P|

r0−1) where the ith row of B is

β(r0−1) ∈ {−1,+1}(
P

r0−1) with β
(r0−1)
j = βj1βj2 . . . βjr0−1 for each j = (j1, j2, . . . , jr0−1). Note

that z∗(x;A) ∈ R
( P
r0−1) is the |Sr0−1| sparse vector to be estimated.

• Finally, we will estimate z∗(x;A) at each h ∈ HP
r0−1 and x ∈ χ(h). If SPARSE-REC is ǫ

accurate, with ǫ sufficiently small, then by choosing the number of points m to be sufficiently
large, we will be able to identify Sr0−1 via thresholding.
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By repeating the above steps for all i = r0, r0−1, . . . , 1, we arrive at a procedure for estimating
the supports Si, i ∈ [r0]; this is outlined formally in the form of the Algorithm 3 below. Lemma 5

Algorithm 3 Algorithm for estimating S1,S2, . . . ,Sr0
1: Input: d, |Si|, (mi, ni, ǫi) for i = 1, . . . , r0.
2: Initialization: Ŝi = ∅ for i = 1, . . . , r0. P = [d].
3: Output: Ŝi for i = 1, . . . , r0.
4:

5: for i = r0, r0 − 1, . . . , 1 do // Estimation of Si
6: Generate Bernoulli random vectors β1,β2, . . . ,βni ∈ {−1, 1}P .
7: Form B ∈ R

ni×|P| as in (5.5).
8: Construct a (P, i) hash family HP

i .
9: for h ∈ HP

i do
10: Construct χ(h) ⊂ [−1, 1]P in the same manner as in (5.6) with |χ(h)| = (2mi + 1)i.
11: for x ∈ χ(h) do
12: Generate xz ∈ [−1, 1]d, with z ∈ [2i] as in (5.7), using x,βu for each u ∈ [ni].
13: Using the samples (f̃(xz))

2i
z=1, form y ∈ R

ni as in (5.5).
14: Obtain ẑ∗(x;A) = SPARSE-RECi(y,B).

15: Update Ŝi = Ŝi ∪
{
j ∈ A : |ẑ∗j (xj)| > ǫi

}
.

16: end for
17: end for
18: Update P = P \ Ŝ(1)

i .
19: end for

below provides sufficient conditions on the sampling parameters in Algorithm 3 for exact recovery
of all Si’s.

Lemma 5. For each i ∈ [r0] assume that the following hold:

1. mi ≥
√
i
(
3L
Di

)1/α
.

2. SPARSE-RECi is ǫi accurate with ǫi < Di/3 for all h ∈ HPi
i , x ∈ χ(h), where Pi denotes the

set P at the beginning of iteration i (so Pr0 = [d]). The number of measurements used by
SPARSE-RECi is denoted by ni.

3. HPi
i is a (Pi, i) hash family.

Then Ŝi = Si for all i = r0, r0 − 1, . . . , 1 in Algorithm 3. Moreover, the total number of queries of
f made is

r0∑

i=1

2i(2mi + 1)ini|HPi
i |.

Proof. The proof outline builds on what we have seen in the preceding sections. Say we are at
the beginning of iteration i ∈ [r0] with Ŝl = Sl holding true for each l > i. Hence, the model has

reduced to an order i sparse additive model on the set Pi ⊂ [d], with S(1)
i ,S(1)

i−1, . . . ,S1 ⊂ Pi.
By identifiability assumption, we know that for any given j ∈ Si, there exists x∗

j ∈ [−1, 1]i such

that |φj(x∗
j )| ≥ Di holds. Moreover, since HPi

i is a (Pi, i) hash family, there exists a h ∈ HPi
i that
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is an injection on j. Consequently, there exists x ∈ χ(h) such that ‖ xj − x∗
j ‖2≤ (

∑i
p=1

1
m2
i
)1/2 =

√
i/mi. By Hölder continuity of φj, this means

|φj(xj)− φj(x
∗
j )| ≤ L

iα/2

mα
i

. (5.9)

Since SPARSE-RECi is ǫi accurate for each h ∈ HPi
i , x ∈ χ(h), we know that at the aforementioned

x, the following holds via reverse triangle inequality

|ẑ∗j (xj)| ≥ |φj(xj)| − ǫi. (5.10)

Using (5.9), (5.10), reverse triangle inequality and the choice of ǫi and mi, we obtain

|ẑ∗j (xj)| ≥ |φj(x∗
j )| − L

iα/2

mα
i

− ǫi ≥ Di − L
iα/2

mα
i

− ǫi ≥
2Di

3
− L

iα/2

mα
i

≥ Di

3
.

For any j /∈ Si, we have for all h ∈ HPi
i , x ∈ χ(h) that |ẑ∗

j
(xj)| ≤ ǫi < Di/3 (since φj ≡ 0). Hence

clearly, the stated choice of ǫi guarantees identification of each j ∈ Si, and none from
(Pi
i

)
\Si. This

means that we will recover Si exactly. As this is true for each i ∈ [r0], it also completes the proof
for exact recovery of Si for each i ∈ [r0].

The expression for the total number of queries made follows from a simple calculation where we
note that at iteration i, and corresponding to each x ∈ ∪

h∈HPi
i

χ(h), we make 2ini queries of f .

6 Estimating sparse multilinear functions from few samples

In this section, we provide results from the sparse recovery literature for estimating sparse multi-
linear forms from random samples. In particular, these results cover arbitrary bounded noise and
i.i.d. Gaussian noise models.

6.1 Sparse linear functions

Consider a linear function g : R
d → R, where g(β) = βTa. Our interest is in recovering the

unknown coefficient vector a from n noisy samples yi = g(βi) + ηi, i ∈ [n], where ηi refers to the
noise in the ith sample. Arranging the samples together, we arrive at the linear system y = Ba+η,
where 



y1
...
...
yn




︸ ︷︷ ︸
y∈Rn

=




β1
T

...

...

βn
T




︸ ︷︷ ︸
B∈Rn×d

a+




η1
...
...
ηn




︸ ︷︷ ︸
η

. (6.1)

Denoting by S := {j ∈ [d] : aj 6= 0} the support of a, our interest is in the setting where a is sparse,
i.e., |S| = k ≪ d, and consequently to estimate a from a small number of samples n. To begin
with, we will require B in (6.1) to satisfy the so called ℓ2/ℓ2 RIP, defined below.

Definition 2. A matrix A ∈ R
n×d is said to satisfy the ℓ2/ℓ2 Restricted Isometry Property (RIP)

of order k with constant δk ∈ (0, 1) if

(1− δk) ‖ x ‖22 ≤ 1

n
‖ Ax ‖22 ≤ (1 + δk) ‖ x ‖22

holds for all k-sparse x.
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Bounded noise model. Let us consider the scenario where the noise is bounded in the ℓ2 norm,
i.e., ‖η‖2 ≤ ν. We will recover an estimate â to a as a solution of the following quadratically
constrained ℓ1 minimization program [4]

(P1) min
z∈Rd

‖ z ‖1 s.t ‖ y −Bz ‖2≤ ν. (6.2)

The following result provides a bound on the estimation error ‖ â− a ‖2 for (P1).

Theorem 1. Consider the sampling model in (6.1), where B ∈ {−1,+1}n×d is a Bernoulli matrix.
Then the following hold.

1. ([1]) For any constant δ ∈ (0, 1), there exist constants c1, c2 > 0 depending on δ such that if

n ≥ c1k log(d/k),

then with probability at least 1 − 2 exp(−c2n), the matrix B satisfies ℓ2/ℓ2 RIP of order k,
with δk ≤ δ.

2. ([4, Theorem 1.2]) Let B satisfy the ℓ2/ℓ2 RIP with δ2k <
√
2− 1. Then there exist constants

C1, C2 > 0 such that, simultaneously for all vectors a ∈ R
d, any solution â to (P1) satisfies

‖ â− a ‖2≤ C1
‖ a− ak ‖1√

k
+ C2

ν√
n
.

Here, ak denotes the best k-term approximation of a.

Gaussian noise model. We now consider the scenario where the noise samples are i.i.d. Gaus-
sian with variance σ2, i.e, ηi ∼ N (0, σ2) i.i.d. for all i ∈ [n]. Using standard concentration inequali-
ties for sub-exponential random variables (see Proposition 6(1)), one can show that ‖ η ‖2= Θ(σ

√
n)

with high probability. This leads to the following straightforward corollary of Theorem 1.

Corollary 1. Consider the sampling model in (6.1) for some given vector a ∈ R
n, and let ηi ∼

N (0, σ2) i.i.d. for all i ∈ [n]. Say B satisfies ℓ2/ℓ2 RIP with δ2k <
√
2 − 1. For some ε ∈ (0, 1),

let â be a solution to (P1) with ν = (1 + ε)σ
√
n. Then there exists a constant c3 > 0 so that any

solution â to (P1) satisfies

‖ â− a ‖2≤ C1
‖ a− ak ‖1√

k
+ C2(1 + ε)σ

with probability at least 1− 2 exp(−c3ε2n). Here C1, C2 are the constants from Theorem 1.

Proof. Use Proposition 6(1) with Theorem 1.

6.2 Sparse bilinear functions

Let a ∈ R
(d2) be a vector of length

(d
2

)
with entries indexed by

([d]
2

)
(sorted in lexicographic order).

The entry of a at index j = (j1, j2) ∈
(
[d]
2

)
will be denoted by aj. We now consider the setting where

g : Rd → R is a second order multilinear function, i.e., g(β) = 〈β(2),a〉 with β(2),a ∈ R
(d2), and

21



β
(2)
(j1,j2)

= βj1βj2 . As before, our goal is to recover a from n noisy samples yi = g(βi) + ηi, i ∈ [n]
resulting in the linear system




y1
...
...
yn




︸ ︷︷ ︸
y∈Rn

=




β
(2)
1

T

...

...

β
(2)
n

T




︸ ︷︷ ︸
B∈Rn×(

d
2)

a+




η1
...
...
ηn




︸ ︷︷ ︸
η

. (6.3)

Observe that
〈β(2),a〉 = βTAβ = 〈ββT ,A〉, (6.4)

where A ∈ R
d×d is a symmetric matrix with zero on the diagonal and Ai,j = a(i,j)/2 if i 6= j. This

simple observation allows us to rewrite (6.3) as

yi = 〈βiβTi ,A〉+ ηi, i ∈ [n]. (6.5)

Chen et al. [5] recently showed that a sparse symmetric matrix – not necessarily being zero on the
diagonal – can be recovered from its measurements of the form (6.5), provided that βj is sampled
in an i.i.d. manner from a distribution satisfying

E[βi] = 0, E[β2i ] = 1 and E[β4i ] > 1. (6.6)

Their recovery program2 is essentially constrained ℓ1 minimization ([5, Eq.(4)]), the guarantees for
which rely on the ℓ2/ℓ1 RIP for sparse symmetric matrices ([5, Def. 2]).

Since our matrix A in (6.5) is sparse and symmetric, it is natural for us to use their scheme.
We do this, albeit with some technical changes:

• We will see that if A is known to be zero on the diagonal (which is the case here), the fourth
order moment condition in (6.6) is not needed. Hence one could, for instance, sample β from
the symmetric Bernoulli distribution.

• Instead of optimizing over the set of symmetric matrices with zeros on the diagonal, we will
perform ℓ1 minimization over the upper triangular entries of A, represented by a. These
approaches are equivalent, but the latter has the computational advantage of having fewer
constraints.

The analysis is based on the notion of ℓ2/ℓ1 RIP of the matrix B in (6.3), which is defined as
follows.

Definition 3. A matrix B ∈ R
n×N is said to satisfy the ℓ2/ℓ1 Restricted Isometry Property (RIP)

of order k with constants γlbk ∈ (0, 1) and γubk > 0 if

(1 − γlbk ) ‖ x ‖2 ≤ 1

n
‖ Bx ‖1 ≤ (1 + γubk ) ‖ x ‖2

holds for all k-sparse x ∈ R
N .

The above definition is analogous to the one in [5, Def. 2] for sparse symmetric matrices.

2Note that one can remove the positive semi-definite constraint in their program and replace it with a symmetry
enforcing constraint, the result remains unchanged (cf. remark in [5, Section E])
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Bounded noise model. Let us first consider the setting where the noise is bounded in the ℓ1
norm, i.e., ‖η‖1 ≤ ν. We recover the estimate â as a solution to the following program

(P2) min

z∈R(
d
2)

‖ z ‖1 s.t ‖ y −Bz ‖1≤ ν. (6.7)

The next result shows that B satisfies ℓ2/ℓ1 RIP with high probability if the rows of B are formed
by independent Bernoulli vectors. Consequently, the above program stably recovers a.

Theorem 2. Consider the sampling model in (6.3), where the rows of B are formed by independent
Bernoulli vectors. Then the following hold.

1. There exist absolute constants c1, c2, c3 > 0, such that the following is true. Let a ∈ R(
d
2).

Then

c1 ‖ a ‖2≤
1

n
‖ Ba ‖1≤ c2 ‖ a ‖2 (6.8)

holds with probability at least 1− exp(−c3n).

2. With constants c1, c2 from (6.8), there exist constants c′1, c
′
2, c

′
3 > 0 such that if n > c′3k log(d

2/k),
then B satisfies ℓ2/ℓ1 RIP of order k with probability at least 1− c′1 exp(−c′2n) with constants
γlbk and γubk , which fulfill

1− γlbk ≥ c1
2

and 1 + γubk ≤ 2c2. (6.9)

3. If there exists a number K > 2k such that B satisfies

1− γlbk+K√
2

− (1 + γubK )

√
k

K
≥ β > 0

for some β > 0, then the solution â to (P2) satisfies

‖ â− a ‖2≤
(C̃1

β
+ C̃3

)‖ a− ak ‖1√
K

+
C̃2

β

ν

n
,

where ak denotes the best k-term approximation of a and C̃1, C̃2, C̃3 are universal positive
constants.

4. There exist absolute constants c̃3, c̃4, C3, C4 > 0 such that if n ≥ c̃3k log(d
2/k), then the

solution â to (P2) satisfies

‖ â− a ‖2≤ C3
‖ a− ak ‖1√

k
+ C4

ν

n
,

simultaneously for all a ∈ R
(d2) with probability at least 1− exp(−c̃4n).

Gaussian noise model. We now consider the scenario where the noise samples are i.i.d. Gaus-
sian with variance σ2, i.e, ηi ∼ N (0, σ2) i.i.d. for all i ∈ [n]. Using standard concentration inequal-
ities for sub-Gaussian random variables (see Proposition 6(2)), one can show that ‖ η ‖1= Θ(σn)
with high probability. This leads to the following straightforward corollary of Theorem 2.
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Corollary 2. For constants c̃3, c̃4, C3, C4 > 0 defined in Theorem 2, the following is true. Consider

the sampling model in (6.3) for a given a ∈ R
(d2), where the rows of B are formed by independent

Bernoulli vectors, and ηi ∼ N (0, σ2) i.i.d. for all i ∈ [n] with n ≥ c̃3k log(d
2/k). For some

ε ∈ (0, 1), let â be a solution to (P2) with ν = (1 + ε)σn. Then

‖ â− a ‖2≤ C3
‖ a− ak ‖1√

k
+ C4

√
2

π
(1 + ε)σ

with probability at least 1 − exp(−c̃4n) − e · exp
(
−c̃5ε2n

)
, for some constant c̃5 > 0. Here, ak

denotes the best k-term approximation of a.

Proof. Use Proposition 6(2) with Theorem 2.

6.3 Sparse multilinear functions

For p, d ∈ N with p ≤ d, let a ∈ R
(dp) be a vector with entries indexed by

([d]
p

)
(sorted in lexicographic

order). We denote again the entry of a at index j = (j1, . . . , jp) ∈
([d]
p

)
by aj and consider a

multilinear function g : Rd → R in d variables β = (β1 . . . βd)
T such that

g(β) =
∑

j=(j1,...,jp)∈([d]p )

βj1βj2 · · · βjpaj. (6.10)

We will refer to (6.10) as a multilinear function of order p. For clarity of notation, we will write

(6.10) as g(β) = 〈β(p),a〉, where β(p) ∈ R
(dp), and the entry of β(p) at index j = (j1, . . . , jp) ∈

([d]
p

)

being βj1βj2 · · · βjp .
We are again interested in recovering the unknown coefficient vector a from n noisy samples

yi = g(βi) + ηi, i ∈ [n], where ηi refers to the noise in the ith sample. Arranging the samples
together, we arrive at the linear system y = Ba+ η, where




y1
...
...
yn




︸ ︷︷ ︸
y∈Rn

=




β
(p)
1

T

...

...

β
(p)
n

T




︸ ︷︷ ︸
B∈Rn×(

d
p)

a+




η1
...
...
ηn




︸ ︷︷ ︸
η

. (6.11)

We denote by S =
{
(j1, j2, . . . , jp) ∈

(
[d]
p

)
: a(j1,j2,...,jp) 6= 0

}
the support of a and we are especially

interested in the setting where a is sparse, i.e., |S| = k ≪
(
d
p

)
. Our aim is to estimate a with a

small number of samples n.

Bounded noise model. Let us consider the scenario where the noise is bounded in the ℓ2 norm,
i.e., ‖η‖2 ≤ ν. We will recover an estimate â to a as a solution of (P1). The following result
provides a bound on the estimation error ‖ â− a ‖2.

Theorem 3. ([26, Theorem 4; Lemmas 4, 5]) Let D =
(d
p

)
and let B be defined as in (6.11)

with rows formed by independent Bernoulli vectors. Then, for any δ ∈ (0, 1), there exist constants
c6, c7 > 0 depending on δ such that the matrix B satisfies ℓ2/ℓ2 RIP of order k, with δk ≤ δ,
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(a) with probability at least 1− exp(−c7n/k2) if n ≥ c6k
2 logD

(b) and with probability at least 1− exp(−c7 min
{
n/32p, n/k

}
) if

n ≥ c6 max
{
32pk log(D/k), k2 log(D/k)

}
.

The bounds on n in the theorem are obtained via the application of two very different method-
ologies. The bound in part (a) is a consequence of bounding the eigenvalues of the k × k Gram
matrices 1

nB
T
SBS for all S (here BS is the submatrix of B with column indices in S) using Gersh-

gorin’s disk theorem, along with standard concentration inequalities [26, Theorem 4]. The bound
in part (b) involves the usage of tail estimates for Rademacher chaos variables and follows from
[26, Lemmas 4, 5].

Remark 5. The analysis in [26, Section A] derives RIP bounds in terms of the so-called combina-
torial dimension. However in our opinion, this analysis has several inaccuracies because of which
we are not sure if the corresponding bounds are correct. Hence we do not state those bounds here.

Gaussian noise model. In the scenario where the noise in the samples is i.i.d. Gaussian, we
arrive at a statement similar to Corollary 1, hence we do not discuss this further.

7 Putting it together: final theoretical guarantees

We are now in a position to combine our efforts from the preceding sections and to state the final
results for recovery of the support sets. As before, we state this separately for the univariate,
bivariate, and general multivariate cases.

7.1 Univariate case

We begin with the univariate case considered in Section 3. Recall Algorithm 1 for recovering the
support S1. The ensuing Lemma 1 gave sufficient conditions for exact recovery provided SPARSE-REC
is ǫ-accurate at each x ∈ χ, for small enough ǫ. Instantiating SPARSE-REC with (P1) in (6.2) gives
the final results below. Let us start with the bounded noise model.

Bounded noise model. In this noise model, querying f at x returns f(x) + η, where |η| ≤ △.
For the linear system (3.4), this means that |η+i |, |η−i | ≤ △, i ∈ [n], and hence ‖η‖∞ ≤ 2△.
The following theorem shows that if △ is sufficiently small, then Algorithm 1 recovers S1 exactly
provided the parameters m,n, ǫ are chosen in a suitable way.

Theorem 4. For the bounded noise model with the noise uniformly bounded by △, consider Algo-
rithm 1 with SPARSE-REC instantiated with (P1) in (6.2). If ν = 2△√

n in (P1),

△ <
D1

6C2
, m ≥ (3L/D1)

1/α, and n ≥ c̃1|S1| log(d/|S1|)

are satisfied, it follows for the choice ǫ = 2C2△ that Ŝ1 = S1, with probability at least 1 −
2 exp(−c̃2n). The total number of queries made is 2(2m+ 1)n = Ω

(
|S1| log

(
d

|S1|

))
.
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Proof. The proof follows by combining Lemma 1 with Theorem 1. Since |η+i |, |η−i | ≤ △ in (3.4)
for i ∈ [n], we obtain ‖η‖2 ≤ √

n‖η‖∞ ≤ 2△√
n. Therefore we set SPARSE-REC = (P1) with

ν = 2△√
n.

As a consequence of Theorem 1, there exist constants c̃1, c̃2 > 0 (depending only on c1, c2 > 0
defined therein) so that, for n ≥ c̃1|S1| log(d/|S1|), B satisfies ℓ2/ℓ2 RIP with δ2|S1| <

√
2− 1 with

probability at least 1− 2 exp(−c̃2n). Conditioning on this event, it follows from Theorem 1 that

‖ ẑ∗(x)− z∗(x) ‖∞ ≤ ‖ ẑ∗(x)− z∗(x) ‖2 ≤ C2(2△) for all x ∈ χ.

Hence, we see that with probability at least 1− 2 exp(−c̃2n), SPARSE-REC is ǫ = 2C2△ accurate at
each x ∈ χ. Now invoking Lemma 1, it follows that if

2C2△ <
D1

3
⇔ △ <

D1

6C2

holds, then the stated choice of ǫ and m ensures exact recovery. This completes the proof.

Gaussian noise model. We now move to the Gaussian noise model, wherein querying f at x
returns f(x) + η; η ∼ N (0, σ2). Moreover, the noise samples are independent across the queries.
For the linear system (3.4), this means that ηi ∼ N (0, 2σ2), i ∈ [n] are i.i.d. random variables. The
following theorem essentially shows that if the noise variance σ2 is sufficiently small, then Algorithm
1 recovers S1 exactly provided the parameters m,n, ǫ are chosen properly. The reduction in the
variance is handled via re-sampling each query N times and averaging the values. Essentially, this
leads to the same sampling model with i.i.d. ηi ∼ N (0, 2σ2/N), i ∈ [n].

Theorem 5. For the Gaussian noise model with i.i.d. noise samples with variance σ2 and N ∈ N,
we resample each query N times, and average the values. Consider Algorithm 1 with SPARSE-REC

instantiated with (P1) in (6.2), wherein ν =
√
2(1 + ε)σ

√
n/N for some ε ∈ (0, 1), and with

N ≥
⌊
18C2

2 (1 + ε)2σ2

D2
1

⌋
+1, m ≥

(
3L

D1

)1/α

, n ≥ max

{
c̃1|S1| log

(
d

|S1|

)
,
2 log(2m+ 1)

c3ε2

}
(7.1)

being satisfied. Then Ŝ1 = S1 with probability at least 1−2 exp(−c̃2n)−2 exp(− c3ε2n
2 ). The constants

c̃1, c̃2 > 0 are as in Theorem 4; C2, c3 > 0 come from Theorem 1 and Corollary 1, respectively. The

total number of queries made is 2(2m + 1)nN = Ω
(
|S1| log

(
d

|S1|

))
.

Proof. First note that in (3.4), as a consequence of resampling N times and averaging, we have
η+i , η

−
i ∼ N (0, σ2/N), and ηi = η+i − η−i ∼ N (0, 2σ2/N), i ∈ [n]. Hence we set SPARSE-REC = (P1)

with ν =
√
2(1 + ε)σ

√
n/N .

From Theorem 1, there exist constants c̃1, c̃2 > 0 (depending only on c1, c2 > 0 defined therein)
so that for the choice n ≥ c̃1|S1| log(d/|S1|), B satisfies ℓ2/ℓ2 RIP with δ2|S1| <

√
2 − 1 with

probability at least 1− 2 exp(−c̃2n). Conditioning on this event, and invoking Corollary 1 for the
stated choice of ν, we have for any given x ∈ χ that with probability at least 1 − 2 exp(−c3ε2n),
the following holds

‖ ẑ∗(x)− z∗(x) ‖∞≤‖ ẑ∗(x)− z∗(x) ‖2≤
√
2C2(1 + ε)σ/

√
N. (7.2)

By the union bound over the 2m + 1 elements of χ, it follows that (7.2) holds for all x ∈ χ with
probability at least

1− 2|χ| exp(−c3ε2n) = 1− 2 exp(log(2m+ 1)− c3ε
2n) ≥ 1− 2 exp

(
−c3ε

2n

2

)
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if n ≥ 2 log(2m+1)
c3ε2

holds. By (7.1), this condition is indeed satisfied and furthermore, we see

that SPARSE-REC is ǫ =
√
2C2(1 + ε)σ/

√
N accurate for all x ∈ χ with probability at least

1− 2 exp(−c̃2n)− 2 exp(− c3ε2n
2 ). Now invoking Lemma 1, and using (7.2), it follows that if

√
2C2(1 + ε)σ√

N
<
D1

3
(7.3)

holds, then the stated choice of ǫ and m ensures exact recovery. Finally, (7.1) ensures that (7.3)
holds and this completes the proof.

7.2 Bivariate case

In the bivariate case from Section 4, we use Algorithm 2 for recovering the supports S2,S1 and
with the Lemma 3 giving sufficient conditions for their exact recovery. Instantiating SPARSE-REC2

with (P2) in (6.7), and SPARSE-REC1 with (P1) in (6.2) gives then the results below.

Bounded noise model. Following theorem shows that if △ is sufficiently small in the bounded
noise model described before, then Algorithm 2 recovers S2 and S1 exactly provided the parameters
mi, ni, ǫi, i = 1, 2 are chosen in a suitable way.

Theorem 6. For the bounded noise model with the noise uniformly bounded by △, consider Al-
gorithm 2 with SPARSE-REC2 instantiated with (P2) with ν2 = 4△n2 in (6.7), and SPARSE-REC1

realized by (P1) with ν1 = 2△√
n1 in (6.2), respectively. Let Hd

2 be a (d, 2) hash family. If

△ < min

{
D2

12C4
,
D1

6C2

}
, m2 ≥

√
2

(
3L

D2

)1/α

, n2 ≥ c̃3|S2| log(d2/|S2|),

m1 ≥ (3L/D1)
1/α and n1 ≥ c̃1|S1| log

(
d− |Ŝvar

2 |
|S1|

)

are satisfied, then Ŝ2 = S2 and Ŝ1 = S1 with probability at least 1 − exp(−c̃4n2) − 2 exp(−c̃2n1).
Here, the constants C4, c̃3, c̃4 > 0 are from Theorem 2, while c̃1, c̃2, C2 > 0 are as defined in Theorem
4. The total number of queries made is

4(2m2 + 1)2n2|Hd
2|+ 2(2m1 + 1)n1 = Ω

(
|S2| log

(
d2

|S2|

)
|Hd

2|+ |S1| log
(
d− |Ŝvar

2 |
|S1|

))
.

Proof. We focus on the proof of the exact recovery of S2. Once S2 is recovered exactly, the model
reduces to a univariate SPAM on the variable set P = [d] \ Svar

2 , with S1 ⊂ P. Thereafter, the
proof of the exact recovery of S1 is identical to the proof of Theorem 4.

Since |ηi,1|, |ηi,2|, |ηi,3|, |ηi,4| ≤ △ in (4.4) for i ∈ [n2], we obtain ‖η‖1 ≤ n2‖η‖∞ ≤ 4n2△.
Therefore we set SPARSE-REC2 = (P2) with ν = 4△n2.

Now, as a consequence of Theorem 2, there exist constants c̃3, c̃4, C4 > 0 such that if n2 ≥
c̃3|S2| log(d2/|S2|), then with probability at least 1− exp(−c̃4n2),

‖ ẑ∗(x;A)− z∗(x;A) ‖∞ ≤ ‖ ẑ∗(x;A)− z∗(x;A) ‖2 ≤ 4C4△ for all x ∈
⋃

h∈Hd
2

χ(h).

This holds since z∗(x;A) is always at most |S2| sparse. Thus, with probability at least 1 −
exp(−c̃4n2), SPARSE-REC2 is ǫ2 = 4C4△ accurate for each h ∈ Hd

2, x ∈ χ(h). Now invoking
Lemma 3 reveals that if

4C4△ <
D2

3
⇔ △ <

D2

12C4
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holds, then the stated choice of ǫ2 and m2 ensures Ŝ2 = S2. Lastly, the bound on the total number
of queries follows from Lemma 3 by plugging in the stated bounds on mi, ni; i = 1, 2.

Gaussian noise model. Next, we consider the Gaussian noise model with the noise samples
i.i.d. Gaussian (∼ N (0, σ2)) across queries. Similarly to Theorem 5, we show that if the noise
variance σ2 is sufficiently small, then Algorithm 2 recovers S2 and S1 for a careful choice of mi, ni,
i = 1, 2. We again reduce the variance via re-sampling each query either N2 times (during the
estimation of S2) or N1 times (during the estimation of S1), and averaging the values.

Theorem 7. For the Gaussian noise model with i.i.d noise samples ∼ N (0, σ2), say we resample
each query N2 times (during estimation of S2) or N1 times (during estimation of S1), and average
the values. Consider Algorithm 2, where SPARSE-REC2 and SPARSE-REC1 are instantiated with (P2)
with ν2 = 2σ(1+ ε)n2/

√
N2 in (6.7), and (P1) with ν1 =

√
2(1+ ε)σ

√
n1/N1 in (6.2), respectively,

for some ε ∈ (0, 1). Let Hd
2 be a (d, 2) hash family. If

N2 ≥
⌊
72C2

4 (1 + ε)2σ2

πD2
2

⌋
+ 1, m2 ≥

√
2

(
3L

D2

)1/α

, n2 ≥ max

{
c̃3|S2| log

(
d2

|S2|

)
,
2 log[(2m2 + 1)2e|Hd

2|]
c̃5ε2

}

N1 ≥
⌊
18C2

2 (1 + ε)2σ2

D2
1

⌋
+ 1, m1 ≥

(
3L

D1

)1/α

, n1 ≥ max

{
c̃1|S1| log

(
d

|S1|

)
,
2 log(2m1 + 1)

c3ε2

}

hold, then Ŝ2 = S2 and Ŝ1 = S1 with probability at least

1− exp(−c̃4n2)− exp

(
− c̃5n2ε

2

2

)
− 2 exp(−c̃2n1)− 2 exp

(
−c3ε

2n1
2

)
.

The total number of queries made is

4(2m2 + 1)2n2N2|Hd
2|+ 2(2m1 + 1)n1N1 = Ω

(
|S2| log(d2/|S2|)|Hd

2|+ |S1| log(d/|S1|)
)
.

Proof. As in the bounded noise model, we only prove the exact recovery of S2. First, we note that
in (4.4), as a consequence of resampling each query N2 times and averaging, ηi,1, ηi,2, ηi,3, ηi,4 ∼
N (0, σ

2

N2
), i ∈ [n2] are independent. Therefore ηi ∼ N (0, 4σ

2

N2
), i ∈ [n2] are also independent and we

set SPARSE-REC2 = (P2) with ν2 = 2σ(1 + ε)n2/
√
N2.

From Corollary 2, we know that there exist constants c̃3, c̃4, c̃5, C4 > 0 such that if n2 ≥
c̃3|S2| log

(
d2/|S2|

)
, then for any given h ∈ Hd

2, x ∈ χ(h), we have for the stated choice of ν2 that

‖ ẑ∗(x;A)− z∗(x;A) ‖∞ ≤ ‖ ẑ∗(x;A) − z∗(x;A) ‖1 ≤ C4

√
2

π
(1 + ε) · 2σ√

N2
=: ǫ2, (7.4)

with probability at least 1 − exp(−c̃4n2) − e · exp
(
−c̃5ε2n2

)
. This is true since z∗(x;A) is always

at most |S2| sparse. Therefore, by taking the union bound, (7.4) holds uniformly for all h ∈ Hd
2,

x ∈ χ(h), with probability at least

1− exp(−c̃4n2)− (2m2 + 1)2|Hd
2|e · exp

(
−c̃5ε2n2

)

=1− exp(−c̃4n2)− exp
(
log[(2m2 + 1)2|Hd

2|e]− c̃5ε
2n2

)

≥1− exp(−c̃4n2)− exp

(
− c̃5n2ε

2

2

)
(7.5)
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if n2 ≥ 2 log[(2m2+1)2e|Hd
2|]

c̃5ε2
holds. We conclude that SPARSE-REC2 is ǫ2-accurate for each h ∈ Hd

2,
x ∈ χ(h) with probability at least (7.5).

By the stated choice of N2, we have ǫ2 <
D2
3 and using Lemma 3 and the condition on m2,

we obtain Ŝ2 = S2. Lastly, the bound on the total number of queries follows from the expression
in Lemma 3 (taking the resampling into account) by plugging in the stated bounds on mi, ni, Ni;
i = 1, 2.

7.3 Multivariate case

Finally, we consider the most general multivariate setting of Section 5. Based on Lemma 5, we
analyze Algorithm 3 recovering the supports Si; i ∈ [r0]. The recovery routines SPARSE-RECi are
realized by (P1) in (6.2) for i = 1 and for each 3 ≤ i ≤ r0 and SPARSE-REC2 is instantiated with
(P2) in (6.7). This leads to the results below.

Bounded noise model. This is the same noise model as described in the preceding subsections.
The following theorem shows that if △ is sufficiently small, then Algorithm 3 recovers Si exactly
for all i ∈ [r0] provided the parameters (mi, ni)

r0
i=1 are well chosen.

Theorem 8. For the bounded noise model with noise uniformly bounded by △, consider Algorithm
3 with

(a) SPARSE-RECi instantiated with (P1) with νi = 2i△√
ni in (6.2) for i ∈ {3, . . . , r0},

(b) SPARSE-REC2 instantiated with (P2) with ν2 = 4△n2 in (6.7),

(c) SPARSE-REC1 instantiated with (P1) with ν1 = 2△√
n1 in (6.2), respectively.

Let HPi
i be a (Pi, i) hash family for each 2 ≤ i ≤ r0 and let Pi denote the set P ⊆ [d] at the

beginning of ith iteration (with Pr0 = [d]). If

△ < min
{

min
i∈{3,...,r0}

Di

2i3C2
,
D2

12C4
,
D1

6C2

}
, mi ≥

(
3L(

√
i)α

Di

)1/α

; i ∈ [r0],

ni ≥ c̃6|Si|2 log
(|Pi|

i

)
; i ∈ {3, . . . , r0} ,

n2 ≥ c̃3|S2| log(|P2|2/|S2|) and n1 ≥ c̃1|S1| log(|P1|/|S1|)

are satisfied, then Ŝi = Si for all i ∈ [r0] with probability at least

1−
r0∑

i=3

exp

(
− c̃7ni
|Si|2

)
− exp(−c̃4n2)− 2 exp(−c̃2n1).

Here, the constants C4, c̃3, c̃4 > 0 are from Theorem 2, while c̃1, c̃2, C2 > 0 are as defined in Theorem
4. The constants c̃6, c̃7 > 0 depend only on the constants c6, c7 > 0 defined in Theorem 3. The total
number of queries made is

Ω

(
r0∑

i=3

[
ciii

i+1|Si|2 log(|Pi|)|HPi
i |
]
+ |S2| log

( |P2|2
|S2|

)
|Hd

2|+ |S1| log
( |P1|
|S1|

))

where each ci > 1 depends on Di,L,α.
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Proof. Say we are at the beginning of ith iteration with 3 ≤ i ≤ r0 and Ŝl = Sl holds true for each
l > i. Hence, the model has reduced to an order i sparse additive model on the set Pi ⊆ [d], with

S(1)
i ,S(1)

i−1, . . . ,S1 ⊂ Pi.
From (5.5), we see for the noise vector η ∈ R

ni that

ηs =
2i∑

z=1

(−1)digit(z−1)ηs,z for all s ∈ [ni]. (7.6)

Since |ηs,z| ≤ △, this implies ‖η‖∞ ≤ 2i△ and thus ‖η‖2 ≤ 2i△√
ni. This bound holds uniformly

for each x at which the linear system is formed. So we now instantiate SPARSE-RECi with (P1) in
(6.2), with νi = 2i△√

ni.
As a consequence of part 1 of Theorem 3, there exists constants c̃6, c̃7 > 0 depending on

c6, c7 > 0 (as defined in Theorem 3) so that if ni ≥ c̃6|Si|2 log
(|Pi|
i

)
, then with probability at least

1− exp
(
− c̃7ni

|Si|2
)
, the matrix B ∈ R

ni×(|Pi|i ) satisfies ℓ2/ℓ2 RIP with δ2|Si| <
√
2− 1. Conditioning

on this event, it follows from Theorem 3 that

‖ ẑ∗(x;A)− z∗(x;A)︸ ︷︷ ︸
|Si| sparse

‖∞≤ ‖ ẑ∗(x;A)− z∗(x;A) ‖2 ≤ 2i△C2 =: ǫi for all x ∈
⋃

h∈HPi
i

χ(h).

Thus, with probability at least 1 − exp(− c̃7ni
|Si|2 ), SPARSE-RECi is ǫi-accurate for each h ∈ HPi

i ,

x ∈ χ(h). The assumption on △ ensures that ǫi < Di/3 and by Lemma 5 it follows that the stated
choice of (mi, ǫi) ensures exact recovery of Si.

Hence if

△ < min
i∈{3,...,r0}

Di

2i3C2

is satisfied and mi, ni, ǫi satisfy their stated bounds (for 3 ≤ i ≤ r0), it follows by the union bound
that Ŝi = Si holds for all 3 ≤ i ≤ r0 with probability at least

1−
r0∑

i=3

exp

(
− c̃7ni
|Si|2

)
.

Once Si are identified exactly for all 3 ≤ i ≤ r0, we are left with a bivariate SPAM on the set P2, with

S1,S(1)
2 ⊂ P2. Therefore by invoking Theorem 6, we see that if furthermore △ < min

{
D2
12C4

, D1
6C2

}

holds, and m1, n1,m2, n2 satisfy their respective stated conditions, then the stated instantiations
of SPARSE-REC1, SPARSE-REC2 (along with the stated choices of ν1, ν2) ensures Ŝ1 = S1 and Ŝ2 = S2

with probability at least 1−exp(−c̃4n2)−2 exp(−c̃2n1). This completes the proof for exact recovery
of Si’s for all i ∈ [r0].

Finally, the stated sample complexity bound for the total number of queries made by Algorithm
3 follows in a straightforward manner by plugging in

mi = Ω
(
iL1/αD

−1/α
i

)
, i ∈ [r0]; ni = Ω(i|Si|2 log |Pi|), 3 ≤ i ≤ r0

along with the complexity bounds for n1, n2 into the expression for total number of samples from
Lemma 5. This completes the proof.
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Gaussian noise model. In the Gaussian noise model with noise samples i.i.d. Gaussian (∼
N (0, σ2)) across queries, we again reduce the variance via re-sampling each query Ni times (during
the estimation of Si) for every i ∈ [r0] and averaging the values. We show that if the noise
variance σ2 is sufficiently small, then Algorithm 3 recovers Si exactly for each i ∈ [r0], provided
the parameters mi, ni; i ∈ [r0], are well chosen.

Theorem 9. For the Gaussian noise model with i.i.d. noise samples ∼ N (0, σ2), consider Algo-
rithm 3 wherein we resample each query Ni times during estimation of Si and average the values.
Let

(a) SPARSE-RECi = (P1) with νi = 2i/2(1 + ε)σ
√
ni/Ni in (6.2) for 3 ≤ i ≤ r0,

(b) SPARSE-REC2 = (P2) with ν2 = 2(1 + ε)σn2/
√
N2 in (6.7) and

(c) SPARSE-REC1 = (P1) with ν1 =
√
2(1 + ε)σ

√
n1/N1 in (6.2), respectively,

for some ε ∈ (0, 1). Let HPi
i be a (Pi, i) hash family for each 2 ≤ i ≤ r0, and denote Pi to be the

set P ⊆ [d] at the beginning of ith iteration with Pr0 = [d]. If

Ni ≥
⌊
9C2

2 (1 + ε)22iσ2

D2
i

⌋
+ 1, ni ≥ max

{
c̃6|Si|2 log

(|Pi|
i

)
,
2 log[(2mi + 1)i|HPi

i |]
c3ε2

}
; 3 ≤ i ≤ r0

mi ≥
(
3L(

√
i)α

Di

)1/α

; i ∈ [r0],

N2 ≥
⌊
72C2

4 (1 + ε)2σ2

πD2
2

⌋
+ 1, n2 ≥ max

{
c̃3|S2| log

( |P2|2
|S2|

)
,
2 log[(2m2 + 1)2e|HP2

2 |]
c̃5ε2

}
,

N1 ≥
⌊
18C2

2 (1 + ε)2σ2

D2
1

⌋
+ 1, n1 ≥ max

{
c̃1|S1| log

( |P1|
|S1|

)
,
2 log(2m1 + 1)

c3ε2

}

hold, then Ŝi = Si for all i ∈ [r0] with probability at least

1−
r0∑

i=3

[
exp

(
− c̃7ni
|Si|2

)
+ 2exp

(
−c3ε

2ni
2

)]

− exp(−c̃4n2)− exp

(
− c̃5n2ε

2

2

)
− 2 exp(−c̃2n1)− 2 exp

(
−c3ε

2n1
2

)
. (7.7)

The constants C4, c̃3, c̃4, c̃1, c̃2, C2, c̃6, c̃7 > 0 are as explained in Theorem 8, while c̃5, c3 > 0 come
from Corollaries 2, 1 respectively. The total number of queries made is

r0∑

i=1

Ni2
i(2mi + 1)ini|HPi

i |

= Ω

(
r0∑

i=3

[
c̄iii

i+1|Si|2 log(|Pi|)|HPi
i |
]
+ |S2| log

( |P2|2
|S2|

)
|HP2

2 |+ |S1| log
( |P1|
|S1|

))

where each c̄i > 1 depends on Di,L,α.

Proof. Again, in the beginning of ith iteration 3 ≤ i ≤ r0 with Ŝl = Sl for each l > i, the model

has reduced to an order i sparse additive model on the set Pi ⊆ [d], with S(1)
i ,S(1)

i−1, . . . ,S1 ⊂ Pi.
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The noise vector is again given by (7.6) As a consequence of resampling each query point Ni

times and averaging, we get ηs,z ∼ N (0, σ
2

Ni
) i.i.d. for all s, z and, therefore, ηs ∼ N (0, 2

iσ2

Ni
) i.i.d.

for each s. From part 1 of Theorem 3, we know that if ni ≥ c̃6|Si|2 log
(|Pi|
i

)
, then with probability

at least 1− exp
(
− c̃7ni

|Si|2
)
(with c̃6, c̃7 depending only on c6, c7), the matrix B ∈ R

ni×(|Pi|i ) satisfies

ℓ2/ℓ2 RIP with δ2|Si| <
√
2−1. Let us condition on this event. Then by setting SPARSE-RECi = (P1)

with νi = (1 + ε)
(
2i/2σ

√
ni√

Ni

)
, and invoking Corollary 1, it follows for any given h ∈ HPi

i , x ∈ χ(h)

that

‖ ẑ∗(x;A)− z∗(x;A)︸ ︷︷ ︸
|Si| sparse

‖∞ ≤ ‖ ẑ∗(x;A)− z∗(x;A) ‖2 ≤ 2i/2C2(1 + ε)σ
√
ni/Ni =: ǫi (7.8)

with probability at least 1− 2 exp(−c3ε2ni). By the union bound, it follows that (7.8) holds for all
h ∈ HPi

i , x ∈ χ(h), with probability at least

1− 2(2mi + 1)i|HPi
i | exp(−c3ε2ni) = 1− 2 exp[log[(2mi + 1)i|HPi

i |]− c3ε
2ni]

≥ 1− 2 exp

(
−c3ε

2ni
2

)

if ni ≥ 2 log[(2mi+1)i|HPi
i |]

c3ε2
holds. This gives us the stated condition on ni for 3 ≤ i ≤ r0. Hence

for the aforementioned choice of ni, SPARSE-RECi is ǫi-accurate for each h ∈ HPi
i , x ∈ χ(h), with

probability at least 1−2 exp
(
− c3ε2ni

2

)
−exp

(
− c̃7ni

|Si|2
)
. By the condition on Ni, we obtain ǫi < Di/3

and from Lemma 5, it follows that for the stated choice of mi and ǫi, we have Ŝi = Si. Thus we
conclude by a union bound that Ŝi = Si holds for all 3 ≤ i ≤ r0, for the stated choice ofmi, ni, ǫi, Ni.

Finally, say Ŝi = Si holds for all 3 ≤ i ≤ r0. Then we are left with a bivariate SPAM on the set

P2, with S1,S(1)
2 ⊂ P2. Thereafter, we only need to invoke Theorem 7, which guarantees Ŝ2 = S2

and Ŝ1 = S1 for the stated choices of SPARSE-RECi, νi,mi, ni, ǫi, Ni; i = 1, 2. This completes the
proof for the exact recovery of Si’s.

Since each query is resampledNi times, withNi = Ω(2i), we obtain the stated sample complexity
bound by proceeding as in the proof of Theorem 8.

8 Discussion

We now discuss how the components φ can be identified, and also compare our results with closely
related work. Finally, we discuss an alternative approach described in [38] in more detail.

Identification of φj’s. Once the sets S1,S2, . . . ,Sr0 are known, then one can identify each com-
ponent in the representation (5.1) by querying f along the corresponding canonical subspaces.
Indeed, for a given 1 ≤ p ≤ r0, and 1 ≤ r ≤ p, let us see how we can identify the r-variate compo-

nent φj for a given j ∈ S(r)
p . Consider any x = (x1 . . . xd)

T ∈ [−1, 1]d which is supported on S(1)
p ,

i.e., xl = 0 if l 6∈ S(1)
p . We then have from (5.1) that

f(x) = µ+
∑

u∈S(1)
p

φu(xu) +
∑

u∈S(2)
p

φu(xu) + · · ·+
∑

u∈S(p−1)
p

φu(xu) +
∑

u∈Sp
φu(xu).

32



In particular, it follows from (2.3) that

∑

i⊆j

(−1)|j|−|i|f(Πi(x)) = φj(xj), (8.1)

with Πi(x) denoting the projection of x on the set of variables i. Hence by querying f at the 2|j|

points {Πi(x) : i ⊆ j}, we can obtain the sample φj(xj) via (8.1). Consequently, by choosing xj
from a regular grid on [−1, 1]j, we can estimate φj from its corresponding samples via standard
quasi interpolants (in the noiseless case) or tools from non parametric regression (in the noisy case).

SPAMs. To begin with, we note that our work generalizes the recent results of Tyagi et al. [37, 38]
in two fundamental ways. Firstly, we provide an algorithm for the general case where r0 ≥ 2 is
possible, the results in [37, 38] are for the case r0 = 2. Secondly, our results only require f to be
Hölder continuous and not continuously differentiable as is the case in [37, 38]. We also mention
that our sampling bounds for the case r0 = 2 are linear in the sparsity |S1| + |S2| even when the
noise samples are i.i.d. Gaussian. However the algorithms in [37, 38] have super-linear dependence
on the sparsity in this noise model. This is unavoidable in [37, 38] due to the localized nature of the
sampling scheme, wherein finite difference operations are used to obtain linear measurements of the
sparse gradient and Hessian of f . In the presence of noise, this essentially leads to the noise level
getting scaled up by the step size parameter, and thus reducing the variance of noise necessarily
leads to a resampling factor which is super linear in sparsity.

Dalalyan et al. [10] recently studied models of the form (1.1) with a small number m of s-
wise interaction terms. They considered the Gaussian white noise model, which while not the
same as the usual regression setup, is known to be asymptotically equivalent to the same. They
derived non-asymptotic L2 error rates in expectation for an estimator, with f lying in a Sobolev
space, and showed the rates to be minimax optimal. However, they do not consider the problem
of identification of the interaction terms. Moreover, as noted in [10], the computational cost of
their method typically scales exponentially in m, s, d. Yang et al. [44] also studied models of the
form (1.1) in a Bayesian setting, wherein they place a Gaussian prior (GP) on f and can carry out
inference via the posterior probability distribution. They derive an estimator and provide error
rates in the empirical L2 norm for Hölder smooth f , but do not address the problem of identifying
the interaction terms.

Functions with few active variables. There has been a fair amount of work in the literature
on functions which intrinsically depend on a small subset of k ≪ d variables [11, 33, 9, 8]. To our
knowledge, this model was first considered in [11], and in fact, our idea of using a family of hash
functions is essentially motivated from [11] wherein such a family was used to construct the query
points. A prototypical result in [11] is an algorithm that identifies the set of active variables with
(L + 1)k|Hd

k| + k log d queries, with L > 0 being the number of points on a uniform grid along a
coordinate. The exponential dependence on k is unavoidable in the worst case, and indeed our
bounds are also exponential in r0 (see (1.2)).

• When r0 ≥ k, (1.1) is clearly a generalization of this model.

• In general, the model (1.1) is also a function of few active variables (those part of Si’s); more
precisely, at most

∑r0
i=1 i|Si| variables. However, using a method that is designed generically

for learning intrinsically k-variate functions would typically have sample complexity scaling
exponentially with

∑r0
i=1 i|Si|. This is clearly suboptimal; our bounds in general depend at

most polynomially on the size of Si’s. This dependence is actually linear for the case r0 = 2.
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An alternative approach. Next, we discuss an alternative approach for learning the model
(5.1) which was mentioned already in [38]. It is based on a truncated expansion in a bounded
orthonormal system. For simplicity, we assume that f takes the form

f(x) =
∑

j∈Sr0

φj(xj), x ∈ [−1, 1]d. (8.2)

Let {ψk}k∈Z be an orthonormal basis in L2([−1, 1]) with respect to the normalized Lebesgue
measure on [−1, 1]. We assume that ψ0 ≡ 1 and we define {ψi}i∈Zd to be the tensor product
orthonormal basis in L2([−1, 1]d), where

ψi(x) =

d⊗

l=1

ψil(xl), x ∈ [−1, 1]d.

For the components of (8.2) we obtain (for each j ∈ Sr0) the decomposition

φj(xj) =
∑

i∈Zd
aj,iψi(xj) =

∑

i∈Zd:supp i⊆j

aj,iψi(xj). (8.3)

In the last identity, we used that
∫ 1
−1 ψk(t)dt = 0 for every k ∈ Z \ {0} and, therefore, aj,i =

〈φj, ψi〉 = 0 if il 6= 0 for some l 6∈ j.
Using the smoothness of φj, we can truncate (8.3) at level N ∈ N (which we will determine

later) and obtain

φj(xj) =
∑

i∈Zd:‖i‖∞≤N
supp i⊆j

aj,iψi(xj) + rj(xj) for all j ∈ Sr0 . (8.4)

Summing up over j ∈ Sr0 we arrive at

f(x) =
∑

j∈Sr0

( ∑

i∈Zd:‖i‖∞≤N
supp i⊆j

aj,iψi(xj)

)
+ r(x) with r(x) =

∑

j∈Sr0

rj(xj). (8.5)

The worst-case error of the uniform approximation of Hölder continuous functions with exponent
α > 0 (i.e., functions from the unit ball of Cα) is bounded from below by the Kolmogorov numbers
of the embedding of Cα into L∞, cf. [41],

‖rj(xj)‖∞ ≈ [(2N)r0 ]−α/r0 = (2N)−α and ‖r(x)‖∞ ≈ |Sr0 |(2N)−α.

Thus for any ǫ ∈ (0, 1), we typically require N &
( |Sr0 |

ǫ

)1/α
to ensure ‖r(x)‖∞ . ǫ.

Furthermore, the number of degrees of freedom in (8.5) is bounded by

D ≥
(
d

r0

)
(2N)r0 .

If the basis functions ψi are uniformly bounded (i.e. they form a Bounded Orthonormal System
(BOS)), it was shown in [13, Theorem 12.31] or [31, Theorem 4.4], that one can recover a = (aj,i)
in (8.5) from m & |Sr0 |(2N)r0 log4(D) random samples of f by ℓ1-minimization. Plugging in our
estimates on D and N , we arrive at m & |Sr0 |1+r0/α · log4(d). This bound is always superlinear in
|Sr0 | and (if α ∈ (0, 1]) with the power of dependence at least 1 + r0.
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A Proofs for Section 2

Proof of Proposition 1. For U ⊆ [d], we define

(PUf)(xU ) = f
(∑

j∈U
xjej

)
and fU(xU ) =

∑

V⊆U
(−1)|U |−|V |(PV f)(xV ).

Here, {e1, . . . , ed} is the canonical basis of Rd.
By its definition, fU is a continuous function. Furthermore,

∑

U⊆[d]

fU(xU ) =
∑

U⊆[d]

∑

V⊆U
(−1)|U |−|V |(PV f)(xV ) =

∑

V⊆[d]

(PV f)(xV )
∑

U⊇V
(−1)|U |−|V |

=
∑

V⊆[d]

(PV f)(xV )
∑

W⊆[d]\V
(−1)|W |.

The last sum is equal to zero for all V ⊆ [d] except V = [d]. This leads to (2.4).
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If xj = 0 for some j ∈ U , we get

fU (xU ) =
∑

V⊆U
(−1)|U |−|V |(PV f)(xV )

=
∑

V⊆U\{j}

[
(−1)|U |−|V |(PV f)(xV ) + (−1)|U |−|V ∪{j}|(PV ∪{j}f)(xV ∪{j})

]
= 0

as all the terms in the last sum are equal to zero.
Finally, the uniqueness follows by induction. The statement is obvious for d = 1. Let now d > 1

and let us assume that a given function f ∈ C([−1, 1]d) allows a decomposition

f(x) =
∑

U⊆[d]

fU(xU ), x ∈ [−1, 1]d,

which satisfies the properties a)-c) of Proposition 1.
Let W be a proper subset of [d] and put for xW ∈ [−1, 1]|W |

gW (xW ) = f
(∑

j∈W
xjej

)
.

Then gW ∈ C([−1, 1]|W |) and using c) of Proposition 1 we obtain

gW (xW ) =
∑

U⊆[d]

fU

((∑

j∈W
xjej

)
U

)
=
∑

U⊆[d]

fU

(∑

j∈W
xj(ej)U

)
=
∑

U⊆W
fU(xU ).

This decomposition of gW satisfies a)-c) of Proposition 1 with |W | ≤ d − 1. By the induction
assumption, this decomposition is therefore unique. We conclude, that fU is uniquely determined
for all U ⊂ [d]. Finally, also

f[d](x) = f(x)−
∑

U⊂[d]

fU (xU )

is uniquely determined.

Proof of Proposition 2. Let f be given by (4.1) and let us assume that it satisfies all the assump-
tions of Proposition 2. We show that (4.1) coincides with its Anchored-ANOVA decomposition as
described in Proposition 1 and (4.1) is therefore unique.

Let U ⊆ [d] with |U | ≥ 3. Then

fU (xU ) =
∑

V⊆U
(−1)|U |−|V |(PV f)(xV )

=
∑

V⊆U
(−1)|U |−|V |

{
µ+

∑

j∈S1∪Svar
2

φj((xV )j) +
∑

j=(j1,j2)∈S2

φj((xV )j1 , (xV )j2)
}

= µ
∑

V⊆U
(−1)|U |−|V | +

∑

j∈S1∪Svar
2

φj(xj)
∑

V⊆U
j∈V

(−1)|U |−|V | +
∑

j∈S1∪Svar
2

φj(0)
∑

V ⊆U
j 6∈V

(−1)|U |−|V |

+
∑

j=(j1,j2)∈S2

∑

V⊆U
(−1)|U |−|V |φj((xV )j1 , (xV )j2).
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It is easy to see, that the first three terms are zero. Finally, the last term can be split into a sum
of four terms depending on if j1 ∈ V or j2 ∈ V , i.e. terms of the kind

∑

j=(j1,j2)∈S2

φj(xj1 , xj2)
∑

V⊆U
j1,j2∈V

(−1)|U |−|V |,

which also vanish. Therefore, fU(xU ) = 0.
If U = {j1, j2} with 1 ≤ j1 < j2 ≤ d, then ∅, {j1}, {j2} and {j1, j2} are the only subsets of U

and we obtain

fU (xU ) =
∑

V⊆U
(−1)|U |−|V |(PV f)(xV )

= (P∅f)(0)− (Pj1f)(xj1)− (Pj2f)(xj2) + (P{j1,j2}f)(xj1 , xj2)

= f(0)− f(xj1ej1)− f(xj2ej2) + f(xj1ej1 + xj2ej2)

=
∑

j∈S1∪Svar
2

[φj(0) − φj((xj1ej1)j)− φj((xj2ej2)j) + φj((xj1ej1 + xj2ej2)j)]

+
∑

j∈S2

[φj(0) − φj((xj1ej1)j)− φj((xj2ej2)j) + φj((xj1ej1 + xj2ej2)j)].

The first sum vanishes for all j ∈ S1∪Svar
2 , which can be easily observed by considering the options

j 6∈ {j1, j2}, j = j1, or j = j2. If (j1, j2) 6∈ S2, then also the second sum vanishes. If (j1, j2) ∈ S2,
then

fj1,j2(xj1 , xj2) = φj1,j2(xj1 , xj2)− φj1,j2(xj1 , 0)− φj1,j2(0, xj2) + φj1,j2(0, 0) = φj1,j2(xj1 , xj2).

Finally, if l ∈ [d] then ∅ and {l} are the only subsets of {l}. If furthermore l 6∈ S1 ∪Svar
2 , we get

f{l}(xl) = −f(0) + f(xlel)

= −
(
µ+

∑

j∈S1∪Svar
2

φj(0) +
∑

j∈S2

φj(0)
)
+
(
µ+

∑

j∈S1∪Svar
2

φj(0) +
∑

j∈S2

φj(0)
)
= 0.

Similarly, f{l}(xl) = φl(xl) if l ∈ S1 ∪ Svar
2 .

B Some standard concentration results

First, we recall that the sub-Gaussian norm of a random variable X is defined as

‖ X ‖ψ2= sup
p≥1

p−1/2(E|X|p)1/p

and X is called sub-Gaussian random variable if ‖ X ‖ψ2 is finite. Similarly, the sub-exponential
norm of a random variable is the quantity

‖ X ‖ψ1= sup
p≥1

p−1(E|X|p)1/p

and X is called sub-exponential if ‖ X ‖ψ1 is finite. Next, we recall the following concentration
results for sums of i.i.d. sub-Gaussian and sub-exponential random variables.
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Proposition 4. [39, Proposition 5.16] Let X1, . . . ,XN be independent centered sub-exponential
random variables, and K = maxi ‖ Xi ‖ψ1 . Then for every a = (a1, . . . , aN ) ∈ R

N and every t ≥ 0,
we have

P

(∣∣∣
∑

i

aiXi

∣∣∣ ≥ t

)
≤ 2 exp

[
−cmin

{
t2

K2 ‖ a ‖22
,

t

K ‖ a ‖∞

}]
,

where c > 0 is an absolute constant.

Proposition 5. [39, Proposition 5.10] Let X1, . . . ,XN be independent centered sub-Gaussian ran-
dom variables, and K = maxi ‖ Xi ‖ψ2 . Then for every a = (a1, . . . , aN ) ∈ R

N and every t ≥ 0,
we have

P

(∣∣∣
∑

i

aiXi

∣∣∣ ≥ t

)
≤ e · exp

[
− ct2

K2 ‖ a ‖22

]
,

where c > 0 is an absolute constant.

Let η = (η1 η2 . . . ηn)
T , where ηi ∼ N (0, σ2) are i.i.d. for each i. The Proposition below

is a standard concentration result, stating that ‖ η ‖2= Θ(σ
√
n) and ‖ η ‖1= Θ(σn), with high

probability. We provide proofs for completeness.

Proposition 6. Let η = (η1 η2 . . . ηn)
T where ηi ∼ N (0, σ2) i.i.d for each i. Then, there exists

constants c1, c2 > 0 so that for any ǫ ∈ (0, 1), we have:

1. P (‖ η ‖2∈ [(1− ǫ)σ
√
n, (1 + ǫ)σ

√
n ]) ≥ 1− 2 exp

(
−c1ǫ2n

)
, and

2. P

(
‖ η ‖1∈

[
(1− ǫ)nσ

√
2
π , (1 + ǫ)nσ

√
2
π

])
≥ 1− e · exp

(
−2c2ǫ2n

π

)
.

Proof. 1. Note that ηi are i.i.d. sub-Gaussian random variables with ‖ ηi ‖ψ2≤ C1σ. Hence η2i
are i.i.d. sub-exponential3 with

‖ η2i ‖ψ1≤ 2 ‖ ηi ‖2ψ2
≤ C2σ

2

for some constant C2 > 0. This implies that η2i − E[η2i ] are i.i.d. sub-exponential with

‖ η2i − E[η2i ] ‖ψ1≤ 2 ‖ η2i ‖ψ1≤ C3σ
2

for some constant C3 > 0. Using Proposition 4 with t = nǫσ2 for 0 < ǫ < 1, we obtain for
some constant c1 > 0

P

(∣∣∣
n∑

i=1

(η2i − E[η2i ])
∣∣∣ ≤ nǫσ2

)
≥ 1− 2 exp

[
−c1min

{
ǫ2, ǫ

}
n
]
.

Together with some standard manipulations this completes the proof.

2. Note that |ηi| − E[|ηi|] is sub-Gaussian with

‖ |ηi| − E[|ηi|] ‖ψ2≤ 2 ‖ ηi ‖ψ2≤ Cσ,

for some constant C > 0. Using Proposition 5 with t = nǫE[|η1|] for ǫ > 0, we hence obtain

P

(∣∣∣
n∑

i=1

(|ηi| − E[|ηi|])
∣∣∣ ≤ nǫE[|η1|]

)
≥ 1− e · exp

[
−c2nǫ

2(E[|η1|])2
σ2

]

3A random variable X is sub-Gaussian iff X
2 is sub-exponential. Moreover, ‖ X ‖2ψ2

≤‖ X
2 ‖ψ1

≤ 2 ‖ X ‖2ψ2
(cf.

[39, Lemma 5.14]).
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for some constant c2 > 0. Finally, observing that E[|η1|] = σ
√

2
π (cf., [43]) completes the

proof.

C Proof of Theorem 2

The proof of part (1) follows in the same manner as [5, Proposition 1], with minor differences in
calculation at certain parts. For completeness, we outline the main steps below.

Invoking the Hanson-Wright inequality for quadratic forms [17], we get for some constant c > 0
and all t > 0

P(|βTAβ − E[βTAβ]| > t) ≤ 2 exp

[
−cmin

{
t2

K4 ‖ A ‖2F
,

t

K2 ‖ A ‖

}]
, (C.1)

where ‖ βi ‖ψ2≤ K. For βi Bernoulli symmetric, K = 1 and

E[βTAβ] = E

∑

i 6=j
βiβjAij = 0.

Using ‖ A ‖≤‖ A ‖F , (C.1) implies for every t > 0

P(|βTAβ| > t) ≤ 2 exp

[
−cmin

{
t2

‖ A ‖2F
,

t

‖ A ‖F

}]
. (C.2)

We will now find upper and lower bounds on E[|βTAβ|]. The upper bound is easy since (C.2)
implies

E[|βTAβ|] =
∫ ∞

0
P(|βTAβ| > t)dt ≤ c′ ‖ A ‖F . (C.3)

In order to find the lower bound, we have via repeated application of Cauchy Schwartz inequality

(
E[|βTAβ|2]

)2 ≤ E[|βTAβ|] · E[|βTAβ|3] ≤ E[|βTAβ|] ·
(
E[|βTAβ|2]

)1/2 ·
(
E[|βTAβ|4]

)1/2

and

E[|βTAβ|] ≥
√

(E[|βTAβ|2])3
E[|βTAβ|4] .

Since β consists of i.i.d. Bernoulli symmetric random variables, we obtain

E[|βTAβ|2] = 2 ‖ A ‖2F=‖ a ‖22 .

Moreover, an argument similar to (C.3) gives E[|βTAβ|4] ≤ c′′ ‖ A ‖4F . Hence,

E[|βTAβ|] ≥
√

8 ‖ A ‖6F
c′′ ‖ A ‖4F

= c̃ ‖ A ‖F . (C.4)

Eqs. (C.3), (C.4) give us upper and lower bounds for E[|βTAβ|]. As a last step, we consider the
zero mean random variables X1, . . . ,Xn, where Xi = |βTi Aβi| − E|βTi Aβi|. A simple modification
of (C.3) shows that they are sub-exponential with ‖ Xi ‖ψ1≤ c ‖ A ‖F . We can therefore apply a
standard concentration bound (see [39, Proposition 5.16]) to bound the deviation

∣∣∣∣
1

n
‖ Ba ‖1 − 1

n
E[‖ Ba ‖1]

∣∣∣∣ =
1

n

∣∣∣∣
n∑

i=1

Xi

∣∣∣∣.
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A straightforward calculation then yields the statement of part (1) of the Theorem.
Part (2) follows from standard arguments based on ǫ-nets, detailed for instance in [1].
The proof of part (3) copies that of [5, Theorem 3], which again is inspired by [4]. We sketch

the main steps below for completeness. Denoting â = a + h, we have by feasibility of a that
1
n ‖ Bh ‖1≤ 2ν

n . Denoting Ω0 to be set of indices corresponding to the k largest entries of a, we get
a = aΩ0 + aΩc0 . For a suitable positive integer K, we define Ω1 as the set of indices of K largest
entries of hΩc0

, Ω2 as the set of indices of K largest entries of h on (Ω0 ∪Ω1)
c and so on. Following

this argument of [4] gives the proof.

The proof of part (4) follows by choosing K = 4
(
4c2
c1

)2
k. Indeed, (6.9) gives

1− γlbk+K√
2

− (1 + γubK )

√
k

K
≥ c1

2
√
2
− 2c2 ·

c1
8c2

=
(
√
2− 1)c1
4

= β > 0

if n > c′3(k +K) log(d2/(k +K)), with probability at least 1− e−C4n for some constant C4 > 0.
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