

Edinburgh Research Explorer

A near-stationary subspace for ridge approximation

Citation for published version:
Constantine, PG, Eftekhari, A, Hokanson, J & Ward, RA 2017, 'A near-stationary subspace for ridge
approximation', Computer Methods in Applied Mechanics and Engineering, vol. 326, pp. 402-421.
https://doi.org/10.1016/j.cma.2017.07.038

Digital Object Identifier (DOI):
10.1016/j.cma.2017.07.038

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Computer Methods in Applied Mechanics and Engineering

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Nov. 2022

https://doi.org/10.1016/j.cma.2017.07.038
https://doi.org/10.1016/j.cma.2017.07.038
https://www.research.ed.ac.uk/en/publications/ca6af9ac-67fe-41a5-bd1b-be8abe26bc50

A near-stationary subspace for ridge approximation

Paul G. Constantinea, Armin Eftekharib, Rachel A. Wardb

aDepartment of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO
80211

bDepartment of Mathematics and Institute for Computational Engineering and Sciences,
University of Texas at Austin, Austin, TX 78712

Abstract

Response surfaces are common surrogates for expensive computer simulations in

engineering analysis. However, the cost of fitting an accurate response surface

increases exponentially as the number of model inputs increases, which leaves

response surface construction intractable for many models. We propose ridge

approximation for fitting response surfaces in several variables. A ridge function

is constant along several directions in its domain, so fitting occurs on the coor-

dinates of a low-dimensional subspace of the input space. We develop essential

theory for ridge approximation—e.g., the best mean-squared approximation and

an optimal low-dimensional subspace—and we show that the gradient-based ac-

tive subspace is near-stationary for the least-squares problem that defines an

optimal subspace. We propose practical computational heuristics motivated by

the theory including an alternating minimization heuristic that estimates an

optimal ridge approximation. We show a simple example where the heuristic

fails, which reveals a type of function for which the proposed approach is inap-

propriate. And we demonstrate a successful example with an airfoil model of

drag as a function of its 18 shape parameters.

Keywords: active subspaces, ridge functions, projection pursuit regression

Email address: paul.constantine@mines.edu (Paul G. Constantine)

Preprint submitted to CMAME June 8, 2016

ar
X

iv
:1

60
6.

01
92

9v
1

 [
m

at
h.

N
A

]
 6

 J
un

 2
01

6

1. Introduction

Engineering computations often require cheap surrogates that mimic the in-

put/output relationship between an expensive computer model’s parameters

and its predictions. The essential idea is to use a few expensive model runs

at particular parameter values to fit (or train) a response surface, where the5

surface may be a polynomial, spline, or radial basis approximation [1, 2]. The

same scenario motivates statistical tools for design and analysis of computer

experiments [3, 4], which use Gaussian processes to model uncertainty in the

surrogate’s predictions.

When the number of input parameters is more than a handful, the cost10

of constructing an accurate response surface increases exponentially as the di-

mension of the input space increases; in approximation, this is the tractability

problem [5], though it is more colloquially referred to as the curse of dimension-

ality [6, Section 5.16]. Several techniques attempt to alleviate this curse—each

with advantages and drawbacks for certain classes of problems; see [7] for an15

extensive survey. One such idea is to approximate the input/output map by a

ridge function, which is a function of a few linear combinations of the inputs.

If one can identify the few most important linear combinations of inputs for a

given model, then she may fit a response surface of only those linear combina-

tions, which allows a higher degree of accuracy along important directions in20

the model’s input space.

We define a ridge function to be a function of the form g(UTx), where

x ∈ Rm, U ∈ Rm×n with n < m, and g : Rn → R. The term ridge function

is more commonly used when U is a single vector (n = 1). Pinkus calls our

definition a generalized ridge function [8, Chapter 1], though Keiper uses the25

qualifier generalized for a model where U depends on x [9]. If U is given, then

one need only construct g, which is a function of n < m variables. Thus, con-

structing g may require exponentially fewer model evaluations than constructing

a comparably accurate response surface on all m variables.

Let f : Rm → R represent the simulation model’s input/output map to30

2

approximate, and let its domain be equipped with a weight function ρ : Rm →

R+. The ridge approximation problem may stated as: given f and ρ, find g

and U that minimize the approximation error. After a brief survey of related

concepts, we define a specific ridge approximation problem in Section 2. We then

study a particular U derived from f ’s gradient. We show that, under certain35

conditions, this U is nearly stationary—i.e., that the gradient of the objective

function defining the approximation problem is bounded; see Section 3. This

result motivates a computational heuristic for fitting a ridge approximation

given pairs {(xi, f(xi))}. In Section 4, we show (i) a simple bivariate example

that exposes the limitations of the heuristic and (ii) an 18-dimensional example40

from an airfoil shape optimization problem where the heuristic succeeds.

1.1. Related concepts

There are many concepts across subfields that relate to ridge approximation. In

what follows, we briefly review three of these subfields with citations that point

interested readers to representative works.45

1.1.1. Projection pursuit regression

In the context of statistical regression, Friedman and Stuetzle [10] proposed

projection pursuit regression with a ridge function model:

yi =

r∑
k=1

gk(uTk xi) + εi, (1)

where xi’s are samples of the predictors, yi’s are the associated responses, and

εi’s model random noise—all standard elements of statistical regression. The

gk’s are smooth univariate functions (e.g., splines), and the uk’s are the di-

rections of the ridge approximation. To fit the projection pursuit regression50

model, one minimizes the mean-squared error over the directions {uk} and the

parameters of {gk}. Chapter 11 of Hastie, Tibshirani, and Friedman [11] links

projection pursuit regression to neural networks, which use ridge functions with

particular choices for the gk’s (e.g., the sigmoid function). Although algorithm

implementations may be similar, the statistical regression context is different55

3

from the approximation context, since there is no inherent randomness in the

approximation problem.

1.1.2. Gaussian processes with low-rank covariance models

In Gaussian process regression, the conditional mean of the Gaussian process

model given data (e.g., {yi} as in (1)) is the model’s prediction. This conditional

mean is a linear combination of radial basis functions with centers at a set of

points {xi}, where the form of the basis function is related to the Gaussian

process’ assumed covariance. Vivarelli and Williams [12] proposed a covariance

model of the form

C(x,x′) ∝ exp

[
−1

2
(x− x′)TUUT (x− x′)

]
, (2)

where U is a tall matrix. In effect, the resulting conditional mean is a function of

linear combinations of the predictors, UTx—i.e., a ridge function. A maximum60

likelihood estimate of U is the minimizer of an optimization similar to the one we

define for ridge approximation; see Section 2. Bilionis, et al. [13], use a similar

approach from a Bayesian perspective in the context uncertainty quantification,

where the subspace defined by U enables powerful dimension reduction.

1.1.3. Ridge function recovery65

Recent work in constructive approximation seeks to recover the parameters of

a ridge function from point queries [14, 15, 16]. In other words, assume f(x) =

g(UTx) is a ridge function; using pairs {xi, f(xi)}, one wishes to recover the

components of U . Algorithms for determining U (e.g., Algorithm 2 in [14]) are

quite different than optimizing a ridge approximation over U . However, the70

recovery problem is similar in spirit to the ridge approximation problem.

2. Optimal ridge approximation

Consider a function f : Rm → R that is square-integrable with respect to a

given probability density function ρ : Rm → R+,∫
f(x)2 ρ(x) dx < ∞, (3)

4

where we assume the domain of f is the support of ρ. Given U ∈ Rm×n with

n < m and g : Rn → R, we measure the error in the ridge approximation with

the L2(ρ) norm,

∥∥f(x)− g(UTx)
∥∥
L2(ρ)

=

(∫
(f(x)− g(UTx))2 ρ(x) dx

) 1
2

. (4)

We restrict attention to matrices U with orthonormal columns, UTU = I,

where I is the n × n identity matrix. For a more general matrix with full

column rank, we can transform to the orthonormal column case with a thin QR75

factorization, where the R factor represents an invertible change of variables in

g’s domain.

Given U with orthonormal columns, let V be an orthogonal basis for the

complement of span(U) in Rm, where span(U) denotes the span of U ’s columns.

The density function ρ(x) induces joint, marginal, and conditional densities on

the subspace coordinates of span(U) and span(V) as follows. For y ∈ Rn and

z ∈ Rm−n, define the following:

π(y, z) = ρ(Uy + V z) (joint density)

π(y) =
∫
π(y, z) dz (marginal density)

π(z|y) = π(y, z)/π(y) (conditional density)

(5)

The conditional density enables construction of a particularly useful ridge ap-

proximation. Define the conditional average of f given subspace coordinates y,

denoted µ, as

µ = µ(y,U) =

∫
f(Uy + V z)π(z|y) dz. (6)

Consider the ridge function µ(UTx,U). By construction,∫
(µ(y)− f(Uy + V z)) π(z|y) dz = 0, (7)

for all y such that π(y) > 0. As a consequence of Pinkus’s Theorem 8.3 [8],

for fixed U , (7) implies that µ(UTx,U) is the unique best ridge approxima-

tion in the L2(ρ) norm; see the discussion immediately following the theorem’s80

statement.

5

The particular choice of basis U does not affect the ridge approximation µ.

In other words, we can replace U by UQ, where Q is an n×n orthogonal rotation

matrix, and µ does not change. To see this, first examine the conditional density,

π(z|y = QTUTx) =
ρ(UQQTUTx + V z)∫
ρ(UQQTUTx + V z) dz

=
ρ(UUTx + V z)∫
ρ(UUTx + V z) dz

= π(z|y = UTx).

(8)

Next examine the definition of µ,

µ(QTUTx; UQ) =

∫
f(UQQTUTx + V z)π(z|y = QTUTx) dz

=

∫
f(UUTx + V z)π(z|y = UTx) dz

= µ(UTx; U).

(9)

This implies that µ only depends on the subspace span(U) as opposed to the

particular basis. For the rest of this section, the notation U denotes an equiv-

alence class of matrices whose columns span the same subspace. Similarly, we

use V to represent an equivalence class of matrices whose columns span the85

orthogonal complement of span(U) in Rm.

To characterize the optimal U , we derive a differentiable cost function from

(4). Define R = R(U) as

R(U) =
1

2

∥∥f(x)− µ(UTx,U)
∥∥2

L2(ρ)
. (10)

Note that, similar to µ, R only depends on span(U) as opposed to the choice of

basis. Therefore, the appropriate manifold for optimization is the Grassmann

manifold—i.e., the space of n-dimensional subspaces of Rm, denoted G(n,m).

Let U∗ be a solution to the following program:

minimize
U

R(U),

subject to U ∈ G(n,m).
(11)

We call U∗ an optimal subspace. In general, the objective function is not a

convex function of U , so its minimizer may not be unique. In practice, we use

numerical methods to estimate U∗.

6

It is convenient to reformulate the optimization (11) in terms of the com-

plement subspace span(V). The conditional average µ in (6) is the average of

f(x) over the affine subspace S(x) defined as

S(x) = {x′ ∈ Rm | x′ = UUTx + V z, z ∈ Rm−n }. (12)

This space depends only on the shift UUTx and span(V)—not the choice of

basis for span(V). We can write the shift as

UUTx = (I − V V T) x, (13)

where I is the m×m identity matrix. Again, this shift does not depend on the

choice of basis—only the subspace span(V). Therefore, we can write µ from (6)

as

µ = µ(x,V) =

∫
f
(
(I − V V T)x + V z

)
π(z|y) dz. (14)

Similarly, we rewrite R from (10) as

R(V) =
1

2
‖f(x)− µ(x,V)‖2L2(ρ) . (15)

Let V∗ be an (m− n)-dimensional subspace that satisfies

minimize
V

R(V),

subject to V ∈ G(m− n,m).
(16)

An optimal U∗ that solves (11) is the orthogonal complement of a particular90

V∗.

Reformulating R as a function of V is convenient for studying its gradient.

Edelman, et al. [17, Section 2.5.3] derive a formula for the gradient of R on the

Grassmann manifold in terms of the partial derivatives on the ambient Euclidean

space Rm×(m−n). Denote the gradient on the Grassmann by ∇̄. Then

∇̄R(V) =
∂

∂V
R(V)− V V T ∂

∂V
R(V) = UUT ∂

∂V
R(V), (17)

where ∂
∂V R is the m× (m− n) matrix of partial derivatives(

∂

∂V
R

)
ij

=
∂R

∂vij
, i = 1, . . . ,m, j = 1, . . . ,m− n, (18)

7

where vij is the (i, j) element of V . This formula can be implemented and passed

to a gradient-based nonlinear optimization routine, e.g., steepest descent or a

quasi-Newton method.

3. A near-stationary subspace95

The objective function R(V) in (16) is, in general, not a convex function of V ,

so a gradient-based optimization algorithm is only guaranteed to converge to

a stationary point1. Additionally, the cost of reaching a stationary point may

depend heavily on the initial guess. We call a subspace near-stationary if we

can bound the norm of the objective’s gradient at that subspace.100

Definition 1. A subspace V∗ ∈ G(m − n,m) is near-stationary if there is a

constant A = A(f, ρ) such that

∥∥∇̄R(V∗)
∥∥
F
≤ A, (19)

where ‖ · ‖F is the Frobenius norm, and ∇̄R is the gradient on the Grassmann

manifold of R from (16).

In what follows, we show that one particular subspace built from f ’s deriva-

tives is near-stationary. The subspace is the eigenspace of a particular matrix,

and the bound A from Definition 1 is related to the matrix’s eigenvalues. In sta-105

tistical regression, Samarov [19] studied related matrices built from derivatives

of the regression’s link function, which he termed average derivative functionals;

Samarov’s T1 is similar to the matrix we study. The regression case contrasts

ours since we assume f and its derivatives are known, whereas the link function

in regression depends on parameters to be estimated from data.110

To ensure that all necessary quantities exist, we make the following assump-

tion on f(x).

1Recent work suggests that the probability of termininating at a stationary point that is

not a local minimizer is zero [18].

8

Assumption 1. Given the probability density ρ : Rm → R+, assume f ∈ L2(ρ)

is differentiable and its partial derivatives are square-integrable with respect to

ρ, ∫ (
∂f

∂xi
(x)

)2

ρ(x) dx < ∞. (20)

For f that satisfies Assumption 1, define the m×m symmetric positive semidef-

inite matrix C = C(f, ρ) as

C =

∫
∇f(x)∇f(x)T ρ(x) dx = WΛW T , (21)

where Λ is the diagonal matrix of nonnegative eigenvalues λ1, . . . , λm in de-

creasing order, and W is the orthogonal matrix of corresponding eigenvectors.

Assume also that λn > λn+1 for some n < m, and consider the partition

Λ =

Λ1

Λ2

 , W =
[
W1 W2

]
, (22)

where Λ1 contains the first n eigenvalues, and W1 contains the first n eigenvec-

tors. The gradient-based subspace—also called the active subspace [20]—is the

span of the columns of W1. The eigenvalues reveal if f is a ridge function, as115

seen in the following theorem.

Theorem 1. For f that satisfies Assumption 1, assume that λn > λn+1 for

some n < m. The eigenvalues λn+1, . . . , λm are zero if and only if f(x) is

constant along span(W2).

The proof of Theorem 1 is in Appendix A. We next consider a ridge approx-120

imation constructed with the subspace span(W1); the next theorem, which is

Theorem 3.1 from [21], bounds its L2(ρ) approximation error.

Theorem 2. For f that satisfies Assumption 1, define µ as in (6). Then

∥∥f(x)− µ(W T
1 x,W1)

∥∥
L2(ρ)

≤ C (λn+1 + · · ·+ λm)
1
2 , (23)

where C = C(ρ) is the Poincaré constant associated with the probability density

function ρ.

9

The proof of Theorem 2 is in Section 3 of [21] and Section 4.2 of [20]. Edmunds125

and Opic [22] provide details of the Poincaré constant with weight function ρ.

Note that if we write µ as µ(x,V), as in (14), then the Theorem 2 holds for

µ(x,W2). The next theorem shows that the active subspace is near-stationary

when ρ(x) is a standard Gaussian density and f(x) is Lipschitz continuous.

Theorem 3. Let ρ be a standard Gaussian density on Rm, and assume that f130

satisfies Assumption 1 with ρ a Gaussian density. Additionally, assume that

(i) f is Lipschitz continuous with constant L,

(ii) λn > λn+1 for some n < m.

Then for R as in (16),

∥∥∇̄R(W2)
∥∥
F
≤ L

(
2m

1
2 + (m− n)

1
2

)
(λn+1 + · · ·+ λm)

1
2 , (24)

where ∇̄ denotes the gradient on G(m−n,m), and ‖ ·‖F is the Frobenius norm.

The proof of Theorem 3 is in Appendix B. The bound’s dependence on the135

eigenvalues implies that if f is a ridge function of n variables, then span(W1)

is a stationary point for the minimization (11). We expect that the Gaussian

assumption on on ρ can be relaxed at the cost of a more complicated bound in

(24) involving the gradient of ρ. Such an extension is beyond the scope of this

manuscript.140

4. Computational examples

Theorems 1 and 3 suggest a computational heuristic for fitting a ridge approx-

imation. Assuming the gradient ∇f(x) can be evaluated as a subroutine (e.g.,

via algorithmic differentiation [23]), consider the steps in Algorithm 1.

Our previous work studies a Monte Carlo method for estimating C and its145

eigendecomposition [24] as in step 1 of Algorithm 1. If the estimated eigenvalues

do not decay appropriately to choose n in step 2, then the given f(x) may not

be a good candidate for ridge approximation. It is easy to construct functions

10

Algorithm 1 Exploiting the active subspace for ridge approximation

1. Estimate the matrix C from (21) with a numerical integration rule, and

compute its eigendecomposition.

2. Choose n such that λn > λn+1 and λn+1, . . . , λm are relatively small.

3. Use the first n estimated eigenvectors as an initial guess for numerical

optimization of (11).

that are not amenable to ridge approximation, e.g., f(x) = ‖x‖2 or any radially

symmetric function; such structure would manifest as little-to-no decay in the150

eigenvalues. In Section 4.2, we offer a computational heuristic for step 3 of

Algorithm 1 based on alternating minimization.

4.1. An example where the heuristic fails

The heuristic in Algorithm 1 relies on C’s eigenvalues to measure the suitability

of the associated eigenvectors for an initial guess when fitting a ridge approx-155

imation. We show a bivariate example where there is a large gap between the

first and second eigenvalues, but the second eigenvector—though a stationary

point—is far from the global minimizer of the objective function. In the bivari-

ate case, we can parameterize the rotation in the two-dimensional domain by

one angle α ∈ [0, π].160

Let ρ(x1, x2) be a standard bivariate Gaussian density, and consider the

bivariate function

f(x1, x2) = 5x1 + sin(10πx2). (25)

This function has a Lipschitz constant L that is bounded by 32. The matrix C

from (21) is (to 4 significant digits)

C =

25.00 0

0 526.4

 =

0 1

1 0


︸ ︷︷ ︸

W

526.4 0

0 25.00


︸ ︷︷ ︸

Λ

0 1

1 0

T . (26)

We estimate C with a tensor product Gauss-Hermite quadrature rule with 101

points per dimension (10201 total points), which was sufficient for four digits of

accuracy.

11

The eigenvalues Λ suggest that the vector [0, 1]T , which corresponds to α =

π/2, would be a good starting point for a numerical optimization. Figure 1 plots165

the error R as a function of the subspace angle α for 500 values of α ∈ [0, π].

Each R is computed with Gauss-Hermite quadrature rule with 301 points in each

dimension (90601 total points), which is sufficient for four digits of accuracy.

The figure shows that [0, 1]T (i.e., α = π/2) is actually a local minimizer of

R with R([0, 1]T) = 12.5. A gradient-based optimization routine starting at170

[0, 1]T is unlikely to escape the local minimum. In contrast, R([1, 0]T) = 0.25,

where span([1, 0]T) (corresponding to α = 0) is the orthogonal complement of

the active subspace. In other words, the eigenvector associated with the smaller

eigenvalue is both a stationary point and a minimizer.

0 π/4 π/2 3π/4 π

Angle, α

0

2

4

6

8

10

12

14

A
p
p
ro
x
im

a
ti
o
n
er
ro
r,
R

Figure 1: The L2(ρ) error (10) as a function of subspace angle α for the

ridge approximation of f(x1, x2) = 5x1 + sin(10πx2). The active subspace is

span([0, 1]T)—corresponding to α = π/2—which is a poor initial guess for a

gradient-based optimizer.

This example suggests a type of function for which the heuristic is not well175

suited, namely, functions that oscillate rapidly along one direction and vary

slowly but consistently along another. The derivative-based metrics choose the

direction of oscillation as the important direction even when a ridge approxi-

12

mation is more accurate, in the mean-squared sense, along another direction.

4.2. An example where the heuristic succeeds180

We offer a computational heuristic for estimating the minimizer of (11) based

on a polynomial model and alternating minimization; this corresponds to step 3

of Algorithm 1. The polynomial model plays the role of µ in the approximation

error (10). Let pN (y, θ) be a polynomial of degreeN in n variables (i.e., y ∈ Rn),

where θ is the vector of the polynomial’s parameters (i.e., coefficients). The185

dimension of θ depends on the number of terms in the polynomial model, which

depends on N and n. In our experiments, we use a multivariate polynomial

model of total degree N , so the number of terms is
(
N+n
n

)
. This model is

more general than the projection pursuit regression model (1), since it includes

products of powers of the n linear combinations.190

Algorithm 2 Polynomial-based alternating minimization scheme for (11)

Given M input/output pairs (xi, f(xi)), U0 ∈ Rm×n with orthogonal columns,

polynomial degree N , and number of iterations P .

For i from 1 to P , do

1. Compute yi = UT
0 xi for i = 1, . . . ,M .

2. Compute θ∗ as the solution to the least-squares problem,

minimize
θ

∑M
i=1 (fi − pN (yi, θ))

2
. (27)

3. Compute U∗ as the solution to the Grassmann manifold-constrained least-

squares problem,

minimize
U

∑M
i=1

(
fi − pN (UTxi, θ∗)

)2
,

subject to U ∈ G(n,m).
(28)

4. Set U0 = U∗.

Algorithm 2 warrants several comments. We use an alternating scheme

over the two sets of variables, θ and U , because of its simplicity. Alternating

13

schemes are known to stall and/or converge very slowly relative to gradient-

based approaches using all variables [25, Section 9.3]. For this reason, we do

not offer specific stopping criteria in Algorithm 2. Instead, we opt for a user-195

defined number P of iterations, which requires more intervention from the user;

in the experiment below, we use P = 10, which was sufficient to demonstrate

the efficiency of the active subspace as a starting point U0. Also, the gradient

of the objective function in (28) is much easier to implement than R from (11)

or (16), since pN (y, θ∗) is independent of U—unlike µ = µ(y,U) from (6).200

However, analyzing the ridge approximation with pN is much more difficult.

The Python codes that implement Algorithm 2 can be found at bitbucket.org/

paulcon/near-stationary-subspace. We use the package Pymanopt [26] to

solve the Grassmann manifold-constrained least-squares problem in (28) with

the a gradient-based steepest descent method.205

Relative to standard polynomial-based response surfaces, the ridge approx-

imation can—for the same number M of function evaluations (xi, fi)—fit a

higher degree polynomial along the directions that f(x) varies. In other words,

with M fixed in (27), the degree N can be much larger in n variables than in

m > n variables. However, if several iterations of the alternating heuristic are210

needed to achieve stopping criteria, then fitting the ridge approximation may

itself be costly due to the relatively expensive Grassmann-constrained minimiza-

tion step. Therefore, a good initial subspace can be very advantageous, as seen

in the following example.

We apply the alternating minimization heuristic to build a response surface215

for an aerospace engineering model of a transonic airfoil’s drag coefficient as a

function of its shape; details on this model are in [20, Section 5.3]. The baseline

airfoil is the NACA0012 (a standard transonic test case for computational fluid

dynamics), and perturbations to the baseline shape are parameterized by m =

18 Hicks-Henne bump functions. Each of the 18 parameters is constrained to the220

interval [−0.01, 0.01] to ensure valid airfoil geometries, and we choose ρ(x) to be

a uniform density on the hypercube [−0.01, 0.01]18; note that this density does

not satisfy the Gaussian assumption of Theorem 3. Given the airfoil geometry,

14

bitbucket.org/paulcon/near-stationary-subspace
bitbucket.org/paulcon/near-stationary-subspace
bitbucket.org/paulcon/near-stationary-subspace

the drag coefficient is computed with the Stanford University Unstructured

compressible Euler solver [27]. This software also solves the continuous adjoint225

equation for the Euler equations, which enables the computation of the gradient

of the drag coefficient as a function of the 18 shape parameters. To summarize,

f(x) is the airfoil’s drag coefficient as a function of the shape parameters, and

a computer model returns f and ∇f given x.

1 2 3 4 5 6 7 8 9 10
Index

10-3

10-2

10-1

100

101

E
ig
en

va
lu
es

(a) Eigenvalue estimates

1 2 3 4 5 6 7 8 9 10
Subspace dimension

10-2

10-1

100

S
ub

sp
ac

e
di

st
an

ce

(b) Subspace error estimates

Figure 2: Eigenvalue estimates and subspace error estimates for a Monte Carlo

approximation of C from (21) using 1000 independent samples. The gray regions

are uncertainty estimates from a nonparametric bootstrap; more details can be

found in [24].

We estimate C from (21) with Monte Carlo using 1000 independent sam-230

ples xi drawn uniformly from 18-dimensional hypercube. Figure 2a plots the

first 10 of 18 eigenvalue estimates along with uncertainty bars estimated with

a nonparametric bootstrap. Observe the rapid decay in the eigenvalues, which

suggests that subspaces derived from C’s estimated eigenvectors may be a good

starting point for an optimization routine to fit a ridge approximation. Figure235

2b shows bootstrap-based estimates of the subspace error—i.e., the error in es-

timating the subspaces with Monte Carlo—as the subspace dimension increases.

For details of the computations for Figures 2a and 2b, see [24].

15

The 1000 simulations that produce gradient evaluations used to estimate C

also yield the M = 1000 pairs (xi, fi), with i = 1, . . . , 1000, used to fit the ridge240

approximation with the alternating minimization heuristic. Figure 4 compares

the number of terms in the polynomial approximation, for increasing degree

N , to the number of available runs (1000) for different numbers (n) of linear

combinations; the horizontal black line shows M = 1000. The topmost line

(cyan) shows how many terms are in a polynomial in m = 18 variables. Notice245

that in 18 variables, one cannot fit a polynomial of degree greater than N = 2

with the available 1000 runs.

Recall the ridge approximation is most beneficial with a good initial guess for

the subspace. Figure 3 shows the results of an experiment comparing different

starting points U0 for the alternating heuristic in Algorithm 2: (i) a random250

m × n matrix with orthogonal columns, (ii) the first n columns of the m ×

m identity matrix, and (iii) the first n estimated eigenvectors from C. Each

subfigure in Figure 3 shows the value of the residual (28) as a function of the

iteration count; the residual value is on the vertical axis, and the number of

iterations is on the horizontal axis. The black connected dots show the results255

using the identity matrix starting point; the blue dashed lines show results from

10 different random starting points; and the red connected dots show results

using the first n eigenvectors of C. The subfigures vary the polynomial degree

N from 2 to 5 (left to right) and the number n of linear combinations from 1

to 4 (top to bottom). For every case, the first n eigenvectors of C provide a260

superior starting point for the alternating heuristic, and the advantage increases

as N and n increase.

The experiment represented by Figure 3 was run on two nodes of the Col-

orado School of Mines Mio cluster. Each experiment used 8 cores, which ac-

celerated the numpy operations. Figure 5 shows average wall clock times for265

the experiments; note that the codes were not optimized for performance. The

averages are over 10 repeated trials to reduce the effect of the operating system

abnormalities. For the random starting points, the averages are also over the 10

independently generated starting points. Each group of bars shows the times

16

for the different values of n (the number of linear combinations). The labels on270

the horizontal axis are RN for random starting points, ID for identity matrix

starting point, and AS for active subspace starting point—i.e., the first n eigen-

vectors of C. The different subfigures show the times for different polynomial

degrees (N). Ten iterations of the alternating scheme was much faster using the

n eigenvectors of C. This was due to the Grassmann-constrained optimization275

converging much faster at each iteration of Algorithm 2. Note that the case of

n = 1 completed in less than 1 second for all starting points and all polynomial

degrees, so its bars do not appear on the bar charts.

The results of this experiment show that the first n eigenvectors of C from

(21) provide an excellent initial subspace U0 for the alternating heuristic for280

ridge approximation of this aerospace model. This enables us to fit a ridge ap-

proximation with a relatively high polynomial degree along important directions

in the model’s input space with a fixed budget of M = 1000 model runs.

5. Summary and conclusions

Motivated by response surface construction for expensive computational285

models with several input parameters, we study ridge approximation for func-

tions of several variables. A ridge function is constant along a set of directions

in its domain, and the approximation problem is to find (i) optimal directions

and (ii) an optimal function of the linear combinations of variables. For a fixed

set of directions, the best approximation in the mean-squared sense is a particu-290

lar conditional average. We define an optimal subspace as one that minimizes a

mean-squared cost function over the Grassmann manifold of subspaces. We then

show that a particular subspace—the active subspace defined by the function’s

gradient—is a near-stationary point for an optimization defining the optimal

subspace. We offer a heuristic to exploit this fact to fit a ridge approxima-295

tion. Our first numerical example shows a simple case where this heuristic fails;

this case reveals a type of function for which the heuristic is ill-suited, namely,

functions that oscillate rapidly along one direction while varying slowly but

17

consistently along another. Our second numerical example shows this heuristic

succeed with a polynomial-based alternating scheme to fit a ridge approximation300

applied to an aerospace design model with 18 parameters and a fixed budget

of 1000 simulations. The alternating scheme with the active subspace as the

initial guess outperforms the same scheme with random initial subspaces.

Given the prevalence of anisotropic parameter dependence in most complex

physical simulations, we expect that ridge functions are appropriate forms for305

response surfaces approximations. The analyses and heuristics we present ad-

vance the state-of-the-art in ridge approximations.

Appendix A. Proof of Theorem 1

Let C, W1, W2, Λ1, and Λ2 be defined as in Section 3. Note that∫ ∥∥W T
2 ∇f(x)

∥∥2
ρ(x) dx =

∫
∇f(x)TW2W

T
2 ∇f(x) ρ(x) dx

=

∫
tr
(
W T

2 ∇f(x)∇f(x)TW2

)
ρ(x) dx

= tr

(
W T

2

(∫
∇f(x)∇f(x)T ρ(x) dx

)
W2

)
= tr

(
W T

2 CW2

)
= tr (Λ2)

= λn+1 + · · ·+ λm.

(A.1)

Assume that f(x) is constant along directions corresponding to the columns of

W2. Then the directional derivatives W T
2 ∇f(x) are zero for all x. Then by310

(A.1), λn+1 = · · · = λm = 0.

Next, assume λn+1 = · · · = λm = 0. Since the integrand in (A.1) is a

norm and f(x) is differentiable, W T
2 ∇f(x) is zero for all x. Therefore, f(x) is

constant along directions corresponding to the columns of W2.

18

Appendix B. Proof of Theorem 3315

For R = R(V) from (16), consider the gradient of R on the Grassmann manifold

G(m− n, n).

∇̄R(V) = ∇̄
(

1

2

∫
(f(x)− µ(x,V))2 ρ(x) dx

)
=

1

2

∫
∇̄(f(x)− µ(x,V))2 ρ(x) dx

=

∫
(f(x)− µ(x,V)) ∇̄(f(x)− µ(x,V)) ρ(x) dx

=

∫
(f(x)− µ(x,V)) (∇̄f(x)︸ ︷︷ ︸

= 0

−∇̄µ(x,V)) ρ(x) dx

=

∫
(µ(x,V)− f(x)) ∇̄µ(x,V) ρ(x) dx.

(B.1)

Let µ′ij be the (i, j) element of ∇̄µ, with i = 1, . . . ,m and j = 1, . . . ,m − n.

Using Cauchy-Schwarz, we can bound∫
(µ− f)µ′ij ρ dx ≤

(∫
(µ− f)2 ρ dx

) 1
2
(∫

(µ′ij)
2 ρ dx

) 1
2

. (B.2)

Then

‖∇̄R(V)‖2F =

m∑
i=1

m−n∑
j=1

(∫
(µ− f)µ′ij ρ dx

)2

≤
m∑
i=1

m−n∑
j=1

(∫
(µ− f)2 ρ dx

)(∫
(µ′ij)

2 ρ dx

)

=

(∫
(µ− f)2 ρ dx

)∫ m∑
i=1

m−n∑
j=1

(µ′ij)
2 ρ dx


=

(∫
(µ− f)2 ρ dx

)(∫
‖∇̄µ‖2F ρ dx

)
.

(B.3)

Recall Edelman’s formula for the Grassmann gradient [17, Section 2.5.3],

∇̄µ(x,V) = (I − V V T)
∂

∂V
µ(x,V) = UUT ∂

∂V
µ(x,V), (B.4)

where ∂
∂V µ is the m × (m − n) matrix of partial derivatives of µ with respect

to the elements of V . For Gaussian ρ, the conditional density

π(z|y) = π(z) ∝ exp

(
−zT z

2

)
(B.5)

19

is independent of V . Therefore,

∂

∂V
µ(x,V) =

∂

∂V

∫
f((I − V V T)x + V z)π(z) dz

=

∫
∂

∂V
f((I − V V T)x + V z)π(z) dz.

(B.6)

Next we examine the gradient of f with respect to the elements of V . For

notation, define s as

s = s(x, z,V) = (I − V V T)x + V z. (B.7)

Let vij be the (i, j) element of V , and compute the derivative,

∂

∂vij
f(s) = ∇f(s)T

(
∂

∂vij
s

)
. (B.8)

The derivative of s is

∂

∂vij
s =

∂

∂vij

(
(I − V V T)x + V z

)
= ei v

T
j x + xi vj + ei zj ,

(B.9)

where ei is the ith column of the m×m identity matrix, vj is the jth column

of V , xi is the ith component of x, and zj is the jth component of z. Then

∂

∂vij
f(s) = fi(s) vTj x + xi∇f(s)Tvj + fi(s) zj

= (fi(s) xT + xi∇f(s)T)vj + fi(s) zj ,

(B.10)

where fi is the ith component of the gradient vector ∇f . Putting i’s and j’s

together,

∂

∂V
f(s) =

(
∇f(s) xT + x∇f(s)T

)
V +∇f(s) zT . (B.11)

Then, for f = f(s), π = π(z), and ∇f = ∇f(s),∫
∂

∂V
f π dz =

∫ (
∇f xT + x∇fT

)
V +∇f zT π dz

=
(
g xT + x gT

)
V +

∫
∇f zT π dz,

(B.12)

where

g = g(x) =

∫
∇f((I − V V T)x + V z)π(z) dz. (B.13)

20

By the Lipschitz continuity of f , ‖g‖ ≤ L. Then we can bound the norm of

Grassmann gradient of µ as

‖∇̄µ‖F =

∥∥∥∥UUT ∂

∂V
µ

∥∥∥∥
F

≤
∥∥∥∥ ∂

∂V
µ

∥∥∥∥
F

=

∥∥∥∥∫ ∂

∂V
f π dz

∥∥∥∥
F

=

∥∥∥∥(g xT + x gT
)
V +

∫
∇f zT π dz

∥∥∥∥
F

≤
∥∥(g xT + x gT

)
V
∥∥
F

+

∥∥∥∥∫ ∇f zT π dz

∥∥∥∥
F

≤
∥∥g xT + x gT

∥∥
F

+

(∫
‖∇f zT ‖2F π dz

) 1
2

≤ 2 ‖g‖ ‖x‖+

(∫
‖∇f‖2‖z‖2 π dz

) 1
2

≤ 2L ‖x‖+

(
L2

∫
‖z‖2 π dz

) 1
2

= L
(

2 ‖x‖+ (m− n)
1
2

)
.

(B.14)

Therefore, ∫
‖∇̄µ‖2F ρ dx ≤ L2

∫ (
2 ‖x‖+ (m− n)

1
2

)2

ρ dx

≤ L2
(

2m
1
2 + (m− n)

1
2

)2

.

(B.15)

Combining this with (B.3), we have

‖∇̄R(V)‖F ≤ L
(

2m
1
2 + (m− n)

1
2

) (∫
(µ(x,V)− f(x))2 ρ(x) dx

) 1
2

.

(B.16)

Note that the Poincaré constant for the Gaussian density is C = 1 [28]. Then

combining (B.16) with Theorem 2 achieves the desired result.

Acknowledgment

The first author’s work is supported by Department of Defense, Defense Ad-

vanced Research Project Agencys program Enabling Quantification of Uncer-320

tainty in Physical Systems. The second author’s work was partially funded by

21

AFOSR YIP grant #FA9550-13-1-0125. The third author’s work is partially

funded by NSF CAREER grant #1255631.

References

References325

[1] D. Jones, A taxonomy of global optimization methods based on response

surfaces, Journal of Global Optimization 21 (4) (2001) 345–383, http:

//dx.doi.org/10.1023/A:1012771025575.

URL http://dx.doi.org/10.1023/A:1012771025575

[2] R. Barton, Metamodels for simulation input-output relations, in: Proceed-330

ings of the 24th Conference on Winter Simulation, WSC ’92, ACM, New

York, USA, 1992, pp. 289–299.

URL http://doi.acm.org/10.1145/167293.167352

[3] J. Sacks, W. Welch, T. Mitchell, H. Wynn, Design and analysis of computer

experiments, Statistical Science 4 (4) (1989) 409–423.335

URL http://www.jstor.org/stable/2245858

[4] M. Kennedy, A. O’Hagan, Predicting the output from a complex computer

code when fast approximations are available, Biometrika 87 (1) (2000) 1–

13.

URL http://biomet.oxfordjournals.org/content/87/1/1.abstract340

[5] H. Woźniakowski, Tractability and strong tractability of linear multivariate

problems, Journal of Complexity 10 (1) (1994) 96–128.

URL http://dx.doi.org/10.1006/jcom.1994.1004

[6] R. Bellman, Adaptive Control Processes: A Guided Tour, Princeton Uni-

versity Press, Princeton, 1961.345

[7] S. Shan, G. Wang, Survey of modeling and optimization strategies to solve

high-dimensional design problems with computationally-expensive black-

box functions, Structural and Multidisciplinary Optimization 41 (2) (2010)

22

http://dx.doi.org/10.1023/A:1012771025575
http://dx.doi.org/10.1023/A:1012771025575
http://dx.doi.org/10.1023/A:1012771025575
http://dx.doi.org/10.1023/A:1012771025575
http://dx.doi.org/10.1023/A:1012771025575
http://dx.doi.org/10.1023/A:1012771025575
http://dx.doi.org/10.1023/A:1012771025575
http://doi.acm.org/10.1145/167293.167352
http://doi.acm.org/10.1145/167293.167352
http://www.jstor.org/stable/2245858
http://www.jstor.org/stable/2245858
http://www.jstor.org/stable/2245858
http://www.jstor.org/stable/2245858
http://biomet.oxfordjournals.org/content/87/1/1.abstract
http://biomet.oxfordjournals.org/content/87/1/1.abstract
http://biomet.oxfordjournals.org/content/87/1/1.abstract
http://biomet.oxfordjournals.org/content/87/1/1.abstract
http://dx.doi.org/10.1006/jcom.1994.1004
http://dx.doi.org/10.1006/jcom.1994.1004
http://dx.doi.org/10.1006/jcom.1994.1004
http://dx.doi.org/10.1006/jcom.1994.1004
http://dx.doi.org/10.1007/s00158-009-0420-2
http://dx.doi.org/10.1007/s00158-009-0420-2
http://dx.doi.org/10.1007/s00158-009-0420-2
http://dx.doi.org/10.1007/s00158-009-0420-2
http://dx.doi.org/10.1007/s00158-009-0420-2

219–241.

URL http://dx.doi.org/10.1007/s00158-009-0420-2350

[8] A. Pinkus, Ridge Functions, Cambridge University Press, Cambridge, 2015.

[9] S. Keiper, Analysis of generalized ridge functions in high dimensions,

in: 2015 International Conference onSampling Theory and Applications

(SampTA), 2015, pp. 259–263.

URL http://dx.doi.org/10.1109/SAMPTA.2015.7148892355

[10] J. H. Friedman, W. Stuetzle, Projection pursuit regression, Journal of the

American Statistical Association 76 (376) (1981) 817–823.

URL http://www.jstor.org/stable/2287576

[11] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning,

2nd Edition, Springer, New York, 2009.360

[12] F. Vivarelli, C. K. I. Williams, Discovering hidden features with Gaussian

processes regression, in: M. S. Kearns, S. A. Solla, D. A. Cohn (Eds.),

Advances in Neural Information Processing Systems, Vol. 11, MIT Press,

Cambridge, 1999.

[13] I. Bilionis, R. Tripathy, M. Gonzalez, Gaussian processes with built-in di-365

mensionality reduction: Applications in high-dimensional uncertainty prop-

agation, arXiv:1602.04550v1.

[14] M. Fornasier, K. Schnass, J. Vybiral, Learning functions of few arbitrary

linear parameters in high dimensions, Foundations of Computational Math-

ematics 12 (2012) 229–262.370

URL http://dx.doi.org/10.1007/s10208-012-9115-y

[15] A. Cohen, I. Daubechies, R. DeVore, G. Kerkyacharian, D. Picard, Cap-

turing ridge functions in high dimensions from point queries, Constructive

Approximation 35 (2) (2012) 225–243.

URL http://dx.doi.org/10.1007/s00365-011-9147-6375

23

http://dx.doi.org/10.1007/s00158-009-0420-2
http://dx.doi.org/10.1109/SAMPTA.2015.7148892
http://dx.doi.org/10.1109/SAMPTA.2015.7148892
http://www.jstor.org/stable/2287576
http://www.jstor.org/stable/2287576
http://dx.doi.org/10.1007/s10208-012-9115-y
http://dx.doi.org/10.1007/s10208-012-9115-y
http://dx.doi.org/10.1007/s10208-012-9115-y
http://dx.doi.org/10.1007/s10208-012-9115-y
http://dx.doi.org/10.1007/s00365-011-9147-6
http://dx.doi.org/10.1007/s00365-011-9147-6
http://dx.doi.org/10.1007/s00365-011-9147-6
http://dx.doi.org/10.1007/s00365-011-9147-6

[16] H. Tyagi, V. Cevher, Learning non-parametric basis independent models

from point queries via low-rank methods, Applied and Computational Har-

monic Analysis 37 (3) (2014) 389–412.

URL http://dx.doi.org/10.1016/j.acha.2014.01.002

[17] A. Edelman, T. A. Arias, S. T. Smith, The geometry of algorithms with380

orthogonality constraints, SIAM Journal on Matrix Analysis and Applica-

tions 20 (2) (1998) 303–353.

URL http://dx.doi.org/10.1137/S0895479895290954

[18] J. Lee, M. Simchowitz, M. Jordan, B. Recht, Gradient descent converges

to minimizers, arXiv:1602.04915v2.385

[19] A. Samarov, Exploring regression structure using nonparametric functional

estimation, Journal of the American Statistical Association 88 (423) (1993)

836–847.

URL http://dx.doi.org/10.1080/01621459.1993.10476348

[20] P. G. Constantine, Active Subspaces: Emerging Ideas for Dimension Re-390

duction in Parameter Studies, SIAM, Philadelphia, 2015.

[21] P. Constantine, E. Dow, Q. Wang, Active subspace methods in theory

and practice: Applications to kriging surfaces, SIAM Journal on Scientific

Computing 36 (4) (2014) A1500–A1524.

URL http://dx.doi.org/10.1137/130916138395

[22] D. E. Edmunds, B. Opic, Weighted Poincaré and Friedrichs inequalities,

Journal of the London Mathematical Society s2-47 (1) (1993) 79–96. doi:

10.1112/jlms/s2-47.1.79.

URL http://jlms.oxfordjournals.org/content/s2-47/1/79.short

[23] A. Griewank, Evaluating Derivatives: Principles and Techniques of Algo-400

rithmic Differentiation, SIAM, Philadelphia, 2000.

[24] P. Constantine, D. Gleich, Computing active subspaces with Monte Carlo,

arXiv:1408.0545v2.

24

http://dx.doi.org/10.1016/j.acha.2014.01.002
http://dx.doi.org/10.1016/j.acha.2014.01.002
http://dx.doi.org/10.1016/j.acha.2014.01.002
http://dx.doi.org/10.1016/j.acha.2014.01.002
http://dx.doi.org/10.1137/S0895479895290954
http://dx.doi.org/10.1137/S0895479895290954
http://dx.doi.org/10.1137/S0895479895290954
http://dx.doi.org/10.1137/S0895479895290954
http://dx.doi.org/10.1080/01621459.1993.10476348
http://dx.doi.org/10.1080/01621459.1993.10476348
http://dx.doi.org/10.1080/01621459.1993.10476348
http://dx.doi.org/10.1080/01621459.1993.10476348
http://dx.doi.org/10.1137/130916138
http://dx.doi.org/10.1137/130916138
http://dx.doi.org/10.1137/130916138
http://dx.doi.org/10.1137/130916138
http://jlms.oxfordjournals.org/content/s2-47/1/79.short
http://dx.doi.org/10.1112/jlms/s2-47.1.79
http://dx.doi.org/10.1112/jlms/s2-47.1.79
http://dx.doi.org/10.1112/jlms/s2-47.1.79
http://jlms.oxfordjournals.org/content/s2-47/1/79.short

[25] J. Nocedal, S. J. Wright, Numerical Optimization, 2nd Edition, Springer,

New York, 2006.405

[26] J. Townsend, N. Koep, S. Weichwald, Pymanopt: A Python toolbox for

manifold optimization using automatic differentiation, arXiv:1603.03236.

[27] F. Palacios, J. Alonso, K. Duraisamy, M. Colonno, J. Hicken, A. Aranake,

A. Campos, S. Copeland, T. Economon, A. Lonkar, T. Lukaczyk, T. Tay-

lor, Stanford University Unstructured (SU2): An open-source integrated410

computational environment for multi-physics simulation and design, 51st

AIAA Aerospace Sciences Meeting including the New Horizons Forum and

Aerospace Exposition.

URL http://dx.doi.org/10.2514/6.2013-287

[28] L. H. Chen, An inequality for the multivariate normal distribution, Journal415

of Multivariate Analysis 12 (2) (1982) 306–315.

URL http://dx.doi.org/10.1016/0047-259X(82)90022-7

25

http://dx.doi.org/10.2514/6.2013-287
http://dx.doi.org/10.2514/6.2013-287
http://dx.doi.org/10.2514/6.2013-287
http://dx.doi.org/10.2514/6.2013-287
http://dx.doi.org/10.1016/0047-259X(82)90022-7
http://dx.doi.org/10.1016/0047-259X(82)90022-7

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

(a) n = 1, N = 2

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

(b) n = 1, N = 3

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

(c) n = 1, N = 4

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

(d) n = 1, N = 5

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

(e) n = 2, N = 2

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

(f) n = 2, N = 3

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

(g) n = 2, N = 4

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

(h) n = 2, N = 5

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

(i) n = 3, N = 2

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

(j) n = 3, N = 3

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

(k) n = 3, N = 4

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

(l) n = 3, N = 5

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

(m) n = 4, N = 2

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

(n) n = 4, N = 3

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

(o) n = 4, N = 4

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

(p) n = 4, N = 5

Figure 3: Each subfigure shows the residual (28) as a function of the iteration in

the alternating minimization heuristic Algorithm 2. The black connected dots

use the first n columns of the m ×m identity matrix as U0. The blue dashed

lines show results using 10 random starting points for U0. The red connected

dots use the first n eigenvectors of C. The subfigures vary the number n of linear

combinations from 1 to 4 (top to bottom) and the degree N of the polynomial

approximation from 2 to 5 (left to right). In all cases, the n eigenvectors of C

provide a superior starting point. 26

1 2 3 4 5 6

Polynomial degree (N)

10
0

10
1

10
2

10
3

10
4

10
5

N
u
m
b
er

o
f
p
o
ly
n
o
m
ia
l
te
rm

s

n = 1
n = 2
n = 3
n = 4
m = 18

Figure 4: Number of terms in the polynomial approximation as a function of

degree N for varying number of linear combinations, n = 1, . . . , 4. The black

horizontal line shows the budget of M = 1000 available simulations. Note that

in all m = 18 variables, it is not possible to fit a polynomial of degree greater

than N = 2.

27

RN ID AS
0

50

100

150

200

250

300

350

400

450

W
al

lc
lo

ck
 ti

m
e

(s
)

n=1
n=2
n=3
n=4

(a) N = 2

RN ID AS
0

50

100

150

200

250

300

350

400

450

W
al

lc
lo

ck
 ti

m
e

(s
)

n=1
n=2
n=3
n=4

(b) N = 3

RN ID AS
0

50

100

150

200

250

300

350

400

450

W
al

lc
lo

ck
 ti

m
e

(s
)

n=1
n=2
n=3
n=4

(c) N = 4

RN ID AS
0

50

100

150

200

250

300

350

400

450

W
al

lc
lo

ck
 ti

m
e

(s
)

n=1
n=2
n=3
n=4

(d) N = 5

Figure 5: Average wall clock times for the experiments from Figure 3; the codes

were not optimized for performance. Each group of bars varies the number n

of linear combinations. The labels on the horizontal axis are RN for random

starting point, ID for n columns of the identity matrix, and AS for the first n

eigenvectors of C. Each subfigure varies the degree N of polynomial. In all

cases, the first n eigenvectors of C lead to a faster completion of 10 iterations.

28

	1 Introduction
	1.1 Related concepts
	1.1.1 Projection pursuit regression
	1.1.2 Gaussian processes with low-rank covariance models
	1.1.3 Ridge function recovery

	2 Optimal ridge approximation
	3 A near-stationary subspace
	4 Computational examples
	4.1 An example where the heuristic fails
	4.2 An example where the heuristic succeeds

	5 Summary and conclusions
	Appendix A Proof of Theorem 1
	Appendix B Proof of Theorem 3

