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Multiscale modeling of porous media in polymer electrolyte fuel cells is of paramount 
importance to improve predictions and assist the design of new materials. In this work, a 
composite-continuum-network formulation is presented to model species diffusion and 
convection in gas diffusion layers (GDLs). The model can be incorporated into CFD codes 
with moderate computational cost. The macroscopic model is based on a structured mesh 
composed of parallelepiped control volumes (CVs) and differential connectors (with 
negligible volume). The CV mesh embeds an internal structured pore network, which is 
used to determine analytically local anisotropic effective transport properties (effective 
diffusivity and permeability). The global structural parameters and effective transport 
properties predicted by the model are in good agreement with previous experimental data. 
Moreover, the results show that heterogeneities in the GDL can have significant influence 
on the fluxes from/to the catalyst layer, thus affecting local degradation rates.  

  
 

Introduction 

 
Polymer electrolyte fuel cells (PEFCs) are promising power sources for stationary, portable 
and vehicular applications due to its unique advantages, including quiet operation, quick 
start-up and load response, and high efficiency (1). In the last decades, several fuel cell 
vehicles have been developed by automakers, such as General Motors, Hyundai and Toyota. 
However, the widespread commercialization of PEM fuel cells for vehicular applications 
is still limited by their cost, performance and durability, among which durability is the most 
challenging aspect (2). The target lifetimes for PEFCs set by the U.S. Department of 
Energy (DOE) are 5,000 h for passenger cars, 25,000 h for transit buses, and 40,000 h for 
stationary applications (3). Therefore, currently there is an urgent need to demonstrate 
these lifetimes, while decreasing capital and operating costs.  
 
Many works can be found in the literature that purpose new materials to increase durability 
of catalyst layers, membrane, gas diffusion layers (GDLs), and bipolar plates (see, e.g., (4) 
and references therein). However, there is still a need of understanding about the 
mechanisms and the effect of operating conditions on the overall durability of PEFCs. An 
example is the corrosion of the carbon support in the cathode catalyst layer due to hydrogen 
starvation, and how the local blockage created by liquid water affects this process (5). 



In this context, mathematical modeling is an indispensable tool to analyze PEFC 
performance and degradation, and to examine the impact of material microstructure on the 
macroscopic response of the system. Inevitably, this task requires the development of 
multiscale models that incorporate key information from the microscale into the 
macroscale, while keeping computational cost moderate for engineering applications (6-8). 
In the last years, models with increasing level of complexity have been developed to gain 
insight into the effect of heterogeneities on cell performance (9-15) but it is missing a 
flexible modeling framework that can be widely adopted in CFD macroscopic models (16).   
 
With this aim, in this work a macroscopic model of a GDL that incorporates the effect of 
microstructural heterogeneities using a control volume (CV) mesh is presented. The CV 
mesh embeds an internal pore network (PN), which is used to determine analytically local 
anisotropic effective transport properties at the macroscopic scale. Species diffusion and 
convection are examined. The organization of the paper is as follows. First, the generation 
of the CV mesh at the macroscopic scale is presented. Then, the PN embedded in the CV 
mesh is described. Subsequently, the formulation used to determine analytically the local 
effective transport properties based on the PN, as well as the simulations used to determine 
the global effective properties in the CV mesh, are presented. Next, the results are discussed 
with a focus on the effect of heterogeneities on spatial distributions and local fluxes. Finally, 
the concluding remarks are summarized.  
 

Control Volume Mesh 

 
As shown in Figure 1, the GDL domain is divided into two types of constructive elements: 
CVs and differential connectors (with exceedingly small volume). The two elements form 
a structured CV mesh, so the parallelepiped CVs are connected through parallelepiped 
connectors on each face. The connectors in perpendicular directions are separated by small 
solid zones (walls). Both the CVs and the connectors are meshed with 27 computational 
cells (͵ × ͵ × ͵). The characteristic size of the CVs is set to ܮ௫ = ௭ܮ = ͸Ͳ 𝜇m in the 
material plane (ݖ-ݔ plane) and ܮ௬ = ͵Ͳ 𝜇m in the through-plane direction (ݕ-direction). 
These characteristic sizes provided a good measure for the uncompressed Toray carbon 
paper examined here but can be adapted depending on the compression ratio and the GDL 
fabric (9,17,18). The model was implemented in the finite volume code ANSYS Fluent, 
although it could also be used in other CFD codes, such as COMSOL Multiphysics.  
 

 
Figure 1. Cross-sectional view of the structured mesh composed of CVs and differential 
connectors. Each constructive element is meshed with ͵ × ͵ × ͵ computational cells. The 
close-up view shows a differential connector between two CVs. The connectors in 
perpendicular directions are separated by small solid zones.  



Structured Pore Network 

 
A structured PN is embedded into the CV mesh, so that each CV includes one pore in the 
center of the CV and the corresponding six throats (two in each direction, ݐͳ and ݐʹ). Each 
differential connector includes a differential slice of throat, which is useful to simulate 
invasion percolation in the CV mesh, an aspect that will be addressed in future work. Here, 
the PN is used to extract local effective transport properties in the CVs and connectors, as 
discussed later. The generation of the PN and calculation of effective properties was 
implemented in MATLAB.  
    
The geometry of the PN in a CV is shown in Figure 2. The characteristic sizes of the pores 
in each direction (ܮ௣,௫, ܮ௣,௬ and ܮ௣,௭) are prescribed according to the cumulative pore size 
distribution (CPSD) of the GDL. Here, we used the CPSD determined by Zenyuk et al. 
(18) using X-ray computed tomography for 20 wt% PTFE-treated uncompressed Toray 
TGP-H-120. The geometry of the throats in a CV is defined by its length in each direction 
𝑡,௬ܮ ,𝑡,௫ܮ)  and ܮ𝑡,௭), and the half-height, 𝐻𝑡,𝑖, and half-width, 𝑡ܹ,𝑖 , of its cross-sectional 
area (note that the subscript ݅ indicates the along-the-throat direction, i.e., the direction 
perpendicular to the cross-section defined by 𝐻𝑡,𝑖 and 𝑡ܹ,𝑖). The half-height and half-width 
are taken as the maximum and minimum half-size of the cross-section, respectively. Since 
pores are in the center of  CVs, the length of the two throats in a certain direction is the 
same (ܮ𝑡ଵ,𝑖 = 𝑡ଶ,𝑖ܮ 𝑡,𝑖ܮ ,( = ሺܮ௖𝑣,𝑖 −  ௣,𝑖ሻ/ʹ. The cross-sectional area of the two throatsܮ
aligned in ݅ -direction is 𝐴𝑡ଵ,𝑖 = Ͷ𝐻𝑡ଵ,𝑖 𝑡ܹଵ,𝑖  and 𝐴𝑡ଶ,𝑖 = Ͷ𝐻𝑡ଶ,𝑖 𝑡ܹଶ,𝑖 . Whereas the cross-
sectional areas of pores perpendicular to each spatial direction are 𝐴௣,௫ = ௣,௭, 𝐴௣,௬ܮ௣,௬ܮ ௣,௭ and 𝐴௣,௭ܮ௣,௫ܮ= =     .௣,௬ܮ௣,௫ܮ
 

 
Figure 2. (left) Schematic of the pore and six throats (two in each direction) inside a CV. 
(right) Geometrical parameters of the structured PN as seen from the x-y plane (similar 
considerations apply for other planes).  
 
The generation of the PN in the GDL domain was done using a similar procedure to that 
presented by Gostick et al. (19). The main steps are described below: 



 
1. A uniform distribution ܲ of ͵𝑁 random numbers is generated in the interval [ ௠ܲ𝑖௡,  ௠ܲ௔௫] , where ௠ܲ𝑖௡  and ௠ܲ௔௫  are the minimum and maximum 

cumulative probabilities, respectively. The limits are kept close to ௠ܲ𝑖௡ ≈ Ͳ 
and ௠ܲ௔௫ ≈ ͳ, but manipulated to avoid the inclusion of exceedingly small and 
large pore sizes that are not representative of the material. 
 

2. The pore sizes ܮ௣ corresponding to cumulative probabilities ܲ are determined 
using the CPSD of the GDL. Note that the CPSD univocally links a cumulative 
probability ܲ with a pore half-size, ܮ௣/ʹ, and vice versa. ܮ௣ is then obtained by 
multiplying by two.  

 
3. 𝑁 pore sizes are randomly assigned to each direction ݅ (݅ = ,ݔ ,ݕ  It is ensured .(ݖ

that the maximum pore size in ݅-direction does not exceed the size of the CV in 
that direction (ܮ௣,𝑖௠௔௫ < -௖𝑣,𝑖). The pore sizes are first assigned in the throughܮ
plane direction (y-direction), and then in the material plane (x and z directions). 
Subsequently, the vectors with the 𝑁  pore sizes in each direction ݅  are 
converted to 3D arrays ܮ௣,𝑖.   

 
4. The 3D arrays of cumulative probabilities 𝑖ܲ corresponding to the 3D arrays of 

pore sizes ܮ௣,𝑖 are determined using the CPSD.  
 

5. Spatial correlations are imparted by applying a convolution filter on ݖ-ݔ slices 
of the 3D arrays 𝑖ܲ. The kernel used is  
 

ܭ  = ͳͷ [Ͳ ͳ Ͳͳ ͳ ͳͲ ͳ Ͳ]  

(1) 
 

 
As a result, anisotropy is introduced in the PN, reducing the tortuosity of 
transport pathways in the material plane compared to the through-plane 
direction (20,21).  

 
6. As shown in Figure 3, the above step has the side effect of converting the 

initially uniform random distributions 𝑖ܲ  into normal ones. Hence, uniform 
distributions are re-obtained by applying the inverse cumulative distribution 
function of the normal distributions with the corresponding mean and standard 
deviation. This step is necessary to ensure that the final PN is composed of a 
uniform random distribution of cumulative probabilities, so that the pore sizes 
are not affected by external factors other than the CPSD of the GDL. 
 

7. The pore sizes ܮ௣,𝑖  corresponding to the uniform distributions of cumulative 
probabilities 𝑖ܲ are determined according to the CPSD.   

 
8. The length of throats, ܮ𝑡,𝑖, and the cross-sectional area of throats, 𝐴𝑡,𝑖, and pores, 𝐴௣,𝑖, are determined based on the pore sizes, ܮ௣,𝑖, and the CV sizes, ܮ௖𝑣,𝑖. In the 

process, the half-height and half-width of the throats, 𝐻𝑡,𝑖 and 𝑡ܹ,𝑖, are taken as 
the average of the half-sizes, ܮ௣,𝑖/ʹ, of the two connected pores. This is done 
to capture the high porosity of GDLs, where pore bodies and throats are not 
very well defined (22,23).   



 
 

 
Figure 3. 2D spatial distributions on a ݖ-ݔ slice and histograms of cumulative probabilities ܲ = { ௫ܲ, ௬ܲ, ௭ܲ} prescribed initially with a uniform random distribution, after applying the 
convolution filter, and after the resulting normal distribution is converted back to a uniform 
distribution (final result). 
 
The resulting PN is shown in Figure 4, which statistically represents the pore space of 
highly porous, anisotropic GDLs.  
 

 
Figure 4. 3D representation of the generated network in a domain with an area of 3x3 mm2 
in the material plane (x-z plane) and ͳͷͲ 𝜇m in thickness.  



Local Effective Transport Properties  

 
Species diffusion and hydraulic convection are modeled in the CV mesh incorporating the 
microscopic information from the PN. To this end, the local 1D resistances of the structured 
PN are transformed into local anisotropic effective or equivalent transport properties 
(effective diffusivity and permeability). As shown in Figure 5, the local effective properties 
are determined analytically by imposing a concentration or pressure difference, ∆ܥ = 𝑖ܥ ௢ or ∆𝑝ܥ− = 𝑝𝑖 − 𝑝௢, in each direction of interest i (i = x, y, z), while imposing a no-flux (or 
no-flow) boundary condition in the remaining directions (24). This leads to non-zero 
diagonal components and virtually zero off-diagonal components in the effective 
diffusivity and permeability tensors, as usually observed in GDLs (9).  
 
For diffusion, the set of equations that govern the diffusive flux in ݅-direction, ݆𝑖, expressed 
in [mol s−ଵ], in each CV is given by  
 

 ݆𝑡ଵ,𝑖 ܦ− = 𝑖ܥ − 𝑡ଵ,𝑖 𝐴𝑡ଵ,𝑖݆௣,𝑖ܮଵܥ = ܦ− ଵܥ − ௣,𝑖 𝐴௣,𝑖݆𝑡ଶ,𝑖ܮଶܥ = ܦ− ଶܥ − 𝑡ଶ,𝑖 𝐴𝑡ଶ,𝑖݆ܮ௢ܥ = ݆𝑡ଵ,𝑖 = ݆௣,𝑖 = ݆𝑡ଶ,𝑖
 

 
(2a) 
 
(2b) 
 
(2c) 
 
(2d) 
 

where 𝐴௣,𝑖 , 𝐴𝑡ଵ,𝑖  and 𝐴𝑡ଶ,𝑖  are the cross-sectional areas perpendicular to ݅-direction and ܮ𝑡ଵ,𝑖, ܮ௣,𝑖 and ܮ𝑡ଶ,𝑖 are the lengths in ݅-direction of the pore 𝑝 and throats ݐͳ and ܮ) ʹݐ𝑡ଵ,𝑖   .is the bulk diffusivity ܦ 𝑡ଶ,𝑖), andܮ=
 
The above equations can be combined with the definition of local effective diffusivity, ܦ௟௢௖௔௟,𝑖௘௙௙ , which relates the diffusive flux ݆ with the concentration difference ∆ܥ, i.e., 
 ݆ = ௟௢௖௔௟,𝑖௘௙௙ܦ− 𝑖ܥ − 𝑡,𝑖ܮʹ௢ܥ +   ௣,𝑖 𝐴௖𝑣,𝑖ܮ

(3) 
 

where 𝐴௖𝑣,𝑖 is the cross-sectional area of the CV perpendicular to ݅-direction. The resulting 
expression for the normalized effective diffusivity is  
ܦ௟௢௖௔௟,𝑖௘௙௙ܦ  = 𝑡ଵ,𝑖𝐴𝑡ଵ,𝑖ܮ) + ௣,𝑖𝐴௣,𝑖ܮ + 𝑡ଶ,𝑖𝐴𝑡ଶ,𝑖)−ଵܮ

𝐴௖𝑣,𝑖ʹܮ𝑡,𝑖 + ௣,𝑖ܮ  

 
(4) 

 

This result is the same to that found from linear theory for resistors in series 
 𝑔௟௢௖௔௟,𝑖௘௙௙,ௗ = ቆ ͳ𝑔𝑡ଵ,𝑖ௗ + ͳ𝑔௣,𝑖ௗ + ͳ𝑔𝑡ଶ,𝑖ௗ ቇ−ଵ

 
 

(5) 
 

where 𝑔ௗ =  .is the diffusive conductivity ܮ/𝐴ܦ
 
The above averaging procedure can be generalized for the case that there is more than one 
pore in each CV, so that ܮ௖𝑣,௫ =  ௖𝑣,௭ is increased in proportion to the number of poresܮ
included. This can reduce the computational cost in simulations on large domains if the 
number of computational cells per CV and per connector is kept approximately the same. 



 
Figure 5. Schematic showing the 1D serial resistor network used for the calculation of the 
local effective diffusivity, ܦ௟௢௖௔௟,௬௘௙௙  ,direction. The diffusive conductivities (𝑔௬ௗ)-ݕ in the ,ܦ/
concentrations (ܥ𝑖, ܥଵ, ܥଶ and ܥ௢), and diffusive flux (݆௬) through the resistor network are 
indicated. No-flux boundary conditions are set in the remaining directions. A similar 
procedure is used for other directions and calculations of local permeability.  
 
Similarly, using Darcy’s law, the set of equations that govern the volume flow rate in ݅-
direction, ܳ𝑖, expressed in [mଷs−ଵ], in each CV is  
 

 ܳ𝑡ଵ,𝑖 𝑡ଵ,𝑖𝜇ܭ− = 𝑝𝑖 − 𝑝ଵܮ𝑡ଵ,𝑖 𝐴𝑡ଵ,𝑖ܳ௣,𝑖 = ௣,𝑖𝜇ܭ− 𝑝ଵ − 𝑝ଶܮ௣,𝑖 𝐴௣,𝑖ܳ𝑡ଶ,𝑖 = 𝑡ଶ,𝑖𝜇ܭ− 𝑝ଶ − 𝑝௢ܮ𝑡ଶ,𝑖 𝐴𝑡ଶ,𝑖ܳ = ܳ𝑡ଵ,𝑖 = ܳ௣,𝑖 = ܳ𝑡ଶ,𝑖
 

 
(6a) 

 
(6b) 

 
(6c) 

 
(6d) 

 
where 𝜇 is the dynamic viscosity, and ܭ𝑡ଵ,𝑖, ܭ௣,𝑖 and ܭ𝑡ଶ,𝑖 are the permeabilities of the pore 
and throats ݐͳ  and ݐʹ  when the flow is in ݅ -direction. For a rectangular channel, the 
permeability ܭ𝑖 is given by (25) 
𝑖ܭ  = 𝑑ℎ,𝑖ଶͶͺ (𝛼𝑖 + ͳ𝛼𝑖 )ଶ [ͳ − ͳͻʹ𝛼𝑖 ∑ ͳݑ௡ହ tanh ቀݑ௡ 𝛼𝑖ʹቁ∞

௡=ଵ ]  
(7) 

 
where ݑ௡ = ሺʹ𝑛 − ͳሻߨ , 𝑑ℎ,𝑖 = ʹ𝛼𝑖ሺʹܾ𝑖ሻ/ሺ𝛼𝑖 + ͳሻ  is the hydraulic diameter, and 𝛼𝑖 =ܽ𝑖/ܾ𝑖 ≥ ͳ is the aspect ratio of the channel, with ܽ𝑖 and ܾ𝑖 the maximum and minimum 
half-size of the cross-section perpendicular to ݅-direction, respectively. That is, for throats, ܽ𝑖 = 𝐻𝑡,𝑖 and ܾ𝑖 = 𝑡ܹ,𝑖, and for pores, ܽ௫ = max ሺܮ௣,௬, ௣,௭ሻ, ܽ௬ܮ = max ሺܮ௣,௫, ௣,௭ሻ, ܽ௭ܮ =max ሺܮ௣,௫, ௣,௬ሻܮ , ܾ௫ = min ሺܮ௣,௬, ௣,௭ሻܮ , ܾ௬ = min ሺܮ௣,௫, ௣,௭ሻܮ , ܾ௭ = min ሺܮ௣,௫, ௣,௬ሻܮ . 
Since the series in (7) is rapidly convergent, 10 terms were used in practice, leading to a 
relative error of ͳͲ−଺ for ͳ < 𝛼𝑖 < ʹͲ (compared to using ͳͲଷ terms).   
 
Equations (6a)-(6d) can be combined with the definition of local effective permeability, ܭ௟௢௖௔௟,𝑖௘௙௙ , which relates the volume flow rate ܳ with the pressure drop ∆𝑝, i.e., 



 ܳ = ௟௢௖௔௟,𝑖௘௙௙ܭ− 𝑝𝑖 − 𝑝௢ʹܮ𝑡,𝑖 +  ௣,𝑖 𝐴௖𝑣,𝑖, (8)ܮ
 

resulting in the following expression for ܭ௟௢௖௔௟,𝑖௘௙௙    
௟௢௖௔௟,𝑖௘௙௙ܭ  = ( 𝑡ଵ,𝑖ܭ𝑡ଵ,𝑖𝐴𝑡ଵ,𝑖ܮ + ௣,𝑖ܭ௣,𝑖𝐴௣,𝑖ܮ + 𝑡ଶ,𝑖)−ଵܭ𝑡ଶ,𝑖𝐴𝑡ଶ,𝑖ܮ

𝐴௖𝑣,𝑖ʹܮ𝑡,𝑖 + ௣,𝑖ܮ  

 
(9) 

 

As for diffusion, the result is equal to that found for hydraulic conductors in series with a 
conductivity 𝑔ℎ =  ܮ/𝐴ܭ
   𝑔௟௢௖௔௟,𝑖௘௙௙,ℎ = ቆ ͳ𝑔𝑡ଵ,𝑖ℎ + ͳ𝑔௣,𝑖ℎ + ͳ𝑔𝑡ଶ,𝑖ℎ ቇ−ଵ

 
 
 (10)  

The effective properties of connectors for both diffusion and convection are taken as the 
average value of the two connected CVs.  
 
Figure 6 shows the distribution of local effective transport properties in a ͳ × ͳ mmଶ 
sample. As can be seen, less tortuous pathways and higher macroscopic properties prevail 
in the in-plane direction according to the embedded PN.  
 

 
Figure 6. 3D distributions of (left) local normalized effective diffusivity, ܦ௟௢௖௔௟,𝑖௘௙௙  and ,ܦ/
(right) local effective permeability, ܭ௟௢௖௔௟,𝑖௘௙௙ , in the through-plane (݅ = ݅) and in-plane (ݕ directions. Domain size: ͳ (ݔ= × ͳ × Ͳ.ͳͷ mmଷ.  
 

Global Effective Transport Properties  

 
The global effective properties are determined from diffusion and hydraulic permeation 
simulations on the full sample, by imposing a concentration or pressure difference, ∆ܥ = 𝑖ܥ − ௢ or ∆𝑝ܥ = 𝑝𝑖 − 𝑝௢, in the direction of interest ݅. In both cases, the difference 
across the sample is set equal to 1 to simplify calculations. Laplace equation is used to 
model diffusion and convection in the CV mesh at the macroscopic scale  
 
 
 

 ∇ ∙ 𝒋 = Ͳ       ⇒ ∇ ∙ ቀ−𝑫̿𝒍𝒐𝒄𝒂𝒍ࢌࢌࢋ ቁܥ∇ = Ͳ∇ ∙ ሺߩ𝒖ሻ = Ͳ ⇒ ∇ ∙ ቀ−𝑲̿𝒍𝒐𝒄𝒂𝒍ࢌࢌࢋ ∇𝑝ቁ = Ͳ 
(11a) 

 
(11b) 

 



The local effective diffusivity and permeability tensors are determined as described in the 
previous section, 
 𝑫̿𝒍𝒐𝒄𝒂𝒍ࢌࢌࢋ = [  

௟௢௖௔௟,௫௘௙௙ܦ  Ͳ ͲͲ ௟௢௖௔௟,௬௘௙௙ܦ ͲͲ Ͳ ௟௢௖௔௟,௭௘௙௙ܦ ]  
   

 

𝑲̿𝒍𝒐𝒄𝒂𝒍ࢌࢌࢋ = [  
௟௢௖௔௟,௫௘௙௙ܭ  Ͳ ͲͲ ௟௢௖௔௟,௬௘௙௙ܭ ͲͲ Ͳ ௟௢௖௔௟,௭௘௙௙ܭ ]  

 
, 

 
 

(12a) 
 
 
 
 
 

(12b) 

where it has been considered that ܦ = ͳ. 
 
The average diffusive flux and velocity in ݅ -direction ( ݅ = ,ݔ ݕ ) computed in the 
simulations, ݆𝑖 = ௟௢௖௔௟,𝑖௘௙௙ܦ− 𝜕𝑖ܥ  and ݑ𝑖 = ௟௢௖௔௟,𝑖௘௙௙ܭ)− /𝜇)𝜕𝑖𝑝 , are used to determine the 
global effective transport properties   
 

 
௚௟௢௕௔௟,𝑖௘௙௙ܦ  ܦ  = ௚ௗ௟,𝑖௚ܸௗ௟ܮ ∫ ݆𝑖𝑑ܸ𝑉𝑔𝑑𝑙  

௚௟௢௕௔௟,𝑖௘௙௙ܭ  = ௚ௗ௟,𝑖𝜇௚ܸௗ௟ܮ ∫ 𝑖𝑑ܸ𝑉𝑔𝑑𝑙ݑ  
 

 
(13a) 

 
 
(13b) 

where ܮ௚ௗ௟,𝑖  and ௚ܸௗ௟  are the length in ݅-direction and the volume of the GDL sample, 
respectively. The dynamic viscosity is arbitrarily set equal to that of water at room 
temperature, 𝜇 = ͳͲ−ଷ kg m−ଵ s−ଵ. 
 

 Discussion of Results  

 

Two volume-averaged structural properties were used to assess the representativeness of 
the PN: porosity and pore size. Both quantities were determined by averaging over the 
entire pore and throat space. The values obtained are 𝜀௔𝑣௚  = Ͳ.͸͵ and ܮ௣௔𝑣௚  = ʹ͸.ͷ 𝜇m, 
which are in good agreement with the data reported by Zenyuk et al. (18) for the GDL 
examined here ( 𝜀௔𝑣௚ = Ͳ.͸Ͷ  and ܮ௣௔𝑣௚  = ʹ͹ 𝜇m ). In addition, the computed global 
normalized effective diffusivities are ܦ௚௟௢௕௔௟,௬௘௙௙ ܦ/ = Ͳ.ͳͻ and ܦ௚௟௢௕௔௟,௫௘௙௙ ܦ/ = Ͳ.͵ͺ, which 
are similar to the experimental data of Flückiger et al. (26). The global permeabilities, ܭ௚௟௢௕௔௟,௬௘௙௙ = Ͷ.ͷ × ͳͲ−ଵଶ mଶ and ܭ௚௟௢௕௔௟,௫௘௙௙ = ͻ × ͳͲ−ଵଶ mଶ, are also in the same range of 
previous experimental data (9). The good quantitative comparison provide support to the 
validity of the modeling framework presented here.   
 
Figure 7 shows the computed concentration and pressure distributions corresponding to 
simulations in the through-plane direction. In both cases, a non-linear decrease of 
concentration and pressure across the GDL can be seen due to the transport resistance 
introduced by the pore-throat structure (i.e., the spatially varying effective properties). The 
changes are sharper for convection due to the stronger sensitivity of local permeability to 
small pore sizes (i.e., channels with narrow cross-sections). This is different in nature from 
diffusion, which is mainly influenced by the available pore volume for transport (i.e., 



porosity) (27,28). The ability of the model to capture different modes of transport is 
important, for example, to examine the effect of cross-flow in PEFCs (29), as well as 
distributed ohmic and mass transport losses in other electrochemical devices, such as redox 
flow batteries (30).  
 

 
Figure 7. 3D distributions of species concentration and pressure corresponding to 
simulations of diffusion and convection in the through-plane direction. Simulation 
parameters: ܦ = ͳ, ܥ𝑖 = ͳ, ܥ௢ = Ͳ, 𝑝𝑖 = ͳ and 𝑝௢ = Ͳ. Domain size: ͳ × ͳ × Ͳ.ͳͷ mmଷ.   
 
Figure 8 shows the 2D distribution of the diffusive flux at the outlet section, as a measure 
of the heterogeneity of the fluxes from/to the catalyst layer. A significant variation of the 
diffusive flux is found throughout the GDL, which varies between 200-1800 mol m−ଶ s−ଵ 
with an average value of 1150 mol m−ଶ s−ଵ. Although overall cell performance is mainly 
dictated by average fluxes at the cell scale, local variations can affect degradation rates in 
the catalyst layer (9,31). This aspect should be further examined using a multiphysics 
model that includes the present formulation. The lower computational cost of network-
based models provides an efficient approach to examine the impact of short- and long-
range microstructural heterogeneities, along with the spatial inhomogeneities introduced 
by operating conditions. 
 

 
Figure 8. 2D distribution of diffusive flux, ݆௬ , at the outlet surface corresponding to a 
diffusion simulation in the through-plane direction. Simulation parameters: ܦ = ͳ, ܥ𝑖 = ͳ, 
and ܥ௢ = Ͳ. Domain size: ͵ × ͵ × Ͳ.ͳͷ mmଷ.  



Conclusions 

 

A composite-continuum-network model has been presented to model diffusion and 
hydraulic convection in thin porous media used in energy conversion and storage 
electrochemical devices. In particular, the model was applied to model transport in carbon-
paper gas diffusion layers (GDLs) used in polymer electrolyte fuel cells (PEFCs). The 
model incorporates a control volume (CV) mesh at the macroscopic scale, which embeds 
a structured pore network that is used to determine analytically local effective transport 
properties in each CV. The CVs in the mesh are connected through differential connectors 
of negligible volume, which can be used to model invasion percolation of liquid water. The 
local effective transport properties in the connectors are taken as the mean value of the 
neighboring CVs.  
 
The model predictions were validated in terms of both global structural parameters and 
effective transport properties. The average porosity and pore size, as well as anisotropic 
effective diffusivity and permeability, were found to be in good agreement with previous 
experimental data. Furthermore, the results showed that the variation of the fluxes from/to 
the catalyst layer due to microstructural heterogeneities can be significant. The coupled 
effect of heterogeneous effective transport properties, liquid water blockage, and spatial 
inhomogeneities introduced by operating conditions on durability should be further 
examined in future work using a multiphysics model.   
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