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The configuration complexity of preproduction sites coupled with access-control mechanisms often 
impede the software development life cycle. Virtualization is a cost-effective way to remove such 
barriers and provide a test environment similar to the production site, reducing the burden on IT 
administrators. An Eclipse-based virtualization tool framework can offer developers a personal runtime 
environment for launching and testing their applications. The authors have followed a model-driven 
architecture approach that integrates best-of-breed virtualization technologies, such as Xen and VDE. 

 

 

The increasing complexity of IT ecosystems has exacerbated the need for specialized roles.1 In most 
organizations, system administrators control deployment, whereas the software development team 
handles all previous development tasks. (We use the phrase development team loosely to describe the 
many roles involved in the development process, such as requirements engineers, software architects, 
quality-assurance staff, and testing engineers.) System administrators are primarily responsible for 
operating and maintaining production sites, and service availability and performance are their main 
concerns. Consequently, administrators have neither the resources nor technical skills to help the 
development team test and deploy immature software components. Developers’ productivity and, as a 
result, time to market are negatively affected by this role mismatch. The situation is even worse when 
organizations apply agile software development models that dictate rapid iterations over the basic 
waterfall life cycle. Frequent test execution is the cornerstone of these methods, so the need for a 
suitable deployment environment is even more pressing. This organizational gap is a showstopper for 
the software development process. 

Many organizations set up a preproduction site to cope with this situation. Unfortunately, this further 
burdens both teams because administrators must install, configure, and maintain a new set of servers 
that developers without the proper expertise will have difficulty manipulating and configuring for their 
tests. In addition, concurrent manipulation of preproduction servers is prone to errors. This dilemma is 
too often solved by establishing access-control mechanisms to the preproduction site, under 
administrators’ supervision. Software deployment to a preproduction site comprises activities such as 
managing databases and application servers, loading test data, reconfiguring application components, 
running scripts, and issuing formal requests to coordinate the work between teams. 

Effective testing requires that the system under test run on an environment as close as possible to the 
production site. From the software development viewpoint, each developer would ideally enjoy a fully 
independent, always-on runtime environment to launch and test applications. With real servers and 
networks, however, this quickly leads to machine sprawl. 



Fortunately, virtualization tools make it possible to partition physical server resources to match each 
consumer’s specific needs.2 With this technology, we can embed a preproduction site into each 
developer’s machine3 and reduce IT costs. We created a platform-independent model (PIM) for 
describing a virtualized distributed system that supports a range of virtualization technologies. To 
conceal these technologies’ underlying complexity from developers, we designed an Eclipse-based 
virtualization tool to integrate it into productive software development processes. Our goal is to provide 
a developer-friendly environment; adopting technologies developers are already familiar with flattens 
the learning curve and thus improves productivity. 

Virtualization Technologies 

The purest approach to virtualization is emulation. In an emulator, software replicates the complete 
functionality of a hardware processor. A program can be run on different platforms, regardless of the 
processor architecture or operating system (OS). Because this technique imposes a high-performance 
penalty, we discarded it for our solution. 

Native virtualization is the alternative to full-blown emulation. Rather than replicating a hardware 
platform, native virtualization provides an adaptation layer to guest machines.4 In this scenario, the 
three main elements are the host OS, the guest OS, and the virtual machine monitor (VMM) or 
hypervisor. The VMM handles privileged instructions on behalf of the virtualized OS. This technique has 
been recently refined in favor of lighter-weight approaches that improve performance by working with 
higher-level abstractions. Paravirtualization and OS-level virtualization are outstanding representatives 
of these technologies.5 In paravirtualization, the guest OS is changed to cooperate with the VMM and 
the host, issuing system calls to either real devices or the VMM. OS-level virtualization consists of 
partitioning the existing OS layer. Its main limitation is that the host and guests must have the same OS. 

A common factor among virtualization technologies is a performance penalty over x86 architectures 
when handling privileged processor instructions issued by the guest OS because they must be 
dynamically translated by the VMM or controlled by the host OS. Processor manufacturers have 
addressed this problem,6 and now there is hardware support that accelerates VMM call management. 

Table 1 compares some of the most relevant commercial and open source software (OSS) technologies 
for server virtualization, showing the standard trade-off between a product’s performance and 
flexibility. Our aim is to support a range of production scenarios; thus, we can’t select a unique 
virtualization technology beforehand. Because many of the analyzed technologies share a conceptual 
basis (such as guest systems that are distributed as image files), we can support them with a generic 
approach. 

So far, we’ve focused on creating virtual nodes, but to emulate a distributed production scenario, we 
also need to create a virtual network. Communication among the nodes is a must, as is connectivity with 
external systems. Node virtualization technologies usually provide their own networking options. As an 
alternative to interconnect different solutions, we opted for virtual distributed Ethernet (VDE),7 which 
provides a virtual switch capable of creating a virtual network compatible with multiple node 
virtualization technologies (Xen, QEMU, and UML). 

System Design 



Our solution consists of a tool framework aimed at easing distributed applications’ execution and 
testing. It provides developers with a personal system to deploy, start, and test their applications. 

Product Type License Highlights Guest 
performance 

Bochs Emulator Open source Allows debugging the 
guest OS 

Very slow 

QEMU Emulator/native 
virtualization 

Open source Supports a wide range 
of hardware 
architectures 

Slow (10% of 
host) 

VMware Native 
virtualization 

Commercial Provides a mature 
product family to 
manage virtual 
infrastructures 

Close to native 

VirtualBox Native 
virtualization 

Dual license Remote desktop 
protocol support in 
commercial version 

Close to native 

User Mode Linux 
(UML) 

Paravirtualization Open source Stable support for 
Linux systems 

Close to native 

Xen Paravirtualization Open source Supports virtual 
machine migration on 
the fly 

Native 

OpenVZ OS-level 
virtualization 

Open source Efficient resource 
partitioning 

Native 

Table 1. Virtualization technology comparison. 

Use-Case Analysis 

We performed a use-case analysis to determine which functionalities the tool system should provide. 
The target scenario is a complex distributed system with an Internet connection. Potentially, the nodes 
included in the system are powerful servers running a plethora of different software components. As a 
reference, in the context of the ITECBAN project,8 we’re using a distributed runtime environment 
consisting of four Linux boxes provisioned with certain middleware components that provide an 
advanced services-oriented architecture (SOA) and business process management (BPM) execution 
environment (see the right side of Figure 1). 

Our study identified the developer and system administrator as the two main actors. The developer 
codes, runs, and tests applications in the distributed system. The administrator manages the basic IT 
infrastructure (OS, installed components, databases, and so on) for the virtualized elements included in 
the system. Under these assumptions, we identified the following use cases: 

• Administrators create virtual node configurations. The tool system must provide editors and storage 
facilities for these configurations, including the virtual images. Node configurations can eventually be 
used to build complete virtual distributed systems; the data included in these node configurations 
should be as close as possible to the production environment. 

• Developers (testers) or administrators define the deployment scenario, modeled in resemblance to 
the physical distributed system. 



Tools must enable a rapid definition of virtualized scenarios (including network, nodes, and software 
layers) with minimal effort. Scenarios can be reused and shared. 

• Developers launch any virtual model. Applications can be deployed to the virtual runtime 
environment. Tests over the production site can therefore be executed in the developers’ machines. 

• Developers continuously monitor the virtual system’s state while carrying out some operations 
controlling the host and guest execution. 

Although the actors interact with the system in different use cases, the virtualized system models are a 
shared concern for both of them. 

Distributed System Metamodel 

One of our tool system’s primary goals is to support a range of virtualization technologies such as Xen, 
QEMU, VDE, and UML, while retaining vendor independence. We’ve followed a model-driven 
architecture (MDA) approach to design our tool framework. PIM instances (see Figure 2) are 
transformed and enriched to platform-specific models (PSMs) by framework extensions, which 
contribute the specifics of particular technologies. 

Of course, distributed system modeling isn’t a novel field, and we didn’t design our PIM from scratch. 
We found valuable inputs for our model in the Object Management Group’s Deployment and 
Configuration for Distributed Systems (D&C) specification9 and network simulation technologies such as 
VNUML,10 a domain specific language (DSL) for easily defining complex network configurations. Because 
we also intended to deploy software over runtime virtualized environments, we thought the OMG D&C 
would be a good basis for our model. However, the specification assumes the deployment target is 
already in place, whereas we need to create the virtual environment on the fly. Network simulators have 
already addressed this situation, but they’re strongly tied to the underlying technology — for example, 
UML in VNUML. We’ve designed the PIM to handle as many technologies as possible. This problem 
vanishes once the virtual environment is launched because the means to describe it are compatible with 
the D&C model. We’ve defined the PIM (as Figure 2 shows) with these factors in mind. 

 

 Figure 1. Tool architecture.The virtualization framework is composed by a set of Eclipse plug-ins, 
integrated into the development environment. From this environment, users can launch one of the 
defined virtualization scenarios, which will be instantiated in their machines. 



 

Figure 2. Distributed system platform-independent model (PIM). The model represents the base 
network topology and the computing nodes of a virtualization. Nodes can be either physical (hosts) or 
virtualized, and their specific characteristics are encapsulated in profiles. 

As in the OMG D&C model, the central entity is the deployment domain. A deployment domain 
aggregates switches and nodes, which can be qualified with resources modeling software, hardware, 
and communication capabilities. The model includes virtual nodes (VNodes) and physical nodes 
(PNodes). A PNode can be included in a PIM instance either because it hosts VNodes or because it’s a 
target for software deployment. Our PIM considers multihosted simulations; the association between 
PNode and VNode allows expressing host relationships. 

The Switch element represents virtual networks. Nodes connect to a network through the NetInterface 
element, and we modeled the resulting connection as a Link. We included configurable network 
parameters in the NetInterface and Switch entities. 

To promote model reuse, the PIM includes profiles, which are collections of parameters that completely 
define a virtual node or switch and are linked to a specific virtualization technology (such as VDE). In 
addition, profiles are stored and can be shared among developers using the profile repository (see the 
left side of Figure 1). Development teams will share complete model instances or reference profiles — 
for example, an application server profile (including the OS, network services, and server applications). 
Our system supports change control in profile definitions with version attributes in the PIM. So, a 
development team could test applications against different versions of the application server profile. 

Tool Framework 

Figure 1 shows the architecture of our tooling environment. Basically, each development station is 
leveraged with our virtualization tools. Networked repositories support distributed development. 
Typically, an organization controls its software development with a software configuration management 



(SCM) repository. Our tools also use a system images repository (SIR) and model and profiles repository 
(MPR). 

System administrators create virtual system images and store them at the SIR. Both the OS and 
middleware (without applications) are stored as virtual images. Administrators create, configure, and 
add virtual images to the SIR. The extended IDE retrieves the necessary elements from the SIR to launch 
a virtualization. 

We selected Eclipse as the base platform to integrate our tool because of its wide adoption and 
extensible architecture.11 Eclipse’s architecture is leveraged by an OSGi kernel,12 which provides a 
service-oriented programming model to the Eclipse platform. Through this model, we’ve divided the 
system’s architecture into two main blocks: a core framework and technology extensions. This 
architecture facilitates the integration between virtualization technologies (strongly tied to the OS level) 
and the IDE. Our framework currently supports the definition and execution of distributed system 
virtualizations with VNUML, UML, VDE, QEMU, and XEN. The core framework builds on the distributed 
systems metamodel, adding three fundamental aspects: profile definition, model creation, and 
virtualization launch. 

First, the core provides the profile manager. This component lets administrators create, edit, save, and 
share profiles through the MPR. Profiles are defined in the PIM as the necessary configuration 
parameters to fully characterize a virtual node or switch. Profiles allow uniform handling of element 
instances. However, profile parameters depend on the specific technology and thus must be provided by 
technology extensions. Additional configuration parameters, such as the native technologies’ installation 
location and correctness checking, can also be configured through preference pages. 

Second, the framework includes a distributed systems editor. This component provides a rich, graphical 
editor for creating model instances. An administrator can drag and drop nodes, networks, and 
connections and quickly define distributed system models. We minimize manual configuration by using 
default values and the abstraction provided by profiles. This abstraction lets the editor be technology 
agnostic. Thus, the editor supports any technology contributed through the extension points without 
modifications. 

Finally, the core can launch and control virtualization scenarios. Initiating a launch requires no additional 
arguments or configuration and is invoked with just a mouse click. Internally, each technology extension 
creates a virtualized element instance from the profile parameters. For instance, when we launch a 
distributed virtualization scenario with a VDE switch, the VDE delegate analyzes the range of IP 
addresses for both the nodes connected to its network and the switch configuration parameters. This 
extension uses DNSMasq to provide DNS/DHCP services to the guest nodes. Also, the plug-in modifies 
the host network configuration to provide external Internet access to the guests, as well as virtual 
consoles. The tool framework controls networking processes to provide a clean virtualization stop. 

For example, the VNUML plug-in contributes extensions for configuring the native technologies as well 
as defining and storing VNUML profiles. Besides, the plug-in registers a launcher for VNUML systems 
that can receive the PIM model as input. It can also perform a model transformation, converting the 
generic model into the VNUML PSM model, which can be directly processed by the VNUML Perl parser. 
The tool system also supports extensions for QEMU, UML, and XEN virtualization technologies. 
Conceptually, each extension implementation is similar to this one. 



Case Study 

The right-hand side of Figure 1 depicts a representation of a distributed enterprise runtime 
environment. The virtual runtime uses OSS servers to leverage a SOA/BPM architecture. The entire 
configuration, which administrators create beforehand, consists of four UML/Linux virtual machines 
interconnected by a VDE switch. The environment contains the following installed services: 

• Virtual node 1. The JEE application server (JBoss) — extended with JBPM, a runtime for long-term 
processes — manages the processes life cycle by interacting with the database installed and configured 
in virtual node 4. 

• Virtual node 2. The enterprise service bus (ESB) platform (ServiceMix) provides a service-oriented 
integration layer for the virtual environment. 

• Virtual node 3. A JBoss server is extended with Drools, an enterprise framework that provides a 
business rules management system (BRMS) for business rules edition, change, and management. 

• Virtual node 4. A database management system (MySQL) is the server where the services’ application 
data can be persisted in relational form. 

Once created, we can seamlessly integrate this complex enterprise runtime in the developer IDE (in this 
case, Eclipse) so developers don’t need to know the distributed system’s internal details. This approach 
lets developers focus on developing, deploying, and testing their software components, regardless of 
the details of the host, virtual nodes, and services. 

Figure 3 is a snapshot of our virtualization tool in action. The left-hand panel shows a deployment 
scenario consisting of four nodes connected to the network switch. The deployment model can be 
launched with no further configuration required. The right-hand side of the image shows the terminals 
of the virtual nodes at runtime. Through them, users can open FTP connections to the external SCM 
repository to get, install, configure, and launch the versions of the software to be tested. Because 
there’s a connection from the development host to the virtual system, the developer can interact with 
the system using a common Web browser. 

Our future work will especially focus on integration with a software deployment and testing 
infrastructure that automates component distribution, resolution of component dependencies (keeping 
version constraints), and adaptation of the process to the virtual network resources. Additionally, the 
tool system (see Figure 1) includes an SIR, managed by IT administrators, that hosts a collection of 
virtual nodes ready to be used in virtualizations. Currently, each variant of a node image must be stored 
as a complete file. This approach is inefficient because the repository is rapidly filled with multiple 
versions of the same base image. We can address this limitation by modularizing image persistence to 
assemble images on the fly. However, this modification is technically challenging because the repository 
logic would have to cope with a range of operating systems and software deployment mechanisms. Each 
supported deployment model needs a specific weaver for generating images. A repository based on this 
principle will have all the advantages of current SCM systems, combining versioning capabilities and 
optimizing storage resources with differential storage. 



 

Figure 3. Virtualization tool in action. The background shows the virtualization editor opened with a 
running scenario. For each one of the virtual nodes, a control terminal has been created for additional 
configuration. On top of that, the developer can access the developed application through a Web 
browser connected to the virtual server. 

Also, although our tool has proven successful for functional testing, it’s clearly out of scope for stress, 
performance, and reliability testing because the behavior of guests differs from actual systems. 
Developers’ machines should be resourceful enough to hold several production machines without 
interference, but this is uncommon. To overcome this problem, we’re working on the capability to 
launch remote virtualizations on a dedicated cluster of hosts, with enough raw computing power to 
faithfully mirror actual production systems. 

Another ongoing line of work aims at monitoring the virtual system through the tools environment. 
We’re developing a resource-gathering infrastructure that will let us detect anomalous behavior in the 
system and create a model of a mirror virtualized system from information we extracted from the real 
one. 
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