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Abstract—A substantial amount of work has recently gone
into localizing BitTorrent traffic within an ISP in order to avoid
excessive and often times unnecessary transit costs. Several archi-
tectures and systems have been proposed and the initial results
from specific ISPs and a few torrents have been encouraging. In
this work we attempt to deepen and scale our understanding of
locality and its potential. Looking at specific ISPs, we consider
tens of thousands of concurrent torrents, and thus capture ISP-
wide implications that cannot be appreciated by looking at only
a handful of torrents. Secondly, we go beyond individual case
studies and present results for few thousands ISPs represented
in our dataset of up to 40K torrents involving more than 3.9M
concurrent peers and more than 20M in the course of a day spread
in 11K ASes. Finally, we develop scalable methodologies that allow
us to process this huge dataset and derive accurate traffic matrices
of torrents. Using the previous methods we obtain the following
main findings: (i) Although there are a large number of very small
ISPs without enough resources for localizing traffic, by analyzing
the 100 largest ISPs we show that Locality policies are expected to
significantly reduce the transit traffic with respect to the default
random overlay construction method in these ISPs; (ii) contrary
to the popular belief, increasing the access speed of the clients of
an ISP does not necessarily help to localize more traffic; (iii) by
studying several real ISPs, we have shown that soft speed-aware
locality policies guarantee win-win situations for ISPs and end
users. Furthermore, the maximum transit traffic savings that an
ISP can achieve without limiting the number of inter-ISP overlay
links is bounded by “unlocalizable” torrents with few local clients.
The application of restrictions in the number of inter-ISP links
leads to a higher transit traffic reduction but the QoS of clients
downloading “unlocalizable” torrents would be severely harmed.

I. INTRODUCTION

Most design choices in P2P applications are dictated by end
user performance and implementation simplicity. Bootstrapping
is one such example: a new node joins a P2P overlay by
connecting to a Random set of neighbors. This simple process
provides fault tolerance and load balancing to end users and
implementation simplicity to developers. Its downside, how-
ever, is that it is completely oblivious to the requirements and
operating constraints of ISPs and thus it often leads to serious
problems such as increasing the transit costs, worsening the
congestion of unpaid peering links [23], and expediting the
upgrade of DSLAMs. Therefore, several ISPs have allegedly
started rate limiting or blocking P2P traffic [12]. In response,
P2P applications have tried to conceal and evade discriminatory
treatment by using dynamic ports and protocol encryption.

Much of this tension can be avoided by biasing the overlay
construction of P2P towards Locality. It is known that geo-
graphic proximity often correlates with overlap of consumption
patterns [19] and thus bootstrapping P2P users with other
nearby ones can confine P2P traffic within ISPs instead of
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letting it spill to other domains over expensive transit links.
This simple idea has received much attention lately because it is
generic and thus can be applied to a variety of P2P applications
independently of their internal logic (scheduling, routing, etc.).
Systems like P4P [34] and ONO [7] have been proposed for
localizing the traffic of the BitTorrent file sharing protocol [8].

Despite the interesting architectures and systems that have
been proposed, we believe that we still stand on preliminary
ground in terms of our understanding of this technology. The
main ideas are straightforward, but their implications can be
quite the opposite, for several reasons. First, different torrents
can have quite diverse demographics: a blockbuster movie
has peers around the world and thus can create much more
transit traffic than a local TV show whose peers are mostly
within the same country/ISP, especially if language gets in
the way. Predicting the ISP-wide transit traffic due to P2P
amounts to understanding the demographics of thousands of
different torrents downloaded in parallel by all the customers.
Things become even more complicated in the case of the
BitTorrent protocol whose free-riding avoidance scheme makes
peers exchange traffic predominately with other peers of similar
speed [21]. Thus even if two ISPs have similar demographic
composition, the fact that they offer different access speeds
can have a quite pronounced impact on the amount of transit
traffic that they see. The combined effect of demographics and
access speeds makes it risky to generalize observations derived
from a particular ISP and few individual torrents.

II. OUR CONTRIBUTIONS

Our work provides detailed case studies under representative
ISP-wide workloads as well as holistic views across multiple
(thousands of) ISPs. In all cases we demand that the input be as
representative as possible (demographics and speed of different
ISPs) and the methodology be scalable without sacrificing
essential BitTorrent mechanisms like the unchoke algorithm,
the rarest (i.e., least replicated) first chunk selection policy,
and the effect of seeders. We collected representative input
data by scraping up to 100K torrents of which at least 40K
had active clients from Mininova and Piratebay, the two most
popular torrent hosting sites in the world according to the Alexa
Ranking at the moment of our measurement study. We then
queried the involved trackers and leverage the Peer Exchange
(a gossiping protocol) to construct a map of BitTorrent demand
demographics of up to 3.9M concurrent users and more than
21M total users over the course of a day, spread over 11K
ISPs. For all those ISPs we obtained speeds from a commercial
speed-test service [2] and from the iPlane project [25].

Our datasets are too big to conduct emulation or simulation
studies. To process them we employ three scalable method-
ologies: (i) we use a probabilistic methodology for deriving
speed-agnostic upper and lower bounds on the number of piece
exchanges (i.e., unchoke slots) that can be localized within
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an ISP given its demand demographics. This technique allows
us to scale our evaluation up to as many ISPs as we like;
(ii) we evaluate the effect of access speed on the ability of a
Random overlay construction policy to keep unchokes local
within an ISP. For this purpose we define a metric named
Inherent Localizability; (iii) finally, we define a more accurate
deterministic methodology that estimates the resulting traffic
matrix for a BitTorrent swarm taking into consideration the
speeds of clients from the involved ISPs. This technique allows
us to zoom in into particular ISPs and refine our estimation of
transit traffic and end-user QoS.

In our analysis, we study the performance of several overlay
construction mechanisms that include: Random, the default
BitTorrent overlay in which a node selects its neighbors at
random; Locality Only If Faster, (LOIF), an end-user QoS
preserving overlay that switches remote neighbors for locals
only when the latter are faster; Locality, a simple policy
that maximizes transit savings by switching as many remote
neighbors as possible with local ones, independently of relative
speed; Strict, is a strict version of Locality in which a node,
after performing all the possible switches, just keeps one
remote connection.
Summary of results: We shed light on several yet unanswered
questions about BitTorrent traffic. Specifically:
(1) We use the demand demographics of the 100 largest ISPs
from our dataset to derive speed agnostic upper and lower
bounds on the number of chunk exchanges that can be kept
local. In half of the ISPs, Locality keeps at least 42% and up
to 72% of chunks internal, whereas Random can go from less
than 1% up to 10%.

Next we focus on the three largest US and the three largest
European ISPs in our dataset and derive their traffic matrices
using both demographic and speed information. These detailed
case studies reveal the following:
(2) LOIF preserves the QoS of users and reduces the transit
traffic of fast ISPs by around 30% compared to Random. In
slower ISPs the savings are around 10%.
(3) Locality achieves transit traffic reductions that peak at
around 55% for the ISPs that we considered. The resulting
penalty on user download rates is typically less than 6%.
(4) The barrier on transit traffic reduction is set by “unlocaliz-
able” torrents, i.e., torrents with one or very few nodes inside
an ISP. In large ISPs, such torrents account for around 90%
of transit traffic under Locality and are requested by few users
of the ISP (∼10%). In a sense, for these ISPs, the majority
of users is subsidizing the transit costs incurred by the few
users with a taste for unlocalizable torrents. Smaller ISPs host
a larger number of clients in unlocalizable torrents.
(5) By limiting the number of allowed inter-ISP overlay links
per client huge reductions of transit (>95%) are possible.
The resulting median penalty is around 20% but users on
“unlocalizable” torrents incur huge reduction of QoS (99%).
(6) Finally, we show that, contrary to popular belief, increasing
the speed of access connections does not necessarily keep more
traffic local as it might bring an ISP within unchoke distance
from other fast ISPs which previously did not send it traffic.

Overall our results show that there is great potential from
locality for both ISPs and users. There has been quite some
speculation about this, so our effort was to substitute the
speculation with concrete numbers about the benefits of this
technology and thus assist ISPs with procurement decisions
and implementors with further development of it.

A previous version of this paper was published at IEEE
Infocom 2011 [10]. In this paper we extend our analysis to
a larger number of ISPs and datasets. Moreover, we carefully
analyze the impact that speed upgrades may have for an
ISP transit traffic. Finally, we provide details and an accurate
validation for the proposed method to estimate the traffic matrix
of BitTorrent swarms.

The remainder of the article is structured as follows. In
Sect. III we derive upper and lower bounds on the number of
localized unchokes under Random and Locality overlays, inde-
pendently of ISP speed distributions. In Sect. IV we present our
measurement study of BitTorrent demographics. We also define
a metric for explaining the performance of Random when
factoring in real speed distributions across ISPs. In Sect. V we
present a methodology for estimating BitTorrent traffic matrices
and in Sect. VI we define the overlay construction policies
that we use later in our study. Sect. VII characterizes the win-
win situations and the tradeoffs between ISPs and users under
different locality policies. In Sect. VIII we present a validation
prototype for studying locality using live torrents and factoring
in network bottlenecks. In Sect. IX we look at related work and
we conclude in Sect. X.

III. WHY NOT A RANDOM OVERLAY?

Our goal in this section is to understand the cases in
which a Random selection of neighbors localizes traffic well,
and the ones in which it fails thereby creating the need for
locality-biased neighbor selection. To do so we first need to
understand the stratification effect [21] arising due to the un-
choke algorithm [8] used by BitTorrent to combat free-riding.
According to this algorithm, a node monitors the download
rates from other peers and “unchokes” the k peers (typically
4–5) that have provided the highest rates over the previous
20 sec interval. These peers are allowed to fetch missing
chunks from the local node over the next 10 sec interval.
Therefore, as long as there are chunks to be exchanged between
neighbors (Local Rarest First chunk selection works towards
that [8]), peers tend to stratify and communicate predominantly
with other peers of similar speed. In this section, we employ
probabilistic techniques to carefully analyze the consequences
of stratification on inter-domain traffic. We focus on a single
ISP A and torrent T and analyze the conditions under which
Random localizes sufficiently within A the traffic due to T .

A. Sparse mode – the easy case for Random

Let V (T ) denote the set of BitTorrent nodes participating
in T , and V (A, T ) ⊆ V (T ) the subset that belongs to ISP
A. We say that ISP A is on sparse mode with respect to
torrent T if the nodes outside A that participate in T have very
dissimilar speeds with nodes that are within A. In this case,
because of stratification, local nodes of A will talk exclusively
to each other irrespectively of other remote nodes in their
neighborhood. Then to confine all unchokes within A, each
local node needs to know at least k other local neighbors. If
W denotes the size of a neighborhood (40 upon bootstrap and
growing later with incoming connections), then for Random to
localize all traffic it has to be that a random draw of W out of
the total |V (T )| − 1 (-1 to exclude the node that is selecting)
nodes yields at least k local ones. The probability of getting
x “successes” (i.e., local nodes) when drawing randomly W
samples from a pool of |V (T )| − 1 items, out of which
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|V (A, T )|−1 are “successes”, is given by the Hyper-Geometric
distribution HyperGeo(x, |V (T )| − 1, |V (A, T )| − 1,W ) [14].
Thus the expected number of localized unchokes is
min(|V (A,T )|−1,W )X

x=0

min(x, k)·HyperGeo(x, |V (T )|−1, |V (A, T )|−1,W )

(1)
Taking the mean value of the distribution we can write a

condition for Random to localize well in sparse mode:

W · (|V (A, T )| − 1)

|V (T )| − 1
≥ k (2)

B. Dense mode – things getting harder
ISP A is on dense mode with respect to T if the remote nodes

participating in T have similar speeds to the nodes of A. In this
case stratification does not automatically localize traffic inside
A. From the standpoint of the unchoke algorithm, both local
and remote nodes look equally good and thus the number of
localized unchokes depends on their ratio in the neighborhood.
Thus, although in sparse mode a random draw yielding x ≤ k
local nodes would keep all x unchokes local, in dense mode
it keeps only k · x/W of them local in expectation. To get
the expected number of localized unchokes in dense mode we
have to substitute min(x, k) with k · x/W in Eq. (1).

C. The promise of Locality
Let us now consider Locality, an omniscient overlay con-

struction mechanism that knows all local nodes and thus
constructs highly localized neighborhoods by providing each
node with as many local neighbors as possible, padding with
additional remote ones only if the locals are less than W .
Then in sparse mode Locality localizes all unchokes as long as
|V (A, T )|−1 ≥ k, which is a much easier condition to satisfy
than the one of Eq. (2), else it localizes only |V (A, T )| − 1.
In dense mode Locality localizes all unchokes as long as
|V (A, T )| − 1 ≥W .

IV. DEMOGRAPHICS OF BITTORRENT

We conducted a large measurement study of BitTorrent
demand demographics. We begin with a presentation of our
measurement methodology and then use the obtained demo-
graphics to derive upper and lower bounds on the number of
localized regular unchokes under Random and Locality. At the
end of the section we incorporate the effect of speed differences
among ISPs and show that it is non trivial to predict what
happens to the transit traffic of an ISP when it upgrades the
speed of its residential accesses.

A. Measurement methodology
We use the BitTorrent crawler developed in [31] that obtains

a snapshot of the IP addresses of all the clients participating in a
set of torrents that are provided as input1 . In Table I we present
the different sets of torrents used in our study. Our crawler
first scrapes a torrent indexing site to obtain .torrent meta
information files. From them it obtains the addresses of the
corresponding trackers. It queries repeatedly the trackers and
uses Peer Exchange (the gossip protocol implemented in the
latest versions of BitTorrent) to obtain all the IP addresses of
clients participating in each torrent. The gathered IP addresses

1 Note that this crawler follows the guidelines defined in [35].

Set name Source Torrents # IPs # ISPs
mn40K Mininova latest 40K 3.9M 10.4K
mn3K Mininova latest 3K 17.4M 10.5K
pb600 Piratebay 600 most popular 21.9M 11.1K

TABLE I
TORRENT SETS COLLECTED IN THE PERIOD AUG-OCT 2009. FOR mn40K
WE COLLECTED THREE VERSIONS, WITH ONE WEEK IN BETWEEN THEM.

FOR mn3K AND pb600 WE REPEATED THE CRAWL EVERY HOUR FOR ONE
DAY. THE #IPS AND #ISPS FOR mn40K ARE PER SNAPSHOT, WHEREAS FOR

mn3K AND pb600 ARE DAILY TOTALS.
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Fig. 1. Summary statistics for the measured BitTorrent demographics. Cdfs
for: |V (T )|, the number of clients in a torrent, |V (A)|, the total number of
clients in an ISP across all its torrents, and |T (A)|, the number of distinct
torrents requested by the clients of an ISP.

are mapped to ISPs and countries using the MaxMind database
[1]. The crawler also obtains the number of seeders and
leechers in each torrent. Crawling an individual torrent takes
less than 2 minutes. Thus we get a pretty accurate “snapshot”
of each torrent, i.e., we are sure that the obtained IPs are
indeed present at the same time. The time difference between
the first and last crawled torrent was up to 90 minutes for
the largest dataset (mn40K). However, we tracked individual
torrent populations and found them to be quite stable across a
few hours. Thus our dataset is similar to what we would get
if we used a very large number of machines to crawl more
torrents in parallel.

B. High level characterization of the dataset

We use the following definitions. We let T denote the set
of torrents appearing in our measurements and A the set of
ISPs that have clients in any of the torrents of T . We let T (A)
denote the set of torrents that have at least one active client
in A, and V (A) =

⋃
T∈T (A) V (A, T ) the set of all clients

of A participating in any of the torrents T (A). In Fig. 1 we
summarize the measured demographics. Some points worth
noting: (i) The largest torrent has approximately 60K clients
in all three datasets. Looking at the large set, mn40K, we see
that most torrents are small as has already been shown [28],
[26]. mn3K has relatively bigger torrents because it is a subset
of most recent torrents of mn40K, and recency correlates with
size. pb600 holds by definition only big torrents. (ii) Looking
at the number of peers and torrents per ISP we see that mn40K
has bigger values which is expected as it is a much bigger
dataset than the other two and thus contains more and bigger
ISPs (notice that in Table I the numbers for mn40K are per
snapshot, whereas for the other two are aggregates over a day,
i.e., totals from 24 snapshots).
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Fig. 2. CDF of the upper and lower bound on the number of localized
unchokes under Random and Locality for mn40K in number of clients. Top:
All ISPs. Bottom: Top-100 ISPs.

C. Speed agnostic bounds for the measured demand demo-
graphics

In Sect. III we defined the notions of sparseness and
denseness for one ISP and a single torrent and noted that
sparseness helps to localize traffic whereas denseness makes
it harder. Therefore, by assuming that all the torrents T (A)
downloaded in A are concurrently in sparse mode we can get
an upper bound on the expected number of unchokes that
can be localized by an overlay construction policy for the
given demand demographics and any speed distribution among
different ISPs. Similarly, by assuming that all torrents are in
dense mode we get a lower bound. In Fig. 2 we plot the
upper and lower bound on localized unchokes for Random
and Locality for the 10.3K (top) and top-100 (bottom) ISPs
in number of clients in the mn40K dataset. These bounds were
computed using formula (1) and its corresponding version for
dense mode for single torrents and iterating over all T ∈ T (A)
from our demographics dataset adding each contribution with
weight |V (A, T )|/

∑
T ′∈T (A) |V (A, T ′)| to capture the relative

importance of T for A. Note that we use W = 40 for all
the experiments because it is the default value used by most
BitTorrent clients. We observe that around half of the 10.4K
ISPs are unable to localize any traffic under either Random or
Locality even for the most favorable case represented by the
sparse mode. These are ISPs with a low number of BitTorrent
clients that download torrents where there are no other local
peers. We refer to these torrents as “unlocalizable” torrents.
The low benefit that Locality techniques may bring to small
ISPs (i.e., those having a small population of BitTorrent clients)
has been also pointed out by other works in the literature [17],
[28], [33]. If we consider now the top-100 ISPs, that represent
around 1% of the ISPs but account for more than 68% of all
IPs in the dataset, the lower bound for Random is 0 for 95%
of these ISPs and reaches a maximum value of 0.03%. This
happens because for the huge majority of torrents, an ISP has
only a small minority of the total nodes in the torrent. In dense
mode, Random needs to get most of these few locals with a
random draw which is an event of very small probability. On
the other hand, this small minority of nodes performs much
better in sparse mode yielding an upper bound for Random
that is at least 10.94% in half of the top-100 ISPs. Locality
has strikingly better performance. Its lower bound is at least
42.35% and its upper bound 72.51% in half of the top-100
ISPs. The huge improvement comes from the fact that Locality

requires the mere existence of few local nodes in order to keep
most unchokes inside an ISP. Note that the improvement factor
is greater in the difficult case2 (the lower bound goes from 0
to above 42% in half of the cases) while it is also quite big in
the easy case (improvement factor of at least 6.63 in half of
the cases). We have recomputed these bounds for the top-100
ISPs based on the pb600 dataset that is biased towards large
torrents. The results are presented in Appendix E-A2.

Note that these bounds paint, to the best of our knowledge,
the most extensive picture reported up to now in terms of
covered ISPs and torrents of the potential of locality given
the constraints set by real demand demographics.

D. Factoring the effect of speed
The notions of sparseness and denseness have been useful

in deriving speed-agnostic performance bounds based on the
demand demographics and the overlay construction policy. To
refine our analysis and answer more detailed questions we turn
our attention now to the effect of speed. We do so through
what we call Inherent Localizability. Let A(T ) denote the set
of ISPs that have clients in torrent T . Let also U(A) denote
the uplink speed of nodes in ISP A. We focus on the uplink
speeds because they are typically the bottleneck in highly
asymmetric residential broadband accesses [11]. For now it
suffices to assume that speeds differ only between ISPs. We
define the Inherent Localizability Iq(A, T ) of torrent T in ISP
A as follows:

Iq(A, T ) =
|V (A, T )|∑

A′∈A(T ) |V (A′, T )| · I(A,A′, q)
,

where, I(A,A′, q) = 1 iff U(A) · (1 − q) ≤ U(A′) ≤
U(A) · (1 + q), and 0 otherwise. The parameter q ∈ [0, 1],
captures the maximum speed difference that still allows a local
node of A and a remote node of A′ to unchoke each other. In
reality q can be arbitrarily large because very fast nodes can
unchoke much slower ones in the absence of other fast nodes.
However, this simple metric suffices to understand interesting
effects produced by the combination of speed and demograph-
ics. The inherent localizability Iq(A) of ISP A across all its
torrents is simply the weighted sum by |V (A, T )|/|V (A)| of its
Iq(A, T )’s for all torrents it participates in. Iq(A) captures the
density of A’s nodes in torrents that it shares with other ISPs
that have similar speed. Due to stratification, unchokes will
take place among those nodes. For Random, Iq(A) determines
completely its ability to localize unchokes. Iq(A) also impacts
on Locality. However, Locality’s overall performance depends
on the absolute number of local peers.

E. Does being faster help in localizing better?
In this section we use inherent localizibility to study the

effect of access speed on the ability of Random to keep
unchokes internally in an ISP. ISPs have a natural interest in
this question because on the one hand they want to upgrade
their residential broadband connections to fiber but on the other
hand, they wonder how this will impact their transit and peering
traffic. Next we present a case study showing that it is difficult
to come up with such predictions without using detailed demo-
graphic/speed information and corresponding methodologies to
capture their combined effect.

2 A detailed explanation for this can be found in Appendix E-A1.
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Fig. 3. Nodes in ISP A, |V (A, T )|, vs. total torrent
size, |V (T )|, for US1 (top) and EU1 (bottom).
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Fig. 4. CDF of uplink speeds per country. EU1–
EU3, US1–US3 are ISPs studied in Sect. VII.
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Fig. 5. The inherent localizability of US1 and EU1
for different speeds based on all their torrents (S1 =
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1) A European and an American ISP: Consider the follow-
ing two ISPs from our dataset mn40K: US1, with the largest
population of nodes in America (according to our different
datasets) and median upload speed 960 kbit/s, and EU1, with
the largest population of nodes in Europe and median upload
speed 347 kbit/s. In Fig. 3 we plot |V (A, T )| vs. |V (T )| for
all T ∈ T (A) for the two ISPs. A quick glance at the figure
reveals that the two ISPs are radically different in terms of
demand demographics. Because of the proliferation of English
and its English content, US1 is participating in globally popular
torrents. In the figure, the US1 torrents that are globally large
(high |V (T )|) have a lot of clients inside US1. Also, torrents
that are popular in US1 are also globally popular. In EU1
the picture is very different. The largest torrents inside EU1
are not among the largest global ones, whereas only very few
globally popular torrents are also popular inside EU1. This has
to do with the fact that EU1 is in a large non-English speaking
European country that produces and consumes a lot of local,
or locally adapted content.

2) The impact of demographics and speed on inherent
localizability : We will now compute the inherent localizability
of EU1 and US1. To do this we need the speeds U(A) for all A
that participate in common torrents with the two ISPs. We have
obtained these speeds from the Ookla Speedtest service [2].
This dataset provides the median upload and download access
speeds for 215 different countries. To this end, it leverages
measurements of over 19 million IP client addresses around
the world. For half of the countries the speed values are
obtained from more than 4.5k samples whereas just 16.7% of
the countries present less than 350 samples. In Fig. 4 we plot
the cdf of median country speed based on the above dataset.
It is interesting to observe that almost 80% of the countries
have similar speeds that are below 610 kbit/s where the few
remaining ones are sparsely spread in the range from 610
kbit/s to 5.11 Mbit/s. We also plot the corresponding cdf from
iPlane [25] which we use in Appendix E-C3 for validation.

Using the above demographics and speeds we plot in Fig. 5
the localizability of ISP A ∈{EU1,US1} for different U(A),
i.e., we plot how the localizability of the two ISPs would
change if we changed their speeds while keeping the speeds of
all other ISPs fixed. We have assumed q = 0.25. Results are
similar for most q < 0.5 whereas for larger ones speed starts
becoming marginalized because high q’s imply that any node
can unchoke any other one. There are two points to keep from
this figure. First, the localizability of EU1 is generally higher
than that of US1 for the same speed. This means that if the

two ISPs had similar speed, then the demographic profile of
EU1 depicted earlier in Fig. 3 would lead to a higher inherent
localizability as this ISP holds a larger proportion of the content
requested by its users. Thus Random would perform better in
EU1 than in US1. A second point to notice is that I0.25(A) is
changing non-monotonically with U(A). This happens because
the set of remote ISPs and consequently the number of remote
clients that can be unchoked by clients of A due to similar
speed (within the margins allowed by a given q) changes as
we vary the speed of A. If the torrents were spread uniformly
across all the ISPs, and ISPs had similar size, then due to
the sparsification of ISPs on the high speed region (Fig. 4),
I0.25(A) would increase monotonically with U(A). The real
demographics and sizes of ISPs, though, lead to the depicted
non-monotonic behavior that exhibits only a general trend
towards higher intrinsic localizibility with higher local speed.
This has important consequences on the expected amount of
transit traffic under different speeds. For example, by going
from speed S1 = 347 kbit/s to S2 = 960 kbit/s, the inherent
localizability of EU1 increases from around 0.3 to around 0.5
and as a consequence its transit traffic under Random would
decrease as more unchokes would stay inside the ISP. The
opposite however happens for US1. Increasing the speed from
S1 to S2 reduces the inherent localizability from 0.3 to 0.2,
effectively increasing the number of unchokes going to remote
nodes and thus the transit traffic as well. Further details on
the combined effect of demand demographics and speeds on
different type of torrents can be found in Appendix E-B.

In conclusion, the interplay between speed and demograph-
ics is complicated, an ISP can use our methodology to actually
obtain an informed prediction of the impact of planned changes
to its residential broadband offerings on its transit traffic.

V. BITTORRENT TRAFFIC MATRICES

Our analysis up to now has revealed important insights about
the parameters that affect the performance of Random and
Locality. However, in order to achieve our final goal (i.e.,
to estimate the aggregate amount of traffic routed to an ISP
transit link due to the torrents of our demographic datasets) we
require a more sophisticated methodology able to accurately
predict traffic matrices for thousands of torrents including
clients from an ISP and model the behaviour of seeders and
optimistic unchokes from leechers. In Sect. VII we present
a methodology that accurately models these aspects. In this
section we introduce the basic elements of this model.
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We start with fast numeric methods (based on b-matching
theory) that capture the unchoking behavior in steady-state,
i.e., when the Least Replicated First (LRF) chunk selection
algorithm [8] has equalized the replication degree of different
chunks at the various neighborhoods. From that point in time
on, we can factor out chunk availability and estimate the
established unchokes based only on the uplink speed of nodes.
We extend this numeric method to capture also the initial flash-
crowd phase of a torrent. The resulting model is much slower in
terms of execution time and provides rather limited additional
fidelity since the flash crowd phase is known to be relatively
short compared to the steady-state phase of sufficiently large
downloads (the size of a movie or a software package) [18],
[20], [22]. For this reason we stick to our original faster model.
Even without chunk availability information, this constitutes a
substantial improvement over the current state of the art in
P2P matrix computation [6] which is based on a gravity model
driven by total number of peers per ISP (no demographics,
speed, seeder/leecher information). Details of our numeric
methods can be found in Appendix B.

Notice that although experimentation with real clients would
provide higher accuracy in predicting the QoS of individual
clients, it would not be able to scale to the number of
torrents and clients needed for studying the impact of realistic
torrent demographics at the ISP level (aggregate traffic in
the order of several Gbit/s). Our scalable numeric method-
ology targets exactly that while preserving key BitTorrent
properties like leecher unchoking (regular and optimistic) and
seeding. We validate the accuracy of our methods against real
BitTorrent clients in controlled emulation environments (in
Appendix B-C) and in the wild with live torrents (Sect. VIII).

A. Modeling Leechers
Estimating the traffic flow among leechers is an involved

task due to the unchoke algorithm [8]. This reciprocity based
matching algorithm of nodes with similar speeds has many
of the elements of a b-matching problem [5], [15]. In Ap-
pendix B-A we show how to cast the problem of estimating the
traffic matrix from a torrent T downloaded by nodes in V (T )
as a b-matching problem in V (T ). We also pointed to work
describing how to get a fast solution (a stable matching M )
for the b-matching. M gives us the pairs of nodes that unchoke
each other in steady-state. Using the stable matching M and
the uplink speeds of nodes, we can compute the expected rate
at which a node v uploads to its neighbor u:

upload(v, u) =
{

U(v)
k+1

, if (v, u) ∈M
U(v)
k+1
· 1
|N(v,T )|−k

, otherwise

The first case amounts to neighbors u that are allocated one
of v’s k regular unchokes in steady-state. The second case
amounts to the remaining neighbors that receive only optimistic
unchokes and thus share the single slot that is allocated
optimistically.3

B. Modeling Seeders
Let N(s, T ) be the neighborhood of a seeder node s of

torrent T . Existing seeders typically split their uplink ca-
pacity U(s) among their neighbors following one of two

3 It might be the case that in a stable solution node v is matched to less
than k others (e.g., because it is of low preference to its neighbors). In such
cases we add the unallocated unchoke bandwidth to the optimistic unchoke
bandwidth that is evenly spread to choked neighbors.

possible policies. In the Uniform policy, all neighbors u ∈
N(s, T ) get an equal share upload(s, u) = U(s)/|V (s, T )|.
In the Proportional policy, neighbor u ∈ N(s, T ) gets an
allotment in proportion to its speed, i.e., upload(s, u) =
U(s)U(u)|/

∑
u′∈N(s,T ) U(u′).

In Sect. VII we will use the seeder bandwidth allocation
policies and the upload rates from the b-matching described
in this section to compute the amount of BitTorrent traffic
crossing inter-ISP links. Before that, however, we introduce
the overlay construction policies that we will study.

VI. LOCALITY-BIASED OVERLAYS

Up to now our discussion has been based on an very
basic locality biasing overlay construction algorithm, Local-
ity, that provides a node v of A participating in T with
min(W, |V (A, T )| − 1) local nodes and pads up to W with
randomly chosen remote nodes. In the evaluation presented in
Sect. VII we will consider the following additional overlay
construction policies:
– Local Only If Faster (LOIF): In this case switches of remote
for local nodes occur only if the local ones are faster. LOIF is
an end-user QoS preserving policy.
– Strict: As in Locality all switches of remotes for locals are
performed. Of the remaining remotes only one is retained and
the rest are discarded from the neighborhood.

Note that Locality, LOIF and Strict are members of an
extended family of overlay construction algorithms defined in
Appendix C.

VII. IMPACT OF LOCALITY ON ISPS & USERS

The bounds presented in Sect. III provide a broad view of
the impact of locality on the transit traffic of thousands of
ISPs. They do not, however, provide any information regarding
the impact of locality on end user download rates. Earlier
work [34], [7] has demonstrated some “win-win” cases in
which ISPs benefit by reducing their transit traffic, while at
the same time their users get faster download rates. In general,
however, talking mostly to local nodes can harm a user’s
download rate by, e.g., depriving it from faster remote seeders
and leechers (the latter can provide optimistic unchokes).
Whether this happens depends on the interplay between de-
mographics and speed. In this section we employ the traffic
matrix computation methodology of Sect. V to present detailed
case studies of the impact of different overlay construction
mechanisms from Sect. VI on ISPs and their users. We are
primarily interested in discovering the boundaries of the win-
win region from locality for both ISPs and users as well as the
reasons behind them.

A. Experimental methodology
Next we present the common parts of our methodology that

appear in all experiments. Experiment-specific parts appear in
the corresponding sections.

1) Input to the experiments: Demographics: We used the
BitTorrent demand demographics measurements presented in
Sect. IV. Our default dataset will be mn40K. We use pb600
for validation in Appendix E.
Speed distributions: We assign to an ISP the median uplink
speed of its country4 [2]. We also use client speed distribu-
tions within an ISP from iPlane [25] in Appendix E. These

4 Note that this is a limitation of the Ookla dataset, not a choice of the
authors.
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(a) Transit traffic reduction
ISP LOIF Locality Strict
US1 32.00% 55.63% 97.47%
US2 28.47% 48.40% 97.25%
US3 26.04% 41.45% 97.02%
EU1 10.50% 39.12% 96.41%
EU2 11.34% 44.89% 95.95%
EU3 16.18% 35.57% 96.98%

(b) Degradation of median QoS
ISP LOIF Locality Strict
US1 -6.71% -1.32% 2.88%
US2 -5.22% -0.83% 4.43%
US3 -5.74% -1.27% 4.96%
EU1 -1.47% 3.33% 18.59%
EU2 -0.55% 6.35% 11.72%
EU3 -3.21% 2.28% 14.67%

TABLE II
RESULTS FOR ISPS EU1-EU3, US1-US3, UNDER mn40k AND OOKLA

SPEEDS.

speeds represent last mile bottlenecks. We consider network
bottlenecks and other limitations of our speed datasets later in
Sect. VIII using an experimental prototype and live torrents.
Seeder/leecher ratios: In dataset pb600 we know exactly if a
peer is a seeder or a leecher but in mn40K and mn3K we do not
have this information. To solve this problem, we obtained from
the correspondent tracker the number of seeders and leechers
for each torrent. Then we made a client in our dataset a seeder
with probability equal to the seeder/leecher ratio of its torrent.
Thus although we do not have the exact identities of seeders,
we do match the real seeder/leecher ratios. We validated this
technique against the dataset pb600 and got a minor variation
compared to the ground truth.

2) Traffic matrix computation: In our experiments we are
interested in quantifying the effects of locality biased overlay
construction on a “home” ISP A assuming that other ISPs
operate under Random. In effect we are interested on access
ISPs connecting residential users to the Internet. Such ISPs
care primarily to reduce their transit traffic. Transit ISPs on
the other hand have the exact opposite objective. Additionally,
at this early stage very few (if any) ISPs have adopted P4P-like
strategies. For the above two reasons we leave the study of the
interplay between multiple ISPs with different incentives with
respect to locality to future work. Returning to traffic matrix
computation, we perform it as follows.
(1) Using our measured demand demographics we identify the
set of clients V (T ) for each torrent T ∈ T (A) downloaded
by clients in our home ISP A. We construct Random, LOIF,
Locality, and Strict overlay graphs among the nodes in V (T )
as described in Sect. VI. We select the nodes to be seeders
as described in Sect. VII-A1 and assume that they perform
proportional seeding5 .
(2) We feed each overlay graph resulting from the combination
of the demographics of a torrent T and an overlay construction
algorithm, together with an uplink speed distribution to the
BitTorrent traffic matrix computation methodology detailed in
Sect. V and Appendix B. The outcome is a traffic matrix
indicating the transmission rate between any two nodes v, u ∈
V (T ).
(3) We adopt a simplified version of routing according to which
all traffic between clients of our home ISP and an ISP of the
same country goes over unpaid peering links, whereas traffic
between clients of our home ISP and another ISP in a different
country goes over a paid transit link. This simplified routing
is actually on the conservative side, as it reduces the amount
of traffic going to the transit link and thus also the potential
gains from applying locality.

Repeating steps (1)–(3) for all torrents in T (A) we obtain
the aggregate amount of traffic going to the transit link of A

5 We use proportional seeding because it is the most extended technique.

due to the torrents appearing in our dataset.
3) Performance metrics: We study two performance met-

rics. The first one, transit traffic reduction compared to random
is of interest to the home ISP. It is defined as follows:
( (aggregate transit under Random)-(aggregate transit under
Locality(δ, µ)) ) / (aggregate transit under Random). The
second one, user QoS reduction is of interest to the clients
of the home ISP. It is defined as follows: ( qx(download
rate under Random)-qx(download rate under Locality(δ, µ)) )
/ qx(download rate under Random), where qx denotes the x-
percentile of download rate computed over all nodes of home
ISP. If not otherwise stated we will use the median (x = 0.5).
Note, that file unavailability due to lack of pieces is also
a metric of interest to BitTorrent clients. However different
standard techniques of the BitTorrent protocol (e.g. optimistic
unchoke) take care of this issue that based on experiments
conducted in live swarms seems to not be a limitation of
Locality techniques [34] [7]. Therefore, in this paper we focus
just on the user QoS reduction to evaluate the impact of
Locality solutions on the QoS perceived by users.

B. Comparing overlays
In Table II(a) we present the transit traffic reduction under

various locality policies with respect to Random for the 6
largest ISPs6 (3 from Europe and 3 from US) across our
different datasets using uplink speeds from [2]. In Table II(b)
we present the corresponding impact on user QoS. We will
focus mainly on ISPs EU1 and US1, introduced earlier in
Sect. IV-E.

1) Without bounding the number of inter-ISP links: We
begin with “mild” locality policies that do not enforce con-
straints on the number of remote neighbors. The mildest of all,
LOIF, replaces remote with local nodes in the neighborhood
only if the locals are faster. In the case of US1 this yields
a transit traffic reduction of 32% compared to Random. The
corresponding value for EU1 is 10.5%. US1 is faster than EU1
and performs more switches of remotes for locals under LOIF
and thus gets a higher reduction of transit traffic. Looking at
Table II(b) we see that US1 pays no penalty in terms of QoS
reduction for the end users from LOIF. Actually, the median
value gets a slight speedup indicated by negative values (see
Appendix E-C1 for other percentiles). The situation for EU1
is similar. The preservation of at least the same user QoS is
an inherent characteristic of LOIF which by default leads to a
win-win situation for both ISPs and users. The transit savings
of LOIF can however be small, as in the case of EU1.

We can reduce the transit traffic further by imposing a
less strict switching rule. Locality switches any remote client
with a local one independently of speed. This increases the
savings for US1 to 55.63% compared to Random whereas the
corresponding number for EU1 rises to 39.12%. This is the
highest transit reduction that can be expected without limiting
the number of inter-ISP overlay links. This additional transit
traffic reduction does not impose any QoS penalty on the
customers of US1. EU1 customers on the other hand pay a
small reduction of QoS of 3.33% because they lose some
faster remote neighbors (EU1 is not among the fastest ISPs
according to the country speeds depicted in Fig. 4). Under
Locality win-win is not guaranteed but rather it depends on
speed and demographics. For US1 Locality is again a clear
win-win whereas for EU1 it is almost win-win.

6 We have obtained similar results for other large ISPs.
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(a) Transit traffic reduction
ISP LOIF Locality Strict
M1 7.97% 18.09% 96.82%
M2 12.00% 21.79% 97.23%
S1 9.17% 13.16% 97.22%
S2 14.01% 26.02% 98.20%

(b) Degradation of median QoS
ISP LOIF Locality Strict
M1 -2.14% 0.92% 37.55%
M2 -1.37% 2.99% 31.11%
S1 -0.05% -1.09% 56.45%
S2 -2.56% 2.84% 73.85%

TABLE III
RESULTS FOR ISPS M1,M2 AND S1,S2 ISPS UNDER mn40K AND OOKLA

SPEEDS.

2) Unlocalizable torrents: In the aforementioned results
the transit traffic reduction has its upper bound at around
55%. This happens because the demographics of both US1
and EU1 include a long tail of torrents with very few local
nodes. These torrents are “unlocalizable” in the sense that all
overlay links for them will have to cross the transit link if the
corresponding clients are to be given the standard number of
neighbors according to BitTorrent’s bootstrapping process (40-
50 depending on version). The unlocalizable torrents put rigid
limits on the transit reduction that can be achieved without
enforcing constraints on the number of allowed inter-ISP
overlay links. Interesting, although the unlocalizable torrents
create most of the transit traffic, they are requested by a rather
small percentage of the nodes of an ISP. In US1 90% of transit
traffic under Locality is due to only 10% of the nodes. In EU1
90% of transit traffic is due to 13.44% of nodes.

3) Bounding the number of inter-ISP overlay links: If we
want further transit traffic reductions then we need to control
the unlocalizable torrents by enforcing strict constraints on
the number of inter-ISP overlay links. In the last column of
Table II(a) we depict the performance of Strict that permits
up to 1 inter-ISP overlay link per torrent for a given client.
Indeed in this case the transit traffic reduction is huge (around
96%-97% for both networks). The median user QoS drops by
18.59% in EU1. The situation is much better for US1 where
the median speed drops by around 3%. However, nodes that
are downloading unlocalizable torrents pay a heavy penalty of
almost 99%.

C. Comparing ISPs
Inspecting Table II(a) we see that American ISPs in general

achieve higher transit traffic reduction than European ones,
across all locality biased overlay construction policies. We
attribute this to the fact that Random performs very poorly in
those ISPs because their content is more scattered around the
world (they have smaller Inherent Localizability, Sect. IV-E).
When comparing among American or among European ISPs,
the observed differences correlate mostly with the size of the
ISP. The reason is that in ISPs with approximately the same
Inherent Localizability (e.g., the 3 American ISPs), Random
performs approximately the same, and thus any difference in
transit reduction comes from the performance of Locality or
LOIF. The latter depends on the absolute size of the ISP as a
larger ISP can gather more easily enough local peers to reach
the minimum number required by the bootstrapping process.

To validate our previous observations and enrich our dis-
cussion, Table III shows the transit traffic reduction and the
degradation of median QoS for two ISPs of medium size
(M1 and M2) and two small ISPs7 (S1 and S2). We con-
sider medium size and small ISPs as those having 1 and 2
order of magnitude less peers than the largest studied ISPs,

7 Again, we have repeated the experiment for several medium size and small
ISPs obtaining similar results.

respectively. First, the results confirm that independently of the
size of the ISP, LOIF leads by default to a win-win situation.
Locality shows an almost win-win situation, however under
this policy the transit traffic reduction with respect to Random
is significantly lower for these small ISPs than for the largest
American and European ISPs. This is caused by the presence of
more peers in unlocalizable torrents. In addition, as we have
seen, Strict policy dramatically affects the QoS for peers in
unlocalizable torrents. Therefore, smaller ISPs (hosting a larger
number of peers downloading unlocalizable torrents) present
higher median QoS degradation under Strict policy as shown
by Table III(b).

VIII. VALIDATION ON LIVE TORRENTS

In our study up to now, we have only considered last mile
bottlenecks imposed by access link speeds but no network
bottlenecks due to congestion or ISP traffic engineering, in-
cluding throttling [12]. In addition, although we evaluate the
accuracy of b-matching in a controlled emulation environment
(Appendix B-C), we can obtain further insights by testing our
results in the wild where we can observe additional effects
from delays and losses that are lacking from an emulation
environment that captures only bandwidths. To address such
issues we integrated LOIF, Locality, and Strict(µ) into the
mainline Bittorrent client8 (version 5.2.2). Next we describe
briefly some implementation issues and then move to present
the results of connecting to live torrents with our modified
client.

A. Prototype implementation

Integrating these policies into the existing BitTorrent clients
requires addressing some new requirements. First, we need
to know for every Bittorrent client its ISP and country. For
this, we use the MaxMind geolocation database [1]. Next, we
need to discover the list of local clients in order to be able to
substitute remote ones with local ones. For this, we use the
PEX messages to discover all the participants of the swarm,
and then use the MaxMind database to classify them. Finally,
the last requirement which is specific to LOIF, is to estimate
the speed of the local and remote clients. For this, we monitor
the rate at which the clients send us HAVE messages, which
indicates how fast they download. Finally, notice that the above
method works only for inferring the speed of leechers. For
seeders, we can only infer the speed of those seeders that
unchoke us. Thus in LOIF we do not switch neighbors for
which we do not have speed information.

Next, we briefly describe our implementation of LOIF. Many
implementation decisions are influenced by how the python
mainline Bittorrent client is designed and implemented. Every
40 seconds we perform the following steps:
(1) We classify the active neighbor peers in 3 lists: LISP which
contains all peers that belong to the same ISP as the client,
LPeering which contains all peers that are in ISPs with peering
relationships and LRemote which contains other peers.
(2) For every peer Ri ∈ LRemote, we close the connection if
there exists a peer Lj ∈ LISP with higher estimated download
speed. If such a peer does not exist then we check if there

8 We chose the mainline client because it was one of the most popular (open
source) BitTorrent clients after µTorrent and Vuze. Moreover, µTorrent is not
open source and hacking Vuze is rather complex.
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Fig. 6. Comparision between LOIF and Local

Local Remote Percentage of Seed
Torrent A 521 46 63.2%
Torrent B 351 211 12.5%
Torrent C 3 666 66.4%

TABLE IV
LIVE TORRENT CHARACTERISTICS

exists a peer Cj ∈ LPeering with higher estimated download
speed and in this case again we close the connection.9

(3) For each connection that was closed in the last step, the
algorithm opens a new one, giving preference, first to those
IPs that belong to the same ISP, then to those IPs belonging to
peering ISPs and, finally, to those IPs belonging to other ISPs.

An important detail in our implementation is to always have
a minimum number of neighbors (at least 40). This holds for
LOIF and Locality, but not for Strict. For Strict(µ), we close
connections and do not open new ones, if we have more than
µ remote nodes.

B. Experimental methodology

We ran our modified Bittorrent client from an ADSL con-
nection of ISP EU1. In all the torrents we first warmed up
by downloading 30MB to avoid BitTorrent’s startup phase. In
each run, we re-initialize back to the same 30MB. Next, we
download 50MB with each of the following policies: Random,
LOIF, Locality, and Strict. We repeated each test 5 times, and
reported averages over all runs. During each experiment we
logged the list of IPs and the number of neighbors and used
them later as input to our traffic matrix estimation technique
of Sect. V. This way, we can compare the estimated transit
savings with the real one on live torrents.

C. High, medium, and low localizability torrents

We used our prototype to validate some of our previous
results. Although we cannot scale to the number of torrents
discussed in Sect. VII, we tested torrents at characteristic
points of the demographic spectrum. In particular, we tested a
very popular torrent inside EU1 (Torrent A), an intermediately
popular one (Torrent B), and an unpopular one (Torrent C). In
Table IV we summarize the characteristics of the 3 torrents.
In Fig. 6 we present the transit traffic savings as predicted by
our traffic matrix estimation method and as measured on the
live torrent under LOIF and Locality. We do not present results
under Strict as they were always in perfect agreement.

Overall we see that the results under Locality are pretty
consistent – estimation and measurement are within 10-20% of

9 The assumption is that nodes in the same country communicate over
peering links. In our implementation we do not infer ISP relationships but
we can do so with iPlane Nano [24].

each other. In terms of absolute values things are as expected:
in cases A and B there are enough local nodes to eliminate al-
most all transit traffic whereas in C there is 0 saving as there do
not exist any local nodes to switch to. The difference between
the 100% savings predicted by b-matching in A and B and
the ones measured in practice has to do with implementation
restrictions. As mentioned earlier, we update the overlay every
40 sec (which is equal to 4 unchoke intervals). During that
time new incoming remote connections are accepted and can
lead to unchokes that create transit traffic and thus eat away
from the 100% saving expected upon overlay update instants
when all remote connections are switched with local ones.

Under LOIF, the deviation between estimation and measure-
ment is substantial: the measured transit saving is twice as big
as the estimated one. To interpret this, we looked at the number
of switches of remote nodes for local ones that LOIF performed
in practice and realized that they were much more than we
would predict. This in effect means that the real LOIF found the
remote nodes to be slower than what expected from our speed
dataset from Ookla [2]. We attribute this to several reasons.
On the one hand, Ookla provides access speeds, however the
actual bandwidth that a client dedicates to download a torrent
is likely to be lower than its access speed. For instance, the user
can be using other applications at the same time, she can be
downloading more than one torrent in parallel thus splitting the
bandwidth among them or simply she can limit the maximum
bandwidth dedicated to Bittorrent. On the other hand, network
bottlenecks or throttling at the inter-ISP links, in the origin
ISP or the ISPs that host the remote nodes, reduce the actual
bandwidth of clients in BitTorrent swarms. Although certainly
interesting, identifying exactly why the remote nodes appear
slower than expected is beyond the scope of the current work.
See [12] for more.

IX. RELATED WORK

A. Early work on locality-biasing
One of the early works on locality-biased overlay con-

struction was Karagiannis et al. [19]. Using traces from a
campus network as well as a six-month-long logfile from a
popular torrent, they showed that there is substantial overlap
in the torrents downloaded by co-located clients. Another early
work from Bindal et al. [4], studied the effect of limiting
the number of inter-AS connections using simulations with
synthetic demand. Aggarwal et al. [3] studied the effects of
locality biasing on the Gnutella overlay. Apart from studying a
different P2P system, they differ from our work by focusing on
the overlay graph theoretic properties whereas we care about
the traffic matrix.

B. Recent systems for locality-biasing
Following up on positive results on the potential of locality-

biasing, a number of actual systems like P4P [34] and ONO [7]
have appeared recently for the BitTorrent P2P protocol. The
previous works focus on architectural and systems questions
regarding “how” to implement locality-biasing, and in par-
ticular whether the goal can be achieved through unilateral
client-only solutions, or bilateral cooperation is essential for
making locality work for both ISPs and users. In terms of
reported results, [34] presents a variety of use cases for P4P
over different networks and P2P applications like Pando and
Liveswarms. In all cases however, results are based on one



10

or a few swarms and thus do not capture the aggregate
effects created by tens of thousands of concurrent swarms
with radically different demographics. The results reported
in [7] on the other hand, are indeed from multiple torrents and
networks, but they only report on the final outcome from using
the ONO system without explaining how the demographics of
the torrents and the speeds of the ISPs affect these outcomes.
The main driving force behind our work is to explain “when”
locality works and “why” when it does so and thus help in
interpreting the results from systems like P4P and ONO or
others to come in the future. Locality biasing has also been
applied to P2P streaming systems [29].

C. BitTorrent measurements
A substantial amount of work has gone into BitTorrent

measurements [18], [16], [30], [26]. These works go beyond
locality to characterize things like the arrival pattern of new
nodes, the seeding duration, the seeder/leecher ratios, etc.
Our work apart from performing large scale measurements
develops scalable methodologies that permit distilling non-
trivial conclusions regarding the interplay of demographics,
speed, and overlay construction. Relevant to our work is the
recent work of Piatek et al. [28]. It discusses the potential
for win-win outcomes for ISPs and users but puts most of
its emphasis on implementation issues and the consequences
of strategically behaving ISPs. Our work, on the other hand,
is of performance evaluation nature and aims at pushing the
envelope in terms of both the scalability and the fidelity of
our evaluation methodology. Our dataset is large; we compute
transit reduction from our 40K torrents whereas they use only
1000 torrents out of their 20K dataset. In terms of methodology,
we capture the effect of stratification from choke/unchoke
whereas [28] assumes cooperative clients and does not model
the effect of speed. The only measurement work on BitTorrent
traffic matrix estimation that we are aware of is due to Chang
et al. [6]. It is based on a gravity model driven by the
total number of peers per ISP. Thus it does not consider
demographics, speed, seeder/leacher information nor it can
be used for estimating the traffic from arbitrary non-random
overlay construction policies.

In conclusion, the combination of the dataset that best
approximate a real snapshot of a large number of BitTorrent
swarms and an accurate and scalable methodology for the
prediction of BitTorrent traffic matrices allows us to estimate
tight bounds for the Transit Traffic reduction produced by
different Locality policies.

X. CONCLUSIONS

In this paper we collected extensive measurements of
real BitTorrent demand demographics and developed scalable
methodologies for computing their resulting traffic matrix.
Based on this we quantified the impacts of different locality-
biasing overlay construction algorithms on ISPs and end-users.
By studying real ISPs, we have shown that a large fraction
of (very small) ISPs do not have enough resources to localize
traffic. However, locality yields win-win situations for medium
size and large ISPs. The win-win profile is bounded by “unlo-
calizable” torrents that have few local neighbors. Handling the
unlocalizable torrents requires limiting the number of allowed
inter-ISP overlay connections. This has a small impact on
the average user but a dire one on the users of unlocalizable
torrents.
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Symbol Description
W number of neighbors for a peer
T refers to a specific torrent
A refers to a specific ISP
T the set of all torrents in a dataset
A the set of all ISPs with at lest one client in a dataset

N(v, T ) number of node v neighbors in torrent T
V(T) the set of BitTorrent nodes participating in torrent T

V(A,T) the set of BitTorrent nodes from A participating in torrent T
T(A) the set of torrents requested by clients of ISP A
A(T) the set of ISPs that have at least 1 client in torrent T
c(v) number of chunks already downloaded by node v out of the total C chunks that make up a complete file
U(v) node v upload rate
ν maximum number of allowed remote (inter-ISP) neighbors under a given Locality policy
δ defines the required ratio between the upload bandwidth of a local and a remote in order to perform a switch under a given Locality policy

TABLE V
SUMMARY OF MOST IMPORTANT SYMBOLS USED IN THE PAPER

APPENDIX A
SUMMARY OF SYMBOLS

Table V presents a summary of the most important symbols
used throughout the paper and the supplemental material along
with a short description for each of them.

APPENDIX B
MODELLING BITTORRENT TRAFFIC MATRICES

A. Modeling regular unchokes with a b-matching
The input to a b-matching problem consists of a set of nodes

V , and functions n : V → 2V , b : V → Z+, and p : V 2 → R+

defined as follows: n(v) defines the set of nodes to which v
can be matched with (matching is symmetric here, and thus
u ∈ n(v) iff v ∈ n(u)); b(v) defines the number of parallel
matchings that v is allowed to establish; p(v, u) is a measure
of the preference that v has for becoming stably matched to
u. A solution to a b-matching is a set M of matchings (edges)
between pairs of nodes in V , such that for each matched pair
(v, u) ∈ M , the matching and capacity constraints n, b are
satisfied and further, there exists no “blocking pair” (v′, u′) ∈
M , i.e., no pair that satisfies: p(v, v′) > p(v, u) and p(v′, v) >
p(v′, u′).

It is easy to see that there exists a direct mapping from
BitTorrent to b-matching [15]. Looking at a particular node
v and torrent T : the neighborhood N(v, T ) can be mapped to
the allowed matchings n(v); the number of parallel unchokes k
(default value for k being 4) at each 10 sec interval corresponds
to b(v), the number of matchings allowed for v; the uplink
capacity U(v) of a BitTorrent client v can be used as a
measure of the preference p(u, v) that each node u 6= v
would have for being matched with v in the context of a b-
matching. b-matchings in which the preference for a node is
the same independently of who is considering, i.e., for given u,
p(v, u) = p(v′, u), ∀v, v′, are said to have a global preference
function. Tan [32] has shown that the existence of a stable
solution for the b-matching problem relates to the non-existence
of circles in the preference function p, which is a condition
that is certainly satisfied under a global preference function
like U(v). Therefore, for the aforementioned mapping from
BitTorrent to b-matching, one can use a simple O(|V (T )| · k)
greedy algorithm to find the unique stable matching that exists
in this case [15].10

10 Uniqueness is guaranteed under the assumption that there are not ties in
speeds. We made sure that his is the case by adding to our speed datasets a
very small random noise.

B. Completion level aware b-matching
In this subsection we extend the basic matching algorithm

presented above to allow it to also capture the completion level
of a node, i.e., the percentage of a file of total size C that it
holds.

1) Edge filtering: Let c(v) denote the number of chunks
already downloaded by node v out of the total C chunks that
make up a complete file. For a pair of neighbors (v, u) with
c(v) ≥ c(u) let I(v → u), c(v) − c(u) ≤ I(v → u) ≤ c(v)
denote the number of chunks of v that “are of interest” to u,
i.e., chunks that v has downloaded but u has not. It is easy to
see that I(u → v) = c(u) − c(v) + I(v → u), 0 ≤ I(u →
v) ≤ c(u). If we assume that the chunks held at some point in
time by a node are a random subset of the entire set of chunks,
which is reasonable granted LRF [8], then it follows that:

pvu(x) = P{I(v → u) = x, I(u→ v) = c(u)− c(v) + x}
= HyperGeo(c(u)− x, c(v), C, c(u))

(3)
where HyperGeo(d, p, s, ss) denotes a hyper geometric
pmf [14] giving the probability of drawing d “successes” with
a sample of size ss from a pool of p items, of which s are
“successes”. Then the expected amount of interest in the two
directions is:

E{I(v → u)} =
c(v)∑

x=c(v)−c(u)

x · pvu(x)

E{I(u→ v)} =
c(v)∑

x=c(v)−c(u)

(c(u)− c(v) + x) · pvu(x)

(4)
For pair (v, u) we define its filtering probability to be:

φ(v, u) = min
(

E{I(v → u)}
T · U(v) · (σ · k)−1

,
E{I(u→ v)}

T · U(u) · (σ · k)−1
, 1
)

(5)
where σ is the size of a chunk and T is the duration of an
unchoke interval. Given an instance of a b-matching problem
〈V, n, b, p〉 we filter it to obtain a new one 〈V, n′, b, p〉 in which
we keep an edge (v, u), meaning that v ∈ n(u), u ∈ n(v) and
v ∈ n′(u), u ∈ n′(v), with probability φ(v, u), whereas we
drop it with probability 1− φ(v, u).

2) Time-evolving completion ratios: Let ct(v) be the com-
pletion ratio of node v at time t and let Mt be the stable
matching obtained from solving the b-matching 〈V, n′, b, p〉 in
which n′ is obtained from n after applying the filtering proce-
dure described above with completion ratios {ct(v) : v ∈ V }.
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Fig. 7. Aggregate system capacity from baseline b-matching and b-matching
with completion levels. Parameters: |V | = 40, uplink rates randomly dis-
tributed with mean 2 Mbit/s, C = 10000, c0(v) < 1%, ∀v, unchoke
duration=10 sec, chunk size=32 kBytes. The more complex version converges
within a minute to the steady-state value predicted by the baseline b-matching.
Download completion requires around 30 mins.

Then the completion ratios of nodes can be updated at the end
of the unchoke interval as follows:

ct+T (v) = ct(v) +
∑

u:(v,u)∈Mt

min
(
E{I(u→ v)}, T · U(u)

σ · k

)
(6)

Thus with the above we have a method for mapping the effects
of completion levels on the state of a torrent and consequently
on the resulting matchings.

C. Validation of modeling

In this section we validate the accuracy of modeling the
unchoke algorithm using a b-matching. We look at the two
typical phases of a torrent’s lifetime [30].

1) Startup phase: During the initial phase of a new torrent
leechers hold few chunks and thus whether two nodes unchoke
each other depends, beyond their speeds, on the set of chunks
they hold. The b-matching modeling of unchoke described
in Appendix B-A assumes that steady-state has been reached
and thus chunk (in)availability does not affect the resulting
matchings. In Appendix B-B we have extended this basic
matching algorithm to allow it to also capture the completion
level c(v) of a node. We have used this completion-level
aware b-matching in conjunction with small initial completion
levels c(v) < 1% for all leechers to estimate the effect chunk
availability has on the aggregate capacity of a torrent. BitTor-
rent’s LRF chunk selection strategy is used for expediting the
convergence to steady state. We verified this by comparing
our two implementations of b-matching. In Fig. 7 we give an
indicative example to show that for everything but very small
files, the startup phase is much shorter than steady state. For
this reason we can ignore it at small cost in terms of accuracy
and focus on the baseline b-matching that is more scalable
to large datasets than the more complicated one involving
completion levels.

2) Steady state: Next we validate the extent at which
the steady state matchings predicted by b-matching resemble
the unchoking behavior of an actual mainline client of BT
(v.3.4.2). More specifically, we set-up a carefully built torrent
with 40 clients11 , the slowest of which, was given an uplink
capacity of 80 kbit/s, whereas successive ones were made

11 Note that around 80% of the torrents in our mn40K dataset have ≤ 40
peers.
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Fig. 8. Unchoking Patterns

increasingly faster using a step of 24 kbit/s. We chose such
a small increment to recreate a rather difficult environment
for stratification [21] to arise. For each client, we measured
the frequency at which the client unchokes each other client,
and then we put a mark on Fig. 8(b) for the k clients that it
unchokes more frequently (client ids on the figure are assigned
according to upload bandwidth in increasing order). Comparing
with Fig. 8(a) that depicts the same information from the
execution of b-matching under the same uplink capacities, it
is easy to see that b-matching provides a reasonable prediction
of the real unchokes that take place and therefore can be used
as a scalable tool for processing huge numbers of small and
large torrents12 that would otherwise be impossible to simulate
concurrently. We got similar accuracy using many other torrent
sizes and uplink distributions, including empirical ones from
measurement.

APPENDIX C
A FAMILY OF LOCALITY-BIASED OVERLAYS

In this appendix we present an extended family of overlay
construction algorithms that we refer to as Locality(δ, µ). Its
operation is as follows. It starts with a neighborhood N(v, T )
of max(W, |V (T )|−1) randomly selected neighbors which are
then filtered based on speed comparisons against the set of local
nodes V (A, T )\{v}. These comparisons are modulated by the
parameters δ, µ as follows. Parameter µ controls the maximum
number of allowed remote (inter-ISP) neighbors in N(v, T ). If
the number of remote nodes in N(v, T ) is greater than µ then
a remote node u is substituted by a local w that is not already
in the neighborhood until the number of remotes reaches µ.
If there are no more local nodes for performing switches then
u is taken out of the neighborhood. If the number of remotes
in N(v, T ) is already below µ, then u is substituted by a not
already taken local node w only if 1− U(w)

U(u) < δ.
The overlay construction algorithms defined in Section VI

are members of this family with the values of δ and µ detailed
in Table VI.

Overlay δ µ
LOIF 0 min(W, |V (T )| − 1)

Locality 1 min(W, |V (T )| − 1)
Strict 1 1

TABLE VI
δ AND µ VALUES FOR LOIF, LOCALITY AND STRICT OVERLAY

CONSTRUCTION ALGORITHMS.

12 As a reference, in this paper we use this methodology to process more
than 40k different torrents across our different datasets.
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Number of Samples Percentage of countries
0 - 355 16.7%

356 - 1302 16.7%
1303 - 4595 16.7%
4596 - 18866 16.7%

18867 - 119689 16.7%
119690 - 5706752 16.7%

TABLE VII
DISTRIBUTION OF NUMBER OF SAMPLES (INDIVIDUAL USERS) PER

COUNTRY FOR OOAKLA SPEED DATASET
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Fig. 9. Distribution of number of samples (/24 prefixes) per ISP and Country
for iPlane dataset

APPENDIX D
FURTHER CONSIDERATIONS AND LIMITATIONS OF

DATASETS

In this appendix we present a detailed discussion on some
limitations of the used datasets. We separately discuss our
speed and demographic datasets.

A. Speed Datasets
1) Representativeness of speeds datasets: We first character-

ize the representativeness of our two speed datasets, Ookla [2]
and iPlane [25]:
• Ookla provides (as described in Section IV) the median

upload and download speed for users located in 215
different countries obtained from a speed test service.
Table VII summarizes the coverage of the dataset for
different countries as reported in [2]. Just 16.7% of the
countries present less than 350 samples.

• iPlane provides the access speed for around 87k /24 IP
prefixes. Specifically, it offers the median access speed
for each one of these prefixes. Unfortunately, the number
of samples used to calculate that median value is not re-
ported. iPlane speed dataset covers just 3248 ISPs (around
30%) and 149 countries from our mn40k dataset. Fig. 9
presents the distribution of the number /24 IP prefixes
covered by iPlane for each country and ISP within our
dataset. We observe that iPlane provides information for
≤ 10 /24 prefixes for 50% and 80% of countries and ISPs
within mn40k, respectively.

Although iPlane offers a significantly higher granularity than
Oakla, it provides a rather low coverage for some countries
and ISPs that may lead to a lack of the required statistical
representativeness in those cases. Hence, in this paper we have
used Ookla as our main dataset and have leaved iPlane for
validation purposes.

2) Effect of speed limitations imposed by users: It is well-
known that some users enforce constrains in the speed of
their BitTorrent software, for instance to avoid performance
degradation of other applications. However, characterizing or
modeling this phenomenon is a complex task that to the best
of the authors’ knowledge has not been addressed so far.
Therefore, it is uncertain the fraction of users that use these
techniques and the speed limitations that they impose.

In any case, the analysis conducted in the paper allows
to discuss the expected results if user-enforced rate limiting
would be an extended practice. In that case, the actual speed
distribution for different ISPs would follow a step function in
which the access speed of most users would be concentrated
in few common steps (256KB, 512KB, 1MB, etc). This would
produce a densification of the speed spectrum in those common
speeds. Our analyses of the bounds in the number of local
unchokes and the Inherent Localizability in Sec. IV suggest
that this densification would lead Random and Locality to
perform worse than what we observed in the results presented
in the paper. However, the degradation in the performance of
the Random overlay construction policy would be higher than
for Locality polices and then, the relative gain obtained by
Locality overlay construction algorithms would be higher than
the one reported in the paper.

B. Demographic Datasets

The demographic datasets used along the paper were col-
lected in 2009 from the two most popular portals at the time
of the measurement study, namely Mininova and The Pirate
Bay. In this subsection we discuss the implications that using
a relatively old dataset may have in the obtained results.

1) Portals’ Popularity: One of the portals that we use in our
study, The Pirate Bay, has kept (and even increased) its pop-
ularity since our data collection campaign and is currently the
most popular BitTorrent portal. However, Mininova removed
all the copyrighted material after a court sentence at the end of
2009 and its popularity rapidly decreased. Hence, the fact that
the main portal used in our analysis is not popular anymore
might impact the obtained results.

Portals are just entities where torrent files are indexed and
typically there is an important overlapping between content in-
dexed across major portals [36]. This overlapping is especially
high for popular and mid-popular torrents which host a major
fraction of users. This suggests that, as far as the portal used
to collect torrent files is popular, the set of torrents that we
would use as input to our experiments is going to be similar
and then the impact of the specific used portal is limited.

2) BitTorrent’s demographics: The demographics of Bit-
Torrent swarms may have evolved since our data collection
campaign impacting the results presented in the paper. For in-
stance, BitTorrent popularity may have significantly decreased
making locality techniques less necessary or the popularity of
BitTorrent across different ISPs may have changed leading to
a substantial variation in the potential transit traffic savings for
those ISPs. Next we present an elaborated discussion on the
evolution of the demographics of BitTorrent based on real data
collected between 2010 and 2012 in different works [9], [27],
[13].

Overall BitTorrent popularity: A recent study conducted
by J. Otto et al.[27] shows that the overall BitTorrent traffic
has slightly increased in the last years. Furthermore, to the
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(a) Countries
mn40k 2010 2011 2012

1 1 1 1
2 4 3 2
3 7 4 4
4 2 11 10
5 9 13 12
6 14 9 7
7 3 10 11
8 6 6 18
9 5 2 3

10 8 8 9
11 12 5 5
12 16 24 23
13 19 15 15
14 13 20 21
15 18 21 24
16 10 7 6
17 22 28 28
18 28 19 19
19 20 22 22
20 39 18 26
21 17 27 20
22 41 14 8
23 15 17 16
24 11 12 14
25 24 29 33

(b) ISPs
mn40k 2010 2011 2012

1 3 1 1
2 6 3 3
3 2 17 14
4 5 4 5
5 18 10 10
6 20 9 9
7 15 6 6
8 563 149 78
9 7 23 25

10 26 34 26
11 16 7 7
12 1 13 16
13 4 2 2
14 46 39 34
15 44 11 13
16 566 1756 2090
17 32 16 12
18 29 38 35
19 23 27 61
20 105 120 129
21 45 22 19
22 33 36 38
23 41 52 47
24 11 14 20
26 50 41 41

TABLE VIII
RANK OF THE TOP 25 ISPS AND COUNTRIES WITH THE LARGEST NUMBER
OF USERS IN mn40k IN OUR DATASETS FROM MAY 2010, NOV. 2011 AND

JAN 2012

best of the authors knowledge no ISP has implemented yet
Locality techniques, thus, nowadays BitTorrent swarms are
random overlays. In summary, because BitTorrent traffic is still
very significant and swarms are formed following a Random
overlay construction policy, Locality techniques are necessary
and the results presented in this paper still useful.

Evolution of BitTorrent Popularity across Countries and
ISPs: In separate works [13], [9] we have collected datasets
that include snapshots of tens of thousands BitTorrent swarms.
These datasets were collected in May 2010, Nov. 2011 and Jan.
2012. Although those datasets are different in nature from the
ones presented in this paper (i.e., in those studies our objective
was collecting data from thousand of BitTorrent swarms over
a period of few weeks rather than a snapshot over a couple
of hours) they are still valid to estimate the demographics of
BitTorrent across countries and ISPs.

Table VIII shows the rank of the Top 25 countries and ISPs
in number of users from mn40k in our more recent datasets
from May 2010, Nov. 2011 and Jan. 2012, respectively13 .
First, we observe that 22 countries remain in the Top 25
across all the datasets, although we observe some variations
in the position of individual countries. As expected, at the ISP
level we observe a higher variability: 13 ISPs stay in the Top
25 across all datasets whereas other 9 lose some popularity
but remain in the Top 50. Just 3 ISPs suffer from a major
change in their demographics that leads to a significant drop
in their ranks. These results suggest that although there have
been modifications in the popularity of ISPs and countries that
may affect their ability to localize traffic, these variations are
(in general) moderate and thus the impact on the presented
results is expected to be equally moderate. Note that results
are likely to vary significantly for those few ISPs that present
an important change in their popularity.

13 Note that similar results have been obtained for the Top 50 countries and
Top 100 ISPs. We limit the discussion to the Top 25 for the shake of clarity.
Moreover, we anonymize the ISPs identity and just refer to their rankings.
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Fig. 10. Speed agnostic bounds for Top-100 ISPs in our pb600 dataset.

In summary, the results presented in the paper are likely to
be a good approximation in the current Internet. However, we
acknowledge that some deviation, proportional to the variation
in the popularity of BitTorrent in different countries and ISPs,
may exist.

APPENDIX E
ADDITIONAL PERFORMANCE ANALYSIS RESULTS

In this Appendix we present additional results obtained with
the different methodologies described in the paper, namely
speed agnostic bounds (Section IV-C), Inherent Localizability
(Section IV-E) and BitTorrent traffic matrices accurate estima-
tion (Section VII).

A. Additional Results for Speed Agnostic Bounds
1) Locality gains in Dense vs Sparse mode: Overall Ran-

dom localizes sufficiently in sparse mode as long as it can get
a small number of local nodes in each neighborhood. In dense
mode things become more challenging as it no longer suffices
to guarantee a small threshold of locals but instead Random
has to have a strong majority of locals in each neighborhood.
In both modes, Locality has to satisfy easier conditions to
localize the same number of unchokes. Further, we can actually
prove that the improvement factor of Locality over Random in
terms of the number of localized unchokes is higher in dense
mode than in sparse mode. We consider only the case with
|V (A, T )| − 1 ≥ k and |V (T )| − 1 ≥ W (the other ones can
be worked out similarly). Based on the previous analysis we
get that the expected improvement factor in sparse mode is:

k

W · |V (A,T )|−1
|V (T )|−1

(7)

In dense mode for |V (A, T )|−1 ≥W the improvement factor
is:

k

k · |V (A,T )|−1
|V (T )|−1

which is greater than Eq. (7) because W > k. For |V (A, T )|−
1 < W the improvement factor is:

k · |V (A,T )|−1
W

k · |V (A,T )|−1
|V (T )|−1

=
|V (T )| − 1

W

which can be checked to be greater than Eq. (7) for the case
with |V (A, T )| − 1 ≥ k.
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Fig. 11. The inherent localizability of 3 European ISPs based on their 10
most popular local torrents and the 10 most popular torrents across the entire
dataset.

2) Speed agnostic bounds for big torrents: In Fig. 10 we
recompute the upper and lower bounds for localized unchokes
for Random and Locality for the top-100 ISPs based on the
pb600 dataset. In this case, the upper bound of Random is
lower (6.46%) because nodes from the same ISP become an
even smaller minority in very large torrents. On the other hand,
Locality benefits in terms of both upper and lower bounds.
This happens because the bounds for Locality, unlike Random,
depend on the absolute rather than the relative number of local
nodes, which increases with larger torrents.

B. Analyzing the effect of speed and demographics in local
and global torrents using the Inherent Localizability

It seems very difficult to devise simple rules of thumb for
predicting how Iq(A) will change with U(A) without using de-
tailed demographic and speed information as we did in Section
IV-E. The complication owes to the torrent mix of each ISP,
which includes both global and local torrents. Global torrents
are those very popular torrents consumed by users around
the world. Global torrents are omnipresent in the entire speed
range, but as the country speed cdf sparsifies at higher ranges
(Fig. 4), fewer of them will be encountered as remote neighbors
when an ISP upgrades to such speeds. This leads to more
internal unchokes of global torrents, effectively making the
inherent localizibility of global torrents a monotonic function
of speed.

Local torrents exist at specific ISPs and speed ranges and
thus their behavior during speed upgrades is more difficult to
predict. For example, an ISP at a French speaking African
country will see its unchokes to and from remote ISPs increas-
ing if it upgrades its residential accesses to speeds that bring
it near the offered speeds in France, Belgium, and Canada. If
it upgrades to even faster speeds though, its remote unchokes
will fall because its local users would rather unchoke each other
than peers in other countries. In Fig. 5 the localizability of US1
fell at around 1Mbit/s because it entered the region of many
other US ISPs and thus started exchanging unchokes with them
for content that although in English, is local to US (local TV,
music, etc.). In Fig. 11 we compute the inherent localizability
of the 10 most popular local torrents in 3 European countries
and the corresponding 10 most popular across the entire

ISP Prct 5 Prct 25 Prct 50 Prct 75 Prct 95
US1 (LOIF) -3.98% -7.93% -6.71% -5.61% -5.87%
EU1 (LOIF) 1.53% -2.01% -1.47% -2.51% -2.50

US1 (Locality) -2.45% -3.38% -1.32% 1.20% 3.46%
EU1 (Locality) 3.83% 6.36% 3.33% 2.72% 6.69%

US1 (Strict) 24.87% -1.74% 2.88% 6.81% 16.81%
EU1 (Strict) 76.73% 16.07% 18.59% 18.00% 29.04%

TABLE IX
QOS DEGRADATION UNDER mn40K AND OOKLA SPEEDS.

ISP LOIF Locality Strict
US1 34.03% 77.86% 99.10%
US2 30.56% 69.20% 98.73%
US3 37.11% 78.70% 99.27%
EU1 15.25% 72.80% 99.35%
EU2 21.22% 72.26% 99.18%
EU3 26.57% 71.92% 99.05%

TABLE X
TRANSIT TRAFFIC REDUCTION UNDER pb600 AND OOKLA SPEEDS

dataset14 . The global torrents change monotonically whereas
local ones do not.

C. Additional results on Transit Traffic Reduction and Users
QoS Degradation

1) Additional details on degradation of QoS under mn40k
and Ookla speeds: In Table II(b) we reported the degradation
of QoS in terms of median download rate under the different
policies for the six largest ISPs. In this Appendix, we focus on
the two largest ones, US1 and EU1, and we compare the QoS
degradation in terms of additional percentiles (5%, 25%, 50%,
75%, 95%). Looking at Table IX we see that the reduction
in terms of median is not much different than the reduction in
terms of all other, but the two extreme, percentiles. The biggest
difference is observed under Strict and is due to the heavy
penalty paid by users downloading unlocalizable torrents, as
explained in Sect. VII-B2. Notice that all observed differences
are due to speed differences between ISPs. Differences between
access speed within the same ISP do not play a role here
because under Ookla all clients of an ISP are assigned their
country speed.

2) Stability of results across demographic datasets: In Ta-
ble X we recompute the transit traffic savings compared to
Random based on the dataset pb600 of the 600 most popular
torrents of PirateBay and Ookla speeds. In this case the savings
are even higher. There are two reasons for this. First, Locality
and LOIF have more internal nodes to use. Second, Random
is impacted negatively because despite the increase in absolute
number of locals, their relative percentage compared to the
entire population shrinks.

3) Stability of results across speed datasets: In this Ap-
pendix we analyze the transit traffic reduction and the degra-
dation of the median QoS for our 6 major ISPs under mn40K
and iPlane speeds [25] . Table XI shows the obtained results.

First, we observe that the overall trends are aligned with
those obtained with Ookla speeds (See Table II): (i) the more
strict the locality policy is the higher the transit traffic reduction
is at the cost of a higher median QoS degradation; (ii) LOIF

14 The results for EU2 and EU3 for the 10 most popular torrents across the
entire datasets are similar to EU1, thus, for the shake of clarity, the figure only
presents the results for EU1.
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(a) Transit Traffic Reduction under
ISP LOIF Locality Strict
US1 16.14% 52.12% 96.63%
US2 8.77% 46.73% 95.68%
US3 9.18% 39.55% 94.66%
EU1 3.94% 43.89% 94.92%
EU2 5.68% 50.89% 94.69%
EU3 12.68% 41.63% 95.62%

(b) Degradation of median QoS
ISP LOIF Locality Strict
US1 -0.23% 30.29% 50.13%
US2 -0.15% 38.69% 59.18%
US3 -0.13% 42.34% 64.39%
EU1 -5.45% 23.61% 45.25%
EU2 -0.02% 29.08% 51.22%
EU3 -4.94% 16.56% 29.41%

TABLE XI
RESULTS FOR ISPS EU1-EU3, US1-US3, FOR mn40k AND IPLANE

SPEEDS.

is by definition a win-win policy; (iii) the Transit Traffic
reduction for Locality and Strict is perfectly aligned for both
speed datasets.

However, there are also some notable differences. On the one
hand, LOIF offers higher transit traffic reduction under Ookla
speeds. On the other and, Locality and Strict present higher
median QoS degradation under iPlane speeds. The reason for
these discrepancies is the following: In Fig. 4 we computed
the CDF of the median speed for the different ISPs within
our mn40k dataset under Ookla and iPlane. Furthermore,
we annotated the median speeds associated to the 6 major
ISPs under study. We see that all these ISPs are located in
a lower percentile of the distribution for the iPlane curve.
Then, for LOIF the clients within these ISPs would perform a
lower number of switches because under iPlane remote nodes
are typically faster than local nodes. This leads to reduce
the observed transit traffic saving, but does not affect to the
users QoS because they do not lose fast peers. In the case
of Locality and Strict, switches between remote and local
peers are performed regardless of their speed, then transit
traffic reduction is similar regardless of the used speed dataset.
However, these switches are more harmful for users QoS under
iPlane speeds where remote nodes are typically faster than local
ones.

4) Stability of results across time: Next we evaluate the
effect of time on our obtained transit savings. We look at hourly
and weekly time scales.

a) Hours: Torrent membership is dynamic and thus if
examined at different hours of the day a torrent will have
different participants. In this section we evaluate the impact of
dynamic membership on our results. We do so using pb600.
As we can crawl this dataset in less than an hour, we performed
24 crawls of it across the different hours of a day. In Fig. 12 we
plot the resulting transit savings for ISP US1 at different hours.
One can see that dynamic membership has a very small impact
on the calculated transit savings. As pb600 is biased towards
large torrents, we wanted to evaluate also a less biased dataset
and for this purpose we used mn3K. Again, Fig. 12 shows that
our computations are quite stable.

The depicted stability should not come as a surprise. First,
transit traffic reduction is a relative metric so it is less sensitive
to diurnal variations of torrent population than, e.g., the abso-
lute amount of transit traffic. Second, the aggregation effect
from multiple independent torrents naturally smooths out any
variability at specific hours.

b) Weeks: Next we recompute the transit savings for all
6 ISPs on different days. We do so by using 3 snapshots
of mn40K taken from 3 consecutive weeks. In each case the
dataset contains the 40K latest Mininova torrents and thus apart
from membership differences on the same torrent, the snapshots
also differ in terms of included torrents: the second one, e.g.,
contains the new torrents of the latest week, which are not
included in the previous one. The transit savings differ by less
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Fig. 12. Transit traffic reduction for US1 during different times of a day
under Ookla speeds.

than 7% in all cases.
In summary, the experiments conducted in this subsection

lead to the following conclusions: First, our methodology is
robust because it provide meaningful results for all the con-
sidered demographic and speed datasets. Second, the obtained
results are stable, and thus valid, across time. Finally, the use
of different speed datasets leads to different quantitative results
but the main observed trends remain the same.




