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EXISTENCE OF SOLUTIONS FOR A SYSTEM OF COUPLED

NONLINEAR STATIONARY BI-HARMONIC SCHRÖDINGER EQUATIONS

P. ÁLVAREZ-CAUDEVILLA, E. COLORADO, AND V. A. GALAKTIONOV

Abstract. We obtain existence and multiplicity results for the solutions of a class of coupled

semilinear bi-harmonic Schrödinger equations. Actually, using the classical Mountain Pass

Theorem and minimization techniques, we prove the existence of critical points of the associated

functional constrained on the Nehari manifold.

Furthermore, we show that using the so-called fibering method and the Lusternik-Schnirel’man

theory there exist infinitely many solutions, actually a countable family of critical points, for

such a semiliner bi-hamonic Schrödinger system under study in this work.
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1. Introduction

This work is devoted to the analysis of solutions that solve the following coupled nonlinear
stationary bi-harmonic Schrödinger system (BNLSS)

(1.1)

{
∆2u1 + λ1u1 = µ1u

2σ+1
1 + β|u1|σ−1u1|u2|σ+1

∆2u2 + λ2u2 = µ2u
2σ+1
2 + β|u1|σ+1|u2|σ−1u2

where λj, µj > 0, uj ∈ W 2,2(RN ) with j = 1, 2, β denotes a real parameter and x ∈ R
N , with

N = 2, 3 (for physical purposes).
To simplify the computations in this work we assume σ = 1, hence we will study the system

(1.2)

{
∆2u1 + λ1u1 = µ1u

3
1 + βu2

2u1

∆2u2 + λ2u2 = µ2u
3
2 + βu2

1u2

which has been analyzed in the context of stability of solitons in magnetic materials when
effective quasi-particle mass becomes infinite. Moreover, note that system (1.2) appears after
assuming the bi-harmonic nonlinear Schrödinger equation (BNLSE) of the form

(1.3) iWt − ∆2W + β|W |2σW = 0,

where i denotes the imaginary unit. Then, if W is the sum of two right and left-hand polarized
waves a1W1 and a2W2, where a1, a2 ∈ R, the preceding equation (1.3) provides us with the
following coupled nonlinear bi-harmonic Schrödinger system

(1.4)

{
iW1,t − ∆2W1 + |a1W1 + a2W2|2σW1 = 0

iW2,t − ∆2W2 + |a1W1 + a2W2|2σW2 = 0
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where Wj,t =
∂Wj

∂t , j = 1, 2. For this problem we look for standing waves or finite-energy
waveguide solutions of the form

Wj(t, x) = eiλjtuj(x), j = 1, 2,

where λj > 0 and ui are real value functions, which solve the system (1.2). Rearranging terms
in (1.4) one can easily see that uj solve the stationary system (1.2).

Problem (1.2) is the bi-harmonic version of a similar one studied, among others, in [2, 3, 21,
18, 28] where a non-linear system of coupled nonlinear Schrödinger equations (NLSE) of the
form

(1.5)

{
−∆u1 + λ1u1 = µ1u

3
1 + βu2

2u1

−∆u2 + λ2u2 = µ2u
3
2 + βu2

1u2

with direct applications to nonlinear optics, Bose-Einstein condensates, etc, was considered. See
also [4] where a linearly coupled system was considered and note that in [11] system (1.5) was
studied in the one-dimensional case dealing with the fractional Schrödinger operator (−∆)s+ Id,
1
4 < s ≤ 1.

Here, we assume that the solutions belong to the Sobolev space E = W 2,2(RN ), endowed with
the scalar product and norm

(1.6) 〈u, v〉j :=
∫

RN ∆u · ∆v + λj
∫

RN uv, ‖u‖2
j = 〈u, u〉j , j = 1, 2.

Also, we define E = E ×E, and the elements in E will be denoted by u = (u1, u2); as a norm
in E we will take

‖u‖2 = ‖u1‖2
1 + ‖u2‖2

2.

Moreover, we denote H as the space of radially symmetric functions in E, and H = H ×H.

For u ∈ E, respectively, u ∈ E, we set

Ij(u) = 1
2

∫

RN

(
|∆u|2 + λju

2
)

dx− 1
4 µj

∫

RN

u4 dx,(1.7)

F (u) = 1
4

∫

RN

(
µ1u

4
1 + µ2u

4
2

)
dx,(1.8)

G(u) = G(u1, u2) = 1
2

∫

RN

|u1|2|u2|2 dx,(1.9)

J (u) = J (u1, u2) = I1(u1) + I2(u2) − β G(u1, u2)(1.10)

= 1
2‖u‖2 − F (u) − β G(u).(1.11)

Remark 1.1. We recall a well known result about continuous Sobolev embedding (see, for in-

stance, [1, 19]),

(1.12) E →֒ Lp(RN ), with 1 ≤ p ≤ p∗,

which are compact replacing E by the radial subspace H and if in addition 2 ≤ N and p < p∗

(see [19]). Besides, we recall here the definition of the critical exponent

(1.13) p∗ = 2N
N−4 if N ≥ 5, and p∗ = ∞ for N = 1, 2, 3, 4.

We observe that, by (1.12), the functional J is well defined since F , G make sense for
4 ≤ p∗ ⇔ N ≤ 8, moreover, for 2 ≤ N < 8 we have that F,G are compact on H. Furthermore,
it is easy to prove that the functional J associated to (1.2) is C1.
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1.1. Main results. We basically ascertain existence and multiplicity results for the system
(1.2). To do so, we say that u = (u, v) 6= (0, 0) = 0 is a non-trivial solution of (1.2) if u is a
critical point of J .

We now state the definitions and differences between bound and ground states (non-trivial
solutions).

Definition 1.1. u ∈ E is a non-trivial bound state of the system (1.2) if u is a non-trivial critical

point of the functional J , i.e., J ′(u) = 0. Moreover, a bound state w such that its energy is

minimal among all the non-trivial bound states, namely,

J (w) = min{J (u) ; u ∈ E \ {(0, 0)}, J ′(u) = 0},
is called ground state for the system (1.2).

Thus, we first analyse (Section 2) the bi-harmonic non-linear Schrödinger equation

(1.14) ∆2uλ + λuλ − |uλ|2σuλ = 0,

with1 σ = 1, with the associated functional

(1.15) Fλ(u) := 1
2

∫

RN

(|∆u|2 + λu2) − 1
2σ+2

∫

RN

|u|2σ+2.

For this equation we show the existence of the ground state through an argument based on
the so-called fibering method. This is basically an alternative methodology to the bifurcation
theory or critical point theory in obtaining information about the number of solutions for certain
differential equations with a variational structure; see [12, 25, 26] for several examples and further
details.

For equation (1.14) the solutions have an exponential decay at infinity and using the topolog-
ical method due to Lusternik-Schnirel’man we ascertain that there exists an infinite countable
number of solutions.

Furthermore, in Section 3 we prove the existence of solutions or critical points for the bi-
harmonic non-linear Schrödinger system (1.2). Thus, in order to find critical points of the
functional J we set

(1.16) Ψ(u) = (J ′(u) |u) = ‖u‖2 − 4F (u) − 4βG(u),

Then, we show that when the parameter β is less than the minimum among the two following
Sobolev constants

S2
j = inf

ϕ∈E\{0}
‖ϕ‖2

k∫
RN U

2
j ϕ

2
, with k, j = 1, 2, k 6= j,

where Uj are the ground states of the equations

∆2u+ λju = µju
3,

such that system (1.2) possesses two semi-trivial solutions

u1 = (U1, 0), u2 = (0, U2),

which are strict local minima. On the other hand if the coupling parameter β is bigger than the
maximum value among those Sobolev constants, i.e.,

β > max{S2
1 , S

2
2},

1Note that the results we are going to prove can be extended easily for σ <
4

4−N
.
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then the semi-trivial solutions are saddle points of the associated functional J denoted by (1.7),
to the system (1.2), constrained on the Nehari manifold

(1.17) N := {u ∈ H \ {0} ; Ψ(u) = 0}.
Consequently, we are able to prove that when the functional satisfies the Mountain Pass geom-
etry, if β < min{S2

1 , S
2
2} then there exists a critical point u∗ such that

J (u∗) > max{J (u1),J (u2)}.
However, when β > max{S2

1 , S
2
2} we ascertain that a global minimum ũ exists for the function

J on the Nehari manifold N , such that

J (ũ) < min{J (u1),J (u2)}.
It is not difficult to prove that N is a natural restriction following the same kind of arguments
as in [3]. We include the computations for the reader’s convenience.

Proposition 1.1. u ∈ H is a non-trivial critical point of J if and only if u ∈ N and is a

constrained critical point of J on N .

Proof. For any v ∈ H \ {0}, one has that

tv ∈ N ⇐⇒ ‖v‖2 = t2 [4F (v) + 4βG(v)] .

As a consequence, for all v ∈ H \ {0}, there exists a unique t > 0 such that tv ∈ N . Moreover,

since F,G are homogeneous of degree 4, there exists ρ > 0 such that

(1.18) ‖u‖2 ≥ ρ, ∀u ∈ N .

Furthermore, from (1.18) it follows that

(1.19) (Ψ′(u) | u) = −2‖u‖2 < 0, ∀u ∈ N .

From (1.18) and (1.19), we infer that N is a smooth complete manifold of co-dimension one in

E. Moreover, if u ∈ N is a critical point of J constrained on N , there exists ω ∈ R such that

J ′(u) = ωΨ′(u).

Then one finds Ψ(u) = (J ′(u) | u) = ω(Ψ′(u) | u). Since Ψ(u) = 0 ∀u ∈ N , while thanks to

(1.19) it follows (Ψ′(u) | u) < −2ρ < 0, we infer that ω = 0 and, thus, J ′(u) = 0. �

Remarks 1. (1) Note that due to the definition of N , it follows that

(1.20) ‖u‖2 = 4F (u) + 4βG(u).

Substituting into J , we get

(1.21) J (u) = 1
4‖u‖2, ∀u ∈ N ,

or equivalently,

(1.22) J (u) = F (u) + βG(u), ∀u ∈ N .

Then, (1.21) jointly with (1.18) imply that there exists C > 0 such that

(1.23) J (u) ≥ C > 0, ∀u ∈ N .
4



As a consequence, the main relevant fact of working on the Nehari manifold is that J is

bounded from below on N , so one can try to minimize on it.

(2) Concerning the Palais-Smale (PS) condition, it is not difficult to prove it by taking into

account the compact embedding of H into Lp(RN ) for any 1 < p < p∗ and N ≥ 2; see

Remark 1.1 and Lemma 3.1.

Moreover, for system (1.2) we apply again the fibering method and the Lusternik-Schnirel’man
analysis to show the existence of an infinite countable number of solutions. Indeed, we prove
through a fibering method argument that when the parameter

β > −√
µ1µ2,

system (1.2) possesses at least a ground state solution. Note that as far as we know this is
the first time the fibering has been applied to the analysis of systems. Moreover, Lusternik-
Schnirel’man theory provides us again with the existence of infinitely many solutions for system
(1.2).

The outline of the paper is: the analysis of the bi-harmonic equation (1.14) is analyzed in
Section 2. In Section 3, we study the existence of critical points of the functional corresponding
to the system (1.2). Finally, we prove the existence of infinitely many solutions for the previous
system (1.2) in Section 4.

2. Bi-harmonic non-linear Schrödinger equation

During the last decades many works have been orientated to the analysis of nonlinear Schrödinger
equations (NLSE) (cf. [3]) of the form

(2.1) iwt + ∆w + |w|2w = 0, w(0, x) = w0(x) ∈W 1,2(RN ),

especially because of its strong applications to several areas of Physics, such as nonlinear optics
and Bose–Einstein condensates. In particular, for equation (2.1) it is known that it possesses
solutions which become singular, i.e., blows-up in finite time. In other words, these solutions
exist in W 1,2(RN ) over a finite time interval such that

lim
t→T

‖w‖W 1,2 = ∞.

Equation (2.1) is the canonical model for propagation of intense laser beams in bulk medium
with Kerr nonlinearity. However, that equation can be generalized with a general power-law
nonlinearity by

(2.2) iwt + ∆w + |w|2σw = 0, w(0, x) = w0(x) ∈W 1,2(RN ),

whose analysis has been primarily focused on the existence of standing waves, their stability and
the global or blow-up existence of solutions. Indeed, depending on the dimension one can assure
that when σN < 2 (subcritical NLSE) there is existence of solutions globally. However, in the
critical case, i.e., equation (2.1) with σN = 2 for N = 2, and the supercritical case σN > 2 the
solutions might blow-up and the standing waves are unstable.

Furthermore, and important in our analysis there are some studies focusing on a BNLSE of
the form

(2.3) iwt − ∆2w + |w|2σw = 0, w(0, x) = w0(x) ∈ E,

similar to (1.3). See for instance [7, 13] where blow-up solutions are considered and others such
as [20, 23, 24] where existence of global solutions is analysed. In relation with the existence of

5



solutions for the BNLSE equation (2.3), it was proved in [13] that some of the properties and
characteristics for the NLSE (2.2) can be extended to BNLSE of the form (2.3), with the obvious
transformations. In particular, looking for standing wave solutions for (2.3) of the form

(2.4) w(t, x) = eiλtuλ(x),

such that u is a radially symmetric ground state solution satisfying the equation

(2.5) ∆2uλ + λuλ − |uλ|2σuλ = 0,

for which there exist non-trivial solutions (radially symmetric ground state solutions) if σ < 4
4−N .

Note that due to the expression of equation (2.3) we are working on the focusing BNLSE. For
the NLSE (2.1) it is said that the equation is focusing or defocusing when the diffraction and
nonlinearity work one against or with each other. Therefore, since the Laplacian is a negative
operator this would correspond to positive or negative nonlinearity. However, the bi-Harmonic
operator is positive so that (2.3) is called a focusing BNLSE.

Moreover, depending on σ and the dimension (see [13, Section 4]) one has that:

• If σN < 4 the standing wave solutions (2.4) are stable;
• In the critical case σN = 4 there exist global solutions if the L2-norm for the initial

condition w0 is bounded. This suggests that a priori bounds imply global existence;
• However, the critical exponent/dimension σN = 4 creates singularity formation in the

focusing BNLSE (2.3).

Another very important aspect shown in [13] about the BNLSE (2.3) is that the solutions or
critical points of the associated functional, once they exist, oscillate. On the contrary to what
happens for the NLSE (2.1) in which the ground state is positive and radially symmetric. Indeed,
the ground states or non-trivial solutions of minimal energy for the equation (2.5) are neither
positive nor monotonic.

It should be pointed out that even for bounded domains the issues concerning the positivity
of the first eigenfunction of a bi-harmonic operator are not straightforward. Indeed, there are
only partial results about this problem having the positivity of the first eigenfunction in a ball
or for certain perturbations of the bi-harmonic operators or of the domain; see [16] for further
details and references therein.

Also, using the two-scale WKBJ approximation method, it is possible to approximate the so-
lutions of the PDE (2.5) assuming that the radially symmetric ground state can be approximated

by u(r) = eg(r).
Then, analysing the leading order terms one can ascertain the asymptotic behaviour of the

solutions. Namely, scaling out the parameter λ > 0 for u = u(r), with r = |x| ≥ 0, so that

u(r) = λ−1/2σu(λ−1/4r),

we obtain,

(2.6) ∆2u ≡ u(4) + 2(N−1)
r u′′′ + 2(N−1)(N−3)

r2
u′′ − (N−1)(N−3)

r3
u′ = −u+ |u|2σu ,

with σ < 4
4−N . Next, using a standard algebraic-exponential pattern of the form u(r) ≈ rδ ear

(as r → ∞) in (2.6) leads easily to the following characteristic equation

(2.7) a4 = −1 and δ = −N−1
2 .

To be precise, note that the first equation in (2.7) comes from the homogeneity of the leading
terms in (2.6). The second equality in (2.7) comes from a similar argument after evaluating
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the next leading terms on the left-hand side in (2.6). This yields a two-dimensional exponential
bundle:

(2.8) u(r) ≈ r−
N−1

2 e−r/
√

2
[
C1 cos

(
r√
2

)
+ C2 sin

(
r√
2

)]
,

where C1, C2 ∈ R are arbitrary parameters of this linearized bundle.

2.1. Multiplicity results for the BNLSE (2.5). Now, we perform an analysis that will pro-
vide us with an estimation for the number of stationary solutions or standing waves for the
BNLSE (2.3). To this end, we will first use the so-called fibering method, introduced by S.I. Po-
hozaev in the 1970s [25, 26], as a convenient generalization of previous versions by Clark and
Rabinowitz [10, 27] of variational approaches, and further developed by Drábek and Pohozaev
[12] and others in the 1980’s. This methodology gives an alternative to other methods such as bi-
furcation theory or critical point theory in relation to obtaining multiplicity results of differential
equations with a variational structure.

We actually have the uniqueness of the ground states for the BNLSE (2.5), although other
solutions exist. Indeed, thanks to the Lusternik-Schnirel’man theory we are able to prove the
existence of a countable number of solutions. However, a different story occurs for the BNLSE
(2.3) for which this uniqueness is not true in general and, actually, very difficult to prove.

Fibering Method. Thus, consider the following Euler functional associated to (2.5) defined by

(1.15) such that the solutions of (2.5) can be obtained as critical points of the C1 functional
(1.15). To simplify the analysis we write F ≡ Fλ.

Subsequently, we split the function u ∈ E as follows

(2.9) u(x) = rv(x),

where r ∈ R, such that r ≥ 0, and v ∈ E, to obtain the so-called fibering maps

φv : R → R,

r → F(rv).

Substituting u from (2.9) into the functional (1.15), we have the following maps

(2.10) φv(r) = F(rv) = r2

2

∫

RN

|∆v|2 + r2λ
2

∫

RN

v2 − r4

4

∫

RN

|v|4.

Thus, (2.10) defines the current fibering maps. Note that, if u ∈ E is a critical point of F(u),
then

DuF(rv)v = ∂F(rv)
∂r = 0.

In other words, DuF(rv)v = (DuF(rv) | v). Hence, the calculation of that derivative yields

φ′v(r) = r
( ∫

RN

|∆v|2 + λ
∫

RN

v2
)
− r3

∫

RN

|v|4,

where ′ = d
dr . Moreover, since we are looking for non-trivial critical points, i.e., u 6= 0, we

have to assume that r 6= 0. Also, as usual, the critical points of the functional F(u) in (1.15)
correspond to weak solutions of the equation (2.5), i.e.,

(2.11)
∫

RN

∆u∆ϕ+ λ
∫

RN

uϕ−
∫

RN

u3ϕ = 0, for any ϕ ∈ E.

Moreover, we also say that u is a critical point when

(2.12) u ∈ C := {u ∈ E : DuF(u)ϕ = 0 for any ϕ ∈ E}.
7



By classic elliptic regularity for higher-order equations (Schauder’s theory; see [8] for further
details), we will then always have classical solutions for such equations.

Therefore, using (2.9) and looking for φ′v(r) = 0 we actually have

(2.13)
∫

RN

|∆v|2 + λ
∫

RN

v2 − r2
∫

RN

|v|4 = 0,

and assuming that
∫

RN

|v|4 6= 0, we finally arrive at

(2.14) r2 =

∫

RN

|∆v|2+λ
∫

RN

v2

∫

RN

|v|4 ≥ 0.

Now, calculating r from (2.14) (values of the scalar functional r = r(v), where those critical
points are reached) and substituting it into (2.10) gives the following functional:

(2.15) F(v) = F(r(v)v) := 1
4

( ∫
RN

|∆v|2+λ
∫

RN

v2
)2

∫

RN

|v|4 .

Thus, according to Drábek–Pohozaev [12], r = r(v) is well-defined and consequently the fibering
map (2.10) possesses a unique point of monotonicity change in the case

(2.16)
∫

RN

|∆v|2 + λ
∫

RN

v2 > 0 and
∫

RN

|v|4 > 0.

Indeed, thanks to [12, Lemma 3.2], we have that the Gateaux derivative of the functional F at
the point v ∈ E in the direction of v is zero, i.e.,

(DuF(v) | v) = 0.

Therefore, assuming that vc is a critical point of F, by the transformation carried out above, we
have that a critical point uc ∈ E, uc 6= 0, of F is generated by vc through the expression

uc = rcvc,

with rc defined by (2.14). Note that in fact we could have r > 0, something that can be
ascertained just applying the Sobolev embedding (1.12), (1.13),

(2.17) F(v) = 1
4

( ∫
RN

|∆v|2+λ
∫

RN

v2
)2

∫

RN

|v|4 ≥ C(λ,N) .

for a positive constant C depending only on λ > 0, N , and related with the corresponding
Sobolev’s constant of (1.12), (1.13). Moreover, the different critical points of those fibering maps
will provide us with the critical points of the functional F in (2.15), and, hence by construction,
of the functional F given by (1.15).

Now we state several properties of the fibering maps.

Lemma 2.1. The fibering maps defined by (2.10) has a unique point where the monotonicity

change. Precisely, it has a unique critical point which is its global maximum.
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Proof. Clearly φv(r) = c1r
2 − c2r

4, with c1, c2 > 0; thus φv(r) has a unique point where its

monotonicity change and it is where its global mximum is achieved. In order to be more precise,

we use the auxiliary function

(2.18) ωv : R+ → R, ωv(r) =
∫

RN

|∆v|2 − r2
∫

RN

|v|4.

such that u = r(v)v is a critical point for the functional (1.15). Additionally, by construction

for r > 0 we arrive at the equality

(2.19) ωv(r) = −λ
∫

RN

v2,

and, hence, we have that rv(r) is a critical point of (1.15). Also,

(2.20) ω′
v(r) = −2r

∫

RN

|v|4,

and, since
∫

RN

|v|4 is always positive we can conclude that the function ωv is strictly decreasing

for any r > 0. Moreover,

(2.21) φ′′v(r) =
∫

RN

|∆v|2 + λ
∫

RN

v2 − 3r2
∫

RN

|v|4 = −2r2
∫

RN

|v|4.

Then, if u = r(v)v is a critical point for the functional denoted by (1.15) the following is attained

r−1ω′
v(r) = φ′′v(r),

then, the fibering map φv is concave in a neighborhood of r(v) and we get a local maximum

point, which indeed, by the geometry (described at the beginning of the proof) of φv is a global

maximum point. �

Remark 2.1. As we shall prove below, due to the Lusternik-Schnirel’man analysis (L–S) the

previous result is true for the first critical point. Moreover, using this topological and variational

methodology we are able to prove also that there are a countable number of critical points for

the functionals in hand, with the possible existence of others that are not of minimax type and

might not be identify here.

2.2. Spectral properties of the linear associated problem. To establish the values of
the parameter λ for which we have the existence of one non-trivial solution we will take into
consideration the spectral properties of the following eigenvalue problem

(2.22) ∆2ψβ = (ℓβ,λ − λ)ψβ in R
N , and lim

|x|→∞
ψβ(x) = 0,

such that we define the first eigenvalue of the previous problem (2.22) by

(2.23) ℓ1,λ := inf
u∈H
u 6≡0

∫
RN |∆u|2 + λ

∫
RN u

2

∫
RN u2

.

It is obvious that the function ℓ1,λ is increasing in λ and positive by the definition of (2.23).
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Remark 2.2. We point out that equation (2.22) can be scaled out and, hence, reduced to the

eigenvalue equation

∆2ψβ + ψβ = ℓβψβ .

However, since it will be important in our subsequent analysis for the system (1.2) we keep the

parameter λ in the following.

As we have seen before the linearized equation of (2.5) admits solutions with a proper expo-
nential decay at infinity, radially symmetric solutions indeed.

Furthermore, the eigenvalues of the other problem (but similar)

(2.24) ∆2ψβ = ℓ̂βψβ in R
N , and lim

|x|→∞
ψβ(x) = 0

are strictly positive. Basically thanks to the positivity of the left hand side of (2.24), with the
first eigenvalue satisfying the expression

(2.25) ℓ̂1 := inf
u∈H
u 6≡0

∫
RN |∆u|2∫

RN u2
.

Also, for α large enough the resolvent operator (∆2 + αId)−1 corresponding to the eigenvalue
problem (2.24) (and equivalently (2.22) with λ) is compact and, hence, there exists a discrete
family of isolated real eigenvalues

0 < ℓ̂1 ≤ ℓ̂2 ≤ . . . ≤ ℓ̂β ≤ . . .

Similarly, assuming

(2.26) 0 < λ < ℓ1,λ,

we also find a discrete family of isolated real eigenvalues for the eigenvalue problem (2.22)

0 < ℓ1,λ ≤ ℓ2,λ ≤ . . . ≤ ℓβ,λ ≤ . . . so that ℓ1,λ := inf
u∈H
u 6≡0

∫
RN |∆u|2∫

RN u2
+ λ = ℓ̂1 + λ > 0,

then since ℓ̂1 > 0 we actually have that λ < ℓ1,λ. We also point out that those families of
eigenvalues in fact tend to infinity.

Under those assumptions we have the following variational expression of the problem (2.22)
∫

RN ∆u∆v = (ℓλ − λ)
∫

RN uv, for any v ∈ H.

Thus, u ∈ H \{0} is an eigenfunction of the problem (2.22) associated to the eigenvalue ℓλ, that
will depend on the value of the parameter λ. Moreover, to have that weak formulation of the
problem we need the following result.

Lemma 2.2. Suppose that u ∈ H. Then, there is a sequence {Rn} ⊂ R+, with Rn → ∞ as

n→ ∞, such that

lim
n→∞

∫

∂BRn

∇u∂∇u
∂n

dS = 0 and lim
n→∞

∫

∂BRn

u
∂∆u

∂n
dS = 0,

where BRn is the ball of radius Rn and centered at the origin, and n = x
‖x‖ , with ‖x‖ = Rn is

the unitary outward normal vector.
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Consequently we can obtain certain monotony results for those fibering maps depending on
the value of the parameter λ.

Lemma 2.3. There exists rmax > 0 such that the fibering maps φv(r) are increasing for r < rmax

and decreasing for r > rmax provided λ ∈
(
− 1
K ,∞

)
, with

K = 2
ℓ̂1
,

where ℓ̂1 is the first eigenvalue of problem (2.24).

Proof. According to the definition of the fibering map denoted by (2.10) if the parameter λ is

very small, i.e., λ ≪ 0, the fibering map is a decreasing function and without critical points.

Moreover, we observe that if the parameter λ is bigger than a certain value (to be ascertained

below) the fibering map is positive, φv(r) > 0, since
∫

RN

|v|4 > 0 at least for sufficiently small r’s.

Then, considering the functional

Hv(r) := r2

2

∫

RN

|∆v|2 − r4

4

∫

RN

|v|4,

we can assure that Hv(r) has a unique critical point at the value r = rmax such that

(2.27) rmax =




∫

RN

|∆v|2
∫

RN

|v|4




1

2

and Hv(rmax) =
1

4

(
∫

RN

|∆v|2
)2

∫
RN |v|4 .

Note that Hv(r) is clearly increasing in the interval (0, rmax), for sufficiently small r’s. Subse-

quently, by the Sobolev imbedding (1.12), (1.13) we have that

Hv(rmax) ≥ CN ,

where CN > 0 is related to the Sobolev’s constant. Finally, we will prove that there exists a

value of the parameter λ = λ∗ such that φv(rmax) > 0, i.e.,

Hv(rmax) + r2max

2 λ
∫

RN

v2 > 0,

for any u ∈W 2,2(RN )\{0} and λ > λ∗. Indeed, thanks to the first eigenvalue in problem (2.24)

and (2.27)

r2max

2

∫

RN

u2 ≤ 1
2ℓ̂1

∫

RN

|∆v|2
∫

RN

|v|4
∫

RN

|∆v|2 = 2
ℓ̂1
Hv(rmax).

Then, if

if K = 2
ℓ̂1

we find that r2max

2

∫

RN

u2 ≤ KHv(rmax),

and, hence

φv(rmax) ≥ Hv(rmax) + λKHv(rmax) = Hv(rmax)(1 + λK).

Therefore, the fibering map denoted by (2.10) is defined positive at rmax for all non-zero u if

λ > − 1
K .

�
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Remark 2.3. Note that we are assuming that λ > 0 so that for the existence of solutions we

just consider positive values of the parameter.

This fact is not very important to get the first solution through these fibering map techniques

but it will be crucial in ascertaining the countable family of minimax solutions via Lusternik-

Schnirel’man analysis; see below.

Remark 2.4. Furthermore, if we assume that

(2.28) λ > − 1

K
and ℓ1(λ) − λ > 0,

it is clear that, by the fibering method, there exists exactly one solution of (2.19). Indeed, the

fibering map φv(r) is a strictly increasing function for r < rmax, and decreasing for r > rmax.

Thus, there exists a unique value of

r1(v) > 0 such that r1(v)v = u

is a critical point of the functional F(u) in (1.15). Also, thanks to (2.20) we get ω′
λ(r1(v)) < 0

the unique critical point r = r1(v), that fibering map φv has a local maximum, since φ′′v(r1(v)) < 0

due to (2.21).

Lusternik-Schnirel’man analysis. Through the topological method due to Lusternik-Schnirel’man
we are able to establish the existence of multiple solutions for the functional F (1.15). This the-
ory is based on determining a topological analogue for the minimax principles which characterize
the eigenvalues of self-adjoint compact operators L. If ℓ1, ℓ2, · · · denote the real eigenvalues of
a self-adjoint compact operator L, ordered by their values with multiplicities it yields

ℓβ = sup
[SN−1]

min
u∈SN−1

(Lu |u),

where SN−1 denotes the unit sphere in an arbitrary N -dimensional linear subspace Σ of the
corresponding functional space H, and [SN−1] denotes the class of such spheres as Σ varies in H.
Thus, applying the calculus of variations theory to an operator L, the eigenvalues of the operator
L are precisely the critical values of the functional (Lu |u) on the unit ball ∂Σ = {u : ‖u‖ = 1}
of H.

To extend it to general smooth functionals such as F , we just need to find the topologic
analogues for the sets SN−1. Indeed, in our particular case this functional subset is the following

(2.29) R0,λ =
{
u ∈ H :

∫

RN

|∆u|2 + λ
∫

RN

u2 = 1
}
.

Remark 2.5. Note that we could have performed the previous fibering analysis restricted to

this subset (2.29) yielding similar results. Indeed, following the L–S theory through a fibering

analysis approach the number of critical points of the functional (1.15) associated with the elliptic

equation (2.5) depends on the category (or genus) of the functional subset (2.29) on which the

fibering is taking place.
12



Consequently, the critical values2 cβ and the corresponding critical points {uβ} are:

(2.30) cβ := inf
A∈Aβ

sup
u∈A

F(u) (β = 1, 2, 3, ...),

and

(2.31) Aβ := {A : A ⊂ R0,λ, compact subsets, A = −A and γ(A) ≥ β},
is the class of closed sets in R0,λ such that, each member of Aβ is of genus (or category) at least
β in R0,λ and invariant under any odd continuous amp. The fact that A = −A comes from the
definition of genus (Krasnosel’skii [14, p. 358]) such that, if we denote by A∗ the set disposed
symmetrically to the set A,

A∗ = {u : u∗ = −u ∈ A},
then, γ(A) = 1 when each simply connected component of the set A ∪ A∗ contains neither of
the pair of symmetric points u and −u.

Then to obtain the critical points of a functional on the corresponding functional subset R0,λ,
one needs to estimate the category γ of that functional subset. Thus, the category will provide
us with the number of critical points that belong to the subset R0,λ. Namely, similar to [26, 15]
we state the following.

Lemma 2.4. The category γ(R0,λ) is given by the number of eigenvalues (with multiplicities)

of the corresponding linear eigenvalue problem satisfying:

(2.32) γ(R0,λ) = ♯{ℓβ,λ > 0}, where ℓβ,λ is defined by (2.22)

Proof. Let ℓβ,λ be the β-eigenvalue of the linear bi-harmonic problem (2.22) such that

(2.33) ψβ :=
∑

k≥1

akψ̂k,

taking into consideration the multiplicity of the β-eigenvalue, under the natural “normalizing”

constraint ∑

k≥1

ak = 1.

Here, (2.33) represents the associated eigenfunctions to the eigenvalue ℓβ,λ and

{ψ̂1, · · · , ψ̂Mβ
},

is a basis of the eigenspace of dimension Mβ . Moreover, assume a critical point

(2.34) u =
∑

k≥1

akψ̂k,

belonging to the functional subset (2.29) and the eigenspace of dimension Mβ.

Thus, substituting (2.34) (since we are looking for solutions of that form) into the equation

(2.5) with σ = 1, and using the expression of the spectral problem (2.22) yields

∑
k≥1 akℓkψ̂k −

(∑
k≥1 akψ̂k

)3
= 0,

2Clearly, one can prove without difficulties the Palais-Smale condition in order to achieve these critical values,

since we are working on compact subsets of the radial space H ; see also Remark 1.1.
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which provides us with an implicit condition for the coefficients ak corresponding to the critical

point (2.34). Indeed, assuming normalized eigenfunctions ψβ, i.e.,
∫
ψ2
β = 1,

and multiplying by u in (2.5) and integrating we have that

∑
k≥1 a

2
kℓk −

∫
RN

(∑
k≥1 akψ̂k

)4
= 0.

Furthermore, taking into account that u ∈ R0,λ one arrives at the relation
∑

k

a2
kℓk = 1.

Therefore, in order to have the sphere (2.29) we actually find that the category of that subset

R0,λ must satisfy the expression (2.32). �

Subsequently, since functional (1.15) is symmetric we can state the following result with
which we establish that the elliptic problem (2.5) possesses a countable set of different solutions
obtained as critical points of the functional F denoted by (1.15).

Theorem 2.1. F possesses an unbounded sequence (family) of critical points.

Proof. We estimate the category by approximation. Namely, as customary, we consider our

equation in a ball of arbitrarily large radius R > 0 with homogeneous Dirichlet boundary

conditions:

(2.35) ∆2
rψβ = (ℓβ,λ(R) − λ)ψβ in BR.

In the radial geometry, by obvious scaling we deduce the spectral problem to that in B1:

(2.36) R
1

4 r = y =⇒ ∆2
yψβ = (ℓβ,λ(R) − λ)R4ψβ in B1.

Denoting by {αk > 0} the spectrum of this self-adjoint operator in B1, we see a simple depen-

dence

ℓk(R) − λ = αk

R4 → 0 as R→ ∞.

Then clearly

ℓβ,λ(R) → λ as R→ ∞,

because (ℓβ,λ(R)−λ)R4 is a positive constant independent of R, thanks to (2.26). Moreover, due

to (2.32), applied to the approximating problem (2.35), we then conclude that the category (as

the number of critical points) gets arbitrarily large as R → ∞ which ensures that the category

of the set (2.29) in R
N is infinite. �

Remark 2.6. The Lusternik-Schnirel’man theory cannot assure that there exists a precise num-

ber of solutions since this topological method provides us with a countable family of solutions and

the possibility of having more than that number of solutions cannot be ruled out.

Moreover, from the analysis performed above if the parameter λ is sufficiently small, i.e.,

λ < − 1
K , and assuming only positive solutions, there are no such critical points, since the

fibering map φv is then a strictly decreasing function.
14



However, assuming oscillatory solutions of changing sign, we show below that the number

of possible critical points of the functional (1.15) increases while decreasing the value of the

parameter λ. Indeed, fix a value of the parameter λ bigger than − 1
K and so that the following

condition is satisfied

(2.37) ℓβ,λ − λ > 0,

where ℓβ,λ is the β-eigenvalue of the linear bi-harmonic operator (2.22) for the eigenfunction

(2.33).

Thus, we obtain that, for a solution of the form u = rψβ, we will have Mβ corresponding

solutions similar to the one obtained in the previous case, i.e., when the parameter λ > − 1
K .

Indeed, substituting u = rψβ into the functional (1.15) for λ = ℓβ,λ− ε (so that condition (2.37)

is fulfilled), then we have

F(rψβ) := −r
2ε

2

∫

RN

v2 − r4

4

∫

RN

|v|4,

and performing a similar analysis as the one done previously, we will find β–critical points

(corresponding to the dimension of the eigenspace).

3. Existence results

In this section we will mainly prove that the infimum of J constrained on N is achieved.

Remark 3.1. If we denote by U the radially symmetric ground state of the equation ∆2u+u =

u3, then

Uj(x) =
√

λj

µj
U(λ

1/4
j x)

is the radially symmetric ground state solution to

∆2u+ λju = µju
3.

As a consequence, for any β ∈ R, system (1.2) possesses two semi-trivial solutions

u1 = (U1, 0), u2 = (0, U2).

Moreover, proving the existence of nontrivial solutions of (1.2) requires proving that both com-

ponents are not zero, i.e., the new solutions must be different from uj, with j = 1, 2.

We define the following Sobolev constants associated to the weights Uj previously defined.

S2
1 = inf

ϕ∈E\{0}
‖ϕ‖2

2∫
RN U

2
1ϕ

2
, S2

2 = inf
ϕ∈E\{0}

‖ϕ‖2
1∫

RN U
2
2ϕ

2
,

and
Λ = min{S2

1 , S
2
2}, Λ′ = max{S2

1 , S
2
2}.

The first step in order to prove existence results, as in [3], consists of proving the following.

Proposition 3.1. (i) ∀ β < Λ, the semi-trivial solutions uj , j = 1, 2, are strict local minima of

J constrained on N .

(ii) If β > Λ′ then both uj are saddle points of J on N . In particular,

inf
N

J < min{J (u1),J (u2)}.
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The previous result follows easily from the proof of Proposition 4.1 in [3] with the appropriate
changes, but we include it for the sake of completeness. The idea consists on the evaluation
of the Morse index of uj , as critical points of J constrained on N . To this end, let us denote
D2JN as the second derivative of J constrained on N . Since J ′(uj) = 0, then

D2JN (uj)[h]2 = J ′′(uj)[h]2 for any h ∈ Tuj
N ,

where Tuj
N denotes the tangent space to N at uj. Moreover, if we define the Nehari manifold

associated to Ij by

Nj = {u ∈ E : (I ′j(u)|u)j = 0} =
{
u ∈ E : ‖u‖2

j − µj
∫

RN u
4 = 0

}
,

since I ′j(Uj) = 0, then

D2(Ij)Nj
(Uj)[h]

2 = I ′′j (uj)[h]
2 for any h ∈ TUj

Nj.

According to [3], it is easy to prove that

h ∈ Tuj
N if and only if hj ∈ TUj

Nj, j = 1, 2.

Proof of Proposition 3.1. (i) Note that

J ′′(u1)[h]2 = I ′′1 (U1)[h1]
2 + ‖h2‖2

2 − β
∫

RN U
2
1h

2
2, ∀h ∈ Tu1

N .

Since U1 is a minimum of I1 on N1 there exists c1 > 0 such that

(3.1) I ′′1 (U1)[h]
2 ≥ c1‖h‖2

1, ∀h ∈ TU1
N1.

Taking h ∈ Tu1
N , i.e., h1 ∈ TU1

N1 and using (3.1) we get

J ′′(u1)[h]2 ≥ c1‖h1‖2
1 + ‖h2‖2

2−β
∫

RNU
2
1h

2
2

≥ c1‖h1‖2
1 + ‖h2‖2

2− β
S2

1

‖h2‖2
2.

Therefore, if β < S2
1 there exists c2 > 0 such that

J ′′(u1)[h]2 ≥ c1‖h1‖2
1 + c2‖h2‖2

2.

Similarly, if β < S2
2 , ∃ c′j > 0, j = 1, 2 such that

J ′′(u2)[h]2 ≥ c′1‖h1‖2
1 + c′2‖h2‖2

2.

(ii) Assume β > S2
1 , then there exists ψ ∈ E such that

S2
1 <

‖ψ‖2

2∫
RN U2

1
ψ

2 < β.

In particular, one has that (0, ψ) ∈ Tu1
N . Therefore

J ′′(u1)[(0, ψ)]2 = ‖ψ‖2
2 − β

∫
RN U

2
1ψ

2
< 0.

Similarly, if β > S2
2 , there exists (φ, 0) ∈ Tu2

N such that J ′′(u2)[(φ, 0)]
2 < 0.

Remark 3.2. Note that Proposition 3.1 can be read as uj are strict local minima, resp. saddle

points, provided β < S2
j , resp. β > S2

j , j = 1, 2.

Concerning the PS condition (see Remark 1-(2)) we prove the following result.

Lemma 3.1. Assume that 2 ≤ N < 8, then J satisfies the PS condition constrained on N .
16



Proof. Let un ∈ N be a sequence such that J (un) → c > 0, as n→ ∞. From (1.21) it follows
that un is bounded and, without relabeling, we can assume that un ⇀ u0. Since H is compactly
embedded into L4(RN ) for 2 ≤ N < 8 (see Remark 1.1), we infer that

F (un) + βG(un) → F (u0) + βG(u0).

Moreover using (1.20) jointly with (1.18), one has that

∃ c > 0 such that F (un) + βG(un) ≥ c, and then u0 6= 0.

Letting
∇NJ (u) = J ′(u) − ωΨ′(u),

denote the constrained gradient of J on N , with ω ∈ R. Suppose that

∇NJ (un) → 0.

Taking the scalar product with un and recalling that (J ′(un) | un) = Ψ(un) = 0, we find that

ωn(Ψ
′(un) | un) → 0,

and this, jointly with (1.19), implies that ωn → 0. Moreover, taking into account that

‖Ψ′(un)‖ ≤ c1 <∞,

we deduce that J ′(un) → 0. To finish the proof, since lim(J ′(un) | u0) = 0 one can conclude
that un → u0 strongly.

Note that Proposition 3.1 and Lemma 3.1 will be useful in the proof of the main result dealing
with the existence of non-trivial solutions different from the semi-trivial solutions.

Theorem 3.1. (i) If β < Λ, then J has a Mountain-Pass (MP) critical point u∗ on N , and

there holds J (u∗) > max{J (u1),J (u2)}.
(ii) If β > Λ′ then J has a global minimum ũ on N , and there holds J (ũ) < min{J (u1),J (u2)}.
Proof. (i) Due to Proposition 3.1-(i), uj (j = 1, 2) are strict local minima of J on N . This
fact allows us to apply the Mountain Pass Theorem (MPT for short, see [5]) to J on N , yielding
a PS sequence {vn} ⊂ N with

J (vn) → c, where c = inf
Γ

max
0≤t≤1

Φ(γ(t)),

and
Γ = {γ : [0, 1] → N continuous | γ(0) = u1, γ(1) = u2, }.

By Lemma 3.1, we find a convergent subsequence (if necessary without relabeling)

vn → u∗, strongly in H,

so that u∗ is a critical point of J and, hence, thanks to Proposition 1.1 u∗ ∈ N . Moreover, by
the MPT again, it also follows that

J (u∗) > max{J (u1),J (u2)}.
(ii) Now, due to Lemma 3.1, the infN J is achieved at some ũ ∈ N . Moreover, if β > Λ′, by

Proposition 3.1-(ii) we get that

J (ũ) < min{J (u1),J (u2)}.
Note that if ũ had for example, the second component zero, then clearly ũ = (ũ1, 0) with ũ1 6= 0,
but in that case, ũ1 would be a non-trivial solution of the equation ∆2u+λ1u = µ1u

3 with energy
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strictly less than the energy of u1 which is a ground state of the previous equation (see Remark
3.1), and this is a contradiction. Arguing in a similar way we conclude that the first component
of ũ is non-trivial too.

Remarks 2. (1) Note that statement (i) of Theorem 3.1 is weaker than one could expect,

since although u∗ 6= uj , j = 1, 2, it does not exclude that u∗ might be a solution of (1.2)

with one component zero. This is not the case in statement (ii) of Theorem 3.1 as we

have proved.

(2) We observe as in [3], in order to prove the preceding theorem, it would be enough that

only one among uj is a minimum or a saddle. For example, if

J (u1) < J (u2),

to prove (i) it suffices that u2 is a minimum. According to Remark 3.2, this is the case

provided β < S2
2 . Unfortunately, a straight calculation shows that

if J (u1) < J (u2) then S2
2 < S2

1 .

Hence u1 is a minimum as well. The same remark holds for the case (ii).

4. Multiplicity results for the system (1.2)

We analyse the multiplicity results in relation to the bi-harmonic nonlinear Schrödinger system
(1.2). This analysis could provide us with some answers to the discussion made at the end of
last section in which we did not exclude the possibility of having u∗ as a solution of (1.2) and
with one nil component.

To this end we perform an analysis that will provide us with an estimation in the number of
solutions for (1.2). Thus, we will first show an application of the so-called fibering method used
in Section 2 for the one single fourth order Schrödinger equation (2.5).

Fibering Method. Consider the following Euler functional associated with (1.2):

Jλ(u) = Jλ(u1, u2) = I1(u1) + I2(u2) − β G(u1, u2),

defined by (1.10) such that the solutions of (1.2) can be obtained as critical points of the C1

functional (1.10). To simplify the analysis we again write J ≡ Jλ.
Subsequently, we split the functions u1, u2 ∈W 2,2(RN ) as follows

(4.1) u1(x) = rv1(x), u2(x) = rv1(x),

where r ∈ R, such that r ≥ 0 (we shall shortly see this) and v = (v1, v2) ∈ H, to obtain the
so-called fibering maps

Φv : R → R,

r → J (rv).

Then we get

(4.2) Φv(r) = J (rv) =
r2

2
‖v‖2 − r4F (v) − r4βG(v).
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Thus, (4.2) defines the current fibering maps. Note that, if u = (u1, u2) ∈ H is a critical point
of J (u), then thanks to (4.1),

(4.3) DuJ (rv)v = ∂J (rv)
∂r = 0, i.e. ∂Φv(r)

∂r = 0.

In other words, DuJ (rv)v = (DuJ (rv) | v) = 0. Hence, the calculation of that derivative
yields

Φ′
v
(r) = r‖v‖2 − r3(4F (v) + 4βG(v)).

Moreover, since we are looking for non-trivial solutions (critical points), i.e., u 6= (0, 0), with
at least one of the components different from zero, we have to assume that r 6= 0. Therefore,
since we are looking for r 6= 0 such that Φ′

v
(r) = 0 and according to (4.3) we actually have

(4.4) ‖v‖2 − r2(4F (v) + 4βG(v)) = 0,

and, in order to have non-trivial solutions (for a certain β to be shown below)

F (v) + βG(v) 6= 0,

hence,

(4.5) r2 =
‖v‖2

4F (v) + 4βG(v)
> 0.

Now, calculating r from (4.5) (values of the scalar functional r = r(v), where those critical
points are reached) and substituting it into (4.2) gives the following functional:

(4.6) J (r(v)v) =
1

16

‖v‖4

F (v) + βG(v)
.

Note that applying a similar argument to the one performed in (2.17) through the use of the
Sobolev’s embedding (1.12), (1.13) we actually have that r > 0 and the positivity of the fibering
maps as well, i.e.

J (r(v)v) ≥ C, for some positive constant C = C(λj, µj , N).

In fact we already had that since previously, by (1.23), we obtained that

J |
N
> C > 0.

Hence, this result means that the fibering maps never cut through the axis although, and as
we shall see below, due to the Lusternik-Schnirel’man analysis they can have infinitely many
critical points.

Thus, we have the following result.

Lemma 4.1. r = r(v) is well-defined and consequently the fibering map (4.2) possesses a unique

point of monotonicity change in the case

(4.7) 4(F (v) + βG(v)) = µ1

∫
RN v

4
1 dx+ µ2

∫
RN v

4
2 dx+ 2β

∫
RN |v1|2|v2|2 dx > 0.

such that λj > 0, with j = 1, 2, and β > −√
µ1µ2.

Proof. The positivity of the parameters λj comes directly from the norms (1.6) under which we

are stating the problem. Furthermore, due to Young’s inequality we find that
√
µ1µ2

∫
RN |v1|2|v2|2 ≤ 1

2

(
µ1

∫
RN v

4
1 + µ2

∫
RN v

4
2

)
.
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Thus,

µ1

∫
RN v

4
1 + µ2

∫
RN v

4
2 + 2β

∫
RN |v1|2|v2|2 ≥ 2(

√
µ1µ2 + β)

∫
RN |v1|2|v2|2,

so that, it will be positive if and only if

β > −√
µ1µ2,

and therefore, proving the conditions in (4.7). �

Remark 4.1. Note that due to Lemma 4.1 the only considered possibility in order to have

r = r(v) well-defined will be (4.7). Hence, the possible condition when both terms in (4.5) are

negative is neglected.

Therefore, assuming that vc = (v1,c, v2,c) is a critical point of J (r(vc)vc), thanks to the
transformation carried out above, we again have that a critical point uc = (u1,c, u2,c) ∈ H, with
uj,c 6= 0 for j = 1 or j = 2, of J is generated by vc through the expression

uc = rcvc,

with rc defined by (4.5). Moreover, the different critical points of those fibering maps will
provide us with the critical points of the functional J (r(v)v) denoted by (4.6), and, hence, by
construction, of the functional J given by (1.7).

Lusternik-Schnirel’man analysis. Similarly as performed for one single equation we apply the
topological method due to Lusternik-Schnirel’man in order to have an estimation of the number
of solutions.

In this case the functional subset is denoted by

(4.8) S0,λ1,λ2
= {u ∈ H : ‖u‖2 = 1}.

Again the critical points of the functional J are directly related with the category γ(S0,λ1,λ2
)

of that functional subset (4.8), providing us with the number of critical points that belong to
the subset S0,λ1,λ2

. Indeed, the category γ(S0,λ1,λ2
) is given by the number of eigenvalues (with

multiplicities) of the corresponding linear eigenvalue problem satisfying:

(4.9) γ(S0,λ1,λ2
) = ♯{ℓβ,λj

> 0}, where

(4.10) ∆2ψβ = (ℓβ,λj
− λj)ψβ , in R

N and lim
|x|→∞

ψβ(x) = 0, with j = 1, 2.

For the particular case of the system (1.2) we are able to ascertain the existence of a countable
family of solutions for the functional J , but not to get any further information.

Theorem 4.1. J possesses an unbounded sequence (family) of critical points.

Remark 4.2. The proof follows the same argument performed in Theorem 2.1 since the linear

part of system (1.5) consists of just two separated eigenvalue equations. Note that the coupling

terms for system (1.5) are of non-linear type.
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