
Computer Networks 212 (2022) 109036

A
1

R
s
a
d
d
d
a
t

o

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

An experimental evaluation of LEDBAT++
Marcelo Bagnulo, Alberto García-Martínez ∗

Dep. Ing. Telemática UC3M, Spain

A R T I C L E I N F O

Keywords:
Transport
Congestion control
LEDBAT
Less-than-best-effort
Performance evaluation

A B S T R A C T

LEDBAT++ is the evolution of LEDBAT, a congestion control algorithm originally designed to provide less-
than-best-effort transport on the Internet. LEDBAT++ aims to address a number of shortcomings present in
LEDBAT, including late-comer advantage, latency drift, competition on equal grounds with best effort traffic
in the presence of small buffers and difficulties experienced while measuring the variations on the delay.

In this paper, we perform an experimental evaluation of LEDBAT++ using the Windows Server’s LEDBAT++
implementation. We find that while LEDBAT++ overcomes all the limitations identified in LEDBAT, the change
introduced in LEDBAT++ to do so results in a performance penalty that prevents LEDBAT++ flows to seize
all the available capacity when there is no competing traffic. We propose two simple modifications to the
LEDBAT++ algorithm that would address the identified issues and reduce the penalty.
1. Introduction

LEDBAT (Low Extra Delay Background Transport) [1] is a
congestion-control algorithm that implements a less-than-best-effort
(LBE) traffic class. When LEDBAT traffic shares a bottleneck with one
or more TCP connections using standard congestion control algorithms
such as Cubic [2] (hereafter standard-TCP for short), it reduces its send-
ing rate earlier and more aggressively than standard-TCP congestion
control, allowing standard-TCP traffic to use more of the available
capacity. This effectively implements an LBE traffic class that has
less priority than standard-TCP/best effort traffic. In the absence of
competing standard-TCP traffic, LEDBAT aims to make an efficient
use of the available capacity, while keeping the queuing delay within
predefined bounds. LEDBAT is currently used across the Internet to
carry delay-insensitive background traffic, notably by Bittorrent for
peer-to-peer file sharing [3]) and by Apple for software updates [4].

LEDBAT reacts both to packet loss and to variations in delay.
egarding to packet loss, LEDBAT reacts with a multiplicative decrease,
imilar to most TCP congestion controllers. Regarding to delay, LEDBAT
ims for a target queueing delay. LEDBAT estimates the queueing
elay as the difference between the base delay (i.e., the minimum
elay observed throughout the duration of the flow) and the current
elay. When the measured queueing delay is below the target, LEDBAT
dditively increases the sending rate and when the delay is above the
arget, it additively reduces the sending rate.
After 10 years of operational experience with LEDBAT, a number

f limitations and shortcomings have been identified [1,5,6]. These

∗ Corresponding author.
E-mail addresses: marcelo@it.uc3m.es (M. Bagnulo), alberto@it.uc3m.es (A. García-Martínez).

1 https://news.microsoft.com/bythenumbers/en/windowsdevices.
2 https://www.catalog.update.microsoft.com/.

include inter-LEDBAT fairness issues (notably, the so-called late-comer
advantage), LEDBAT being overly aggressive when competing with
standard-TCP in networks with small buffers, LEDBAT bloating the
queues for long-lasting communications as well as multiple difficulties
when it comes to measure the one-way delay LEDBAT uses to estimate
the queueing delay.

LEDBAT++ [6] is the evolution of the original LEDBAT that includes
modifications aimed to address the shortcomings identified in LEDBAT.
Similarly to LEDBAT, LEDBAT++ reacts both to packet loss and to
variations in delay. While the reaction to packet loss is unchanged in
LEDBAT++, when it comes to reaction to delay variations, LEDBAT++
substitutes the additive increase/additive decrease mechanism of LED-
BAT for an additive increase/multiplicative decrease (AIMD) in order
to improve fairness. LEDBAT++ AIMD uses dynamic parameters that
allows it to be less aggressive than standard-TCP even in networks with
small buffers. Also, LEDBAT++ incorporates periodic slow-downs to
allow flows to properly assess the base delay (i.e., the delay when there
are no queues) and reduce both the late-comer advantage and the buffer
bloating effects. LEDBAT++ uses Round Trip Times (RTTs) instead of
one way delays for its calculations in order to avoid the difficulties with
measuring the one-way delay.

Windows 10 anniversary update included LEDBAT++ support and
from the 2019 version onwards, Windows Server also implements LED-
BAT++ [7]. LEDBAT++ is currently being used by Microsoft software
distribution servers (SCCM) to distribute software updates without in-
terfering with other traffic while updating [8]. According to Microsoft,1
vailable online 17 May 2022
389-1286/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.comnet.2022.109036
Received 29 December 2021; Received in revised form 28 April 2022; Accepted 8
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

May 2022

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:marcelo@it.uc3m.es
mailto:alberto@it.uc3m.es
https://news.microsoft.com/bythenumbers/en/windowsdevices
https://www.catalog.update.microsoft.com/
https://doi.org/10.1016/j.comnet.2022.109036
https://doi.org/10.1016/j.comnet.2022.109036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2022.109036&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computer Networks 212 (2022) 109036M. Bagnulo and A. García-Martínez
there are 1.4 billion devices running Windows 10 or Windows 11.
If we consider operating system updates only (and disregard updates
for other software such as Office. etc.), Microsoft issues updates for
Windows both monthly (the so-called ‘‘patches’’) and semi-annually
(a.k.a. feature updates).2 Updates regularly include fixes for bugs and
security holes that are critical to maintain the Windows users and, by
extension (due to the large installed base), the Internet as a whole,
safe. Downloading a feature update using standard TCP can be quite
disruptive for the users’ communications, as it is a fairly large data
transfer (about 1 GB of data) which competes in equal grounds with
other user traffic. Through the use of LEDBAT++, if LEDBAT++ lives
up to its promises, the disruption can be avoided and software can be
updated seamlessly. It is then important to determine if LEDBAT++
actually exhibits all the features expected from an LBE transport.

In this paper, we perform an experimental evaluation of the LED-
BAT++ congestion control algorithm. In particular, we aim to verify
if LEDBAT++ overcomes the limitations of LEDBAT as expected by
its design. We experimentally tested Windows Servers’s LEDBAT++
implementation and performed over 2,000 experiments. We find that
LEDBAT++ sufficiently achieves its design goals and addresses the
LEDBAT issues described earlier. However, we also find that the mech-
anisms built into LEDBAT++ to do so impose a performance penalty
that prevents LEDBAT++ from seizing all the available capacity when
there is no competing traffic.

The rest of this paper is structured as follows. In Section 2 we de-
scribe the limitations of LEDBAT and in Section 3 we present how LED-
BAT++ overcomes the described limitations of LEDBAT. In Section 4
we describe the setup used for our experiments. Next, in Sections 5–7
we present the results of our experiments regarding the performance of
LEDBAT++ running solo in a bottleneck link, LEDBAT++ flows sharing
a bottleneck link with standard-TCP and inter-LEDBAT++ fairness re-
spectively. Section 8 describes the related work and Section 9 concludes
the paper.

2. Limitations of LEDBAT

Since its inception, LEDBAT is known to suffer from the so-called
late-comer advantage problem. As described in [1], LEDBAT offers more
capacity to LEDBAT flows arriving later than to the LEDBAT flows
already present in a bottleneck link. For example, if there is a LEDBAT
flow using the whole capacity in a bottleneck link and later on another
LEDBAT flow arrives, the second flow will expel the first flow and use
all the available capacity. The reason for this is that the measure of the
base delay by the second flow includes the queueing delay caused by
the packets of the first flow already present in the bottleneck buffer.
After this initial measurement, the second flow’s LEDBAT controller
aims to reach a target queueing delay in addition to the delay caused
by the first flow, resulting in a higher delay than the one the first
flow is aiming for, causing the first flow to reduce its sending rate to
the minimum. The result is that the second flow uses all the available
capacity.

This is not the only fairness issue that affects LEDBAT. LEDBAT
also has poor fairness for multiple LEDBAT flows that start at the
same time. As described in [5], this is essentially due to the additive
increase/additive decrease algorithm used by LEDBAT, that converges
to a stable split of capacities between flows, but with an equilibrium
point that is not necessarily fair.

Other identified shortcomings are related to the difficulties mea-
suring one-way delay in TCP. LEBDAT uses the differences on the
measured one-way delays to estimate the queueing delay and react
accordingly, depending whether the measured queueing delay is above
or below the target. One-way delay can be measured in TCP using
the TimeStamp option [9]. The problem is that one endpoint of the
TCP connection does not know the units used by the other endpoint to
express the TimeStamp value. Even after discovering the units of the
2

other’s endpoint TimeStamp values, the obtained values still need to
be corrected for clock skew and drift, which is challenging.

It has also been pointed out that when the bottleneck link buffer
is small, the measured queueing delay never reaches the target delay,
rendering the delay-based mechanisms of LEDBAT irresponsive. In such
situation, LEDBAT relies in its loss-based mechanisms that are exactly
the same as standard TCP, losing its LBE characteristic and competing
in equal grounds with standard TCP.

Last, in order to accommodate for routing changes that result in
changes in the path used for the packets of the LEDBAT communication
and the potential changes in the associated base delay, LEDBAT ‘‘for-
gets’’ delay measurements older than a given time (10 mins). While this
accommodates for routing changes, it creates another problem called
latency drift [10]. Consider the case of a LEDBAT flow running solo in
a bottleneck link. The only time the LEDBAT sender is able to measure
the real base delay is at the beginning of the communication. For the
rest of the lifetime of the communication LEDBAT itself bloats the
queue so that the queuing delay matches the target. If the initial mea-
surements are discarded, then the lowest delays observed are roughly
the real base delay plus the target. After that point, LEDBAT aims for a
target queuing delay on top of that, resulting in a real queueing delay
of twice the target. Then, 10 min later, it will aim for a queueing delay
of three times the target and so on, creating the latency drift effect.

3. Overview of LEDBAT++

LEDBAT++ introduces a number of modifications to address the
limitations identified for the original LEDBAT mechanism.

LEDBAT++ controls the sending rate through the calculation of a
congestion window, 𝐶𝑊 . LEDBAT++ updates the 𝐶𝑊 based on delay
variations and packet loss. With respect to packet loss, LEDBAT++
reacts by reducing the 𝐶𝑊 to half of its value when a loss is detected.

With respect to delay variations, LEDBAT++ aims for a pre-defined
queueing delay target, 𝑇 (defined equal to 60 ms in the specification).
LEDBAT++ continuously estimates the current queueing delay, 𝑞𝑑 . If
the current queueing delay 𝑞𝑑 is larger than the target queuing delay
𝑇 , LEDBAT++ multiplicatively decreases the congestion window. Con-
versely, if the delay is smaller than the target, LEDBAT++ additively
increases the congestion window.

LEDBAT++ estimates the current queueing delay (𝑞𝑑) by subtracting
the base round-trip-time (𝑅𝑇𝑇𝑏) from the current RTT (𝑅𝑇𝑇𝑐). The base
RTT is calculated as the minimum RTT observed in the last 10 min of
the lifetime of the communication. The current delay is the last RTT
measured in the communication. Both values are filtered to eliminate
noise by taking the minimum of the last 𝑛 values, 𝑛 being at least 4.
The current queueing delay is then calculated as:

𝑞𝑑 = 𝑅𝑇𝑇𝑐 − 𝑅𝑇𝑇𝑏 (1)

LEDBAT++ defines the GAIN parameter as follows3:

𝐺𝐴𝐼𝑁 = 1
𝑚𝑖𝑛(16, 𝐶𝐸𝐼𝐿(2 ∗ 𝑇

𝑅𝑇𝑇𝑏
))

(2)

For a 𝑇 equal to 60 ms, this means that GAIN is equal to 1 for base
RTTs larger than 120 ms, equal to 0.5 for base RTTs of 60 ms and
equal to 1

16 for RTTs smaller than 7.5 ms. As it will be described later,
the GAIN parameter is used to make LEDBAT++ AIMD less aggressive
than the one used by standard-TCP, even in cases where the buffers are
small. The (unstated) assumption is that networks with small base RTTs
are more likely to have shallow buffers (e.g., datacenter networks).

LEDBAT++ AIMD reacts to changes in the queueing delay by up-
dating its 𝐶𝑊 as follows:

if 𝑞𝑑 < 𝑇 , then

𝐶𝑊𝑛+1 = 𝐶𝑊𝑛 + 𝐺𝐴𝐼𝑁 (3)

3 CEIL(X) is defined as the smallest integer larger than X.



Computer Networks 212 (2022) 109036M. Bagnulo and A. García-Martínez

R

t
1
o
s
i
s

p
L
B
t
s
a
h

c
T
o
𝐶
𝐺
e
d

b
R
L
t
p

4

L
t
o
o
o
p
a
t
r

S
t
S
t
c
b
t
R
d
a
a
c
l
e

R

b
t
c

5

S

and if 𝑞𝑑 > 𝑇 , then

𝐶𝑊𝑛+1 = 𝐶𝑊𝑛 + 𝑚𝑎𝑥(−
𝐶𝑊𝑛
2

, (𝐺𝐴𝐼𝑁 − 𝐶𝑊𝑛.(
𝑞𝑑
𝑇

− 1))) (4)

with 𝐶𝑊𝑛 being the value of the congestion window computed at
TT 𝑛.
Eq. (3) defines the Additive Increase part. It basically states that

he 𝐶𝑊 increases up to 1 MSS per RTT (being 1 MSS if the base RTT is
20 ms or larger, and less than that for smaller base RTTs). The purpose
f this is to ensure that LEDBAT++ increases less aggressively than
tandard-TCP when the base RTT is less than 120 ms. This is especially
mportant when the bottleneck link buffer is small and LEDBAT++ is
olely decreasing its 𝐶𝑊 based on losses.
Eq. (4) describes the Multiplicative Decrease part. By using multi-

licative decrease (instead of the additive decrease used in LEDBAT),
EDBAT++ aims to overcome the (un)fairness issues identified in LED-
AT. The multiplicative decrease factor depends on the ratio between
he current queuing delay and the Target 𝑇 , so that LEDBAT++ reacts
oftly to small excesses in the queueing delay, allowing a smooth oper-
tion around the target point. The multiplicative decrease is capped to
alf, to avoid starving LEDBAT++ in cases of spikes in the delays.
LEDBAT++ performs a slow-start increase at the beginning of the

onnection. LEDBAT++ slow-start is similar to the one of standard-
CP, in the sense that the 𝐶𝑊 increases exponentially. However, in
rder to be less aggressive than standard-TCP, instead of doubling the
𝑊 every RTT, LEDBAT++ multiples the 𝐶𝑊 by a factor of 2 ⋅𝐺𝐴𝐼𝑁 ,
𝐴𝐼𝑁 being always less than or equal to 1. LEDBAT++ exits the
xponential growth of the initial-slow start when the measured queuing
elay surpasses 3

4 of the Target 𝑇 , in order to avoid overshooting.
In addition, LEDBAT++ performs periodic slow-downs to obtain

more accurate measurements of the base RTT and overcome the late-
comer advantage identified in LEDBAT. This means that periodically,
LEDBAT++ sets the 𝐶𝑊 to two 𝑀𝑆𝑆𝑠 during two 𝑅𝑇𝑇 𝑠 and then
performs a slow-start increase back to the 𝐶𝑊 value that it was using
efore the periodic decrease. An initial slow-down is performed 2
TTs after exiting the initial slow-start. After that initial slow down,
EDBAT++ performs slow-downs periodically. If we call 𝑇 𝑠𝑠 the time
hat it takes for the slow-start to ramp back up, then LEDBAT++
erforms the next periodic slow down after a period equal to 9 ⋅ 𝑇 𝑠𝑠.

. Experimental setup

In Fig. 1 we present the virtualized environment we use for the
EDBAT++ experiments. We are featuring a dumbbell topology. Albeit
his is a fairly simple topology with only 6 nodes, it is enough to thor-
ughly test a congestion control algorithm. As observed in the design
f model-based congestion control algorithms, see [11], independently
f the number of links a connection crosses, from the transport layer
erspective, any path, no matter how complex it is, it behaves as
single link with the RTT of the overall path and the capacity of
he path’s bottleneck link, which is exactly what this simple topology
epresents.
C1, R1, R2 and S1 are Linux systems while S2 is a Windows 2019

erver with LEDBAT++ capability. LEDBAT++ traffic flows from S2
o C1 while CUBIC traffic flows from S1 to C1. Traffic is generated in
1 using the nc tool and in S2 using the ctsTraffic tool (i.e., bulk
ransfer type of traffic in both cases). The client in C1 uses nc. The link
onnecting R2 with R1 is the bottleneck link of the communications
etween S1 (S2) and C1. We set its capacity to different values using
he tc traffic control tool. A drop-tail buffer is configured in the R2 to
1 link, with a size we may vary on different experiments, to represent
ifferent network setups. During the experiments, we also vary the RTT
nd the capacity of the bottleneck link. The links between S1 (S2)
nd R2 and the ones between C1 and R1 are configured with larger
apacities than the one of the bottleneck. For all experiments, the link
ayer frame size is 1456 bytes and the MSS is 1390 bytes. In all the
xperiments, TCP flow control never limits the communication rate.
To compute the rates for each flow, we start a tcpdump capture in

1.
3

f

Fig. 1. Experiment setup.

5. LEDBAT++ solo performance

In this section, we analyze the performance of LEDBAT++ when
there is no competing traffic in the bottleneck link, i.e., the performance
of a single LEDBAT++ flow running solo in the bottleneck link. We
consider different conditions varying the RTT and the bottleneck link
capacity and analyze the resulting behavior.

LEDBAT++ has two different modes of operation, delay based and
loss based. When the bottleneck link buffer has enough capacity to
generate a queueing delay equal or higher than LEDBAT++’s target
delay (𝑇 ), then LEDBAT++ runs in delay based mode, while when the
uffer is smaller, losses are generated before LEDBAT++ can react to
he increase in the queueing delay, so it runs in loss based mode. We
onsider both modes of operation in our analysis.

.1. LEDBAT++ solo performance in delay based mode

For this analysis, we configure a large buffer in the bottleneck link.
pecifically, we configure a buffer of size 𝐵 equal to 500 ms. We express
the size of the buffer in milliseconds rather than in bytes. The size of
the buffer in bits can be computed as 𝐶∗𝐵

1,000 , with 𝐶 being the bottleneck
link capacity expressed in bps.

5.1.1. LEDBAT++ solo performance in delay based mode: variation with
RTT

We perform experiments with a single LEDBAT++ flow running in
a bottleneck link of capacity 𝐶 equal to 20 Mbps, with a buffer of size
𝐵 equal to 500 ms. We vary the base RTT (𝑅𝑇𝑇𝑏) between 10 ms and
400 ms. Each experiment runs for 300 s and we compute the average
rate of the LEDBAT++ flow for each experiment. We perform 8 runs for
each RTT measured. The results are plotted in Fig. 2. The graph plots
the rate achieved at the application layer.4 The maximum application
layer rate possible in a 20 Mbps link is also plotted.

By looking at the graph, we can observe that the rate achieved for
small RTTs is close to the full capacity of the link, for medium RRTs,
the rate decreases lightly and that for larger RTTs the rate decreases
even further.

In order to gain some insights about the differences in performance
depending on the base RTT, we look into the evolution of the flight-size
(i.e., the number of bytes sent but not yet acknowledged) throughout
the duration of particular experiments. We use the flight-size as an
estimator of the sender window. We measure the flight-size to avoid
instrumenting the Windows Server to retrieve the sender’s window. In
most cases, the sender window and flight-size matches (except when
there are losses and mechanisms like Fast Recovery [12] are used, that
they differ for the short period while the lost packet is recovered, which
is not the case of LEDBAT++).

In Fig. 3 we plot the flight-size observed in one of the experiments
with RTT set to 100 ms. Omitting the transient initial period, we
observe that most of the time, the flight-size oscillates around the
bandwidth-delay product (BDP) corresponding to a delay equal to

4 The application level data accounts for 1390 B out of the 1456 B of the
rame.



Computer Networks 212 (2022) 109036M. Bagnulo and A. García-Martínez

D
p

t
i

w
w
d
s
t
a
L
t
n
s
T
w

i

a

a
s

Fig. 2. Rate achieved by a single LEDBAT++ flow running solo in a bottleneck link
of 20 Mbps with a buffer of 500 ms, varying the base RTT.

Fig. 3. Flight-size of a LEDBAT++ flow running solo in a bottleneck link of 20 Mbps
with a buffer of 500 ms, with base RTT set to 100 ms.

160 ms (i.e., 100 ms of RTT plus 60 ms of target 𝑇 ),5 i.e., 372 kB.
uring the periods in which the flight-size is at the bandwidth delay
roduct, full utilization of the bottleneck link capacity is achieved.
However, we can also observe that the periodic slowdowns reduce

he flight-size, impacting the overall rate achieved. We can estimate the
mpact of the periodic slow downs as follows.
According to the specification, periodically, LEDBAT++ reduces the

indow to 2 MSS for 2 RTTs and then uses slow-start to increase the
indow back up to the value that it had before the periodic slow
own. The behavior is repeated after 9 times the time that it took for
low-start to ramp back up the window. We observe this behavior in
he plot, with the periodic reductions of the flight-size. As a rough
pproximation, for large enough BDPs (i.e., much larger than 2 MSSs),
EDBAT++ transmits at full speed during 9/10 of the time, while
he remaining 1/10 of the time is (practically) not transmitting. So,
aturally, LEDBAT++ achieves a rate of 9/10 of the available capacity
ince 1/10 of the capacity is wasted due to the periodic slow down.
his is what is observed in Fig. 2 for RTTs between 20 ms and 300 ms
here 0.9 of the maximum application layer rate is also plotted.
We present a more thorough justification of the 9

10
𝑡ℎ
approximation

n Appendix.
For RTTs close to 0, we observe in Fig. 2 that LEDBAT++ is almost

chieving the full utilization of the available capacity. This is so because

5 Similarly to the previous plots, the values in Fig. 3 correspond to the
pplication level data, which are 1390 B out of the 1456 B of the segments,
o the appropriate correction factor should be included for the calculations.
4

Fig. 4. Flight-size of a LEDBAT++ flow running solo in a bottleneck link of 20 Mbps
with a buffer of 500 ms, with base RTT set to 400 ms.

the window needed to fill up the BDP is small. LEDBAT++ uses a
minimum window of 2 MSS. For RTTs smaller than 1.2 ms, the full 20
Mbps of capacity are achieved using windows of 2 MSS or smaller. Also,
for small RTTs, the number of rounds in exponential growth needed to
restore the window is also small, so the penalty imposed by the slow-
start is reduced. When the RTT increases, the window required to fill
in the available capacity grows larger and the effect of the periodic
slow down becomes more apparent, converging to the observed 9/10
of available capacity observed for larger RTTs. A more formal analysis
of this is presented in Appendix.

We next inspect what happens for larger RTTs, when the perfor-
mance decreases beyond the 9/10 factor described before. In Fig. 4 we
plot the flight-size of a single LEDBAT++ flow with an RTT of 400 ms.
We observe that the maximum flight-size achieved is smaller than the
one required to fill in the link. Specifically, for an RTT of 400 ms, the
flight-size required to achieve 20 Mbps is 1 MB while the maximum
flight-size observed on the graph is close to 800 kB.

We also observe that after a periodic slow down, LEDBAT++ at-
tempts to restore the rate it was transmitting at before entering the
slow down. However, after reaching the desired rate exponentially, it
reduces its rate further and only then resumes the linear increase, until
the next periodic slow down. We also observe that after 200 s, it enters
in a steady state, and the growth during the linear increase matches the
decrease suffered right after the exponential growth.

We next look at the observed RTTs, depicted in Fig. 5, to gain
further insight. We can easily match the evolution of the measured RTT
with the evolution of the rate observed in Fig. 4. The periods of linear
increase of the rate match with the periods during which the RTT is
close to the base RTT. During these periods, we observe that the RTT
never reaches the base RTT plus the Target 𝑇 (i.e., 460 ms) so never
triggering the multiplicative decrease. We also observe periodic large
peaks in the RTT. These peaks match with the exponential increases in
Fig. 4. In these peaks, the measured RTTs surpass the 460 ms, resulting
in a queuing delay that exceeds the target 𝑇 of 60 ms, triggering the
LEDBAT++’s multiplicative decrease which causes the reduction on the
rate we observe right after each exponential growth in Fig. 4.

To understand what is causing these peaks in the measured RTT,
we recall that during exponential growth, each ACK received generates
GAIN additional packets. If 𝑅𝑇𝑇𝑏 is larger than 120 ms, GAIN is equal
to 1. This means that if in the 𝑛th RTT k packets were sent, in the (𝑛+1)𝑡ℎ
RTT, 2k packets are issued. Because of ACK clocking, 2k packets will be
issued during the time it takes the bottleneck to transmit k packets. So,
packets spend some time in the buffer. If the queueing delay caused by
these packets in the last round of the exponential growth exceeds the
target T, it triggers a subsequent window reduction. After this window
reduction, LEDBAT++ increases the window linearly, but only until the
next periodic slow down, at which point the behavior repeats itself.



Computer Networks 212 (2022) 109036M. Bagnulo and A. García-Martínez
Fig. 5. Observed RTT LEDBAT++ flow running solo in a bottleneck link of 20 Mbps
with a buffer of 500 ms, with base RTT set to 400 ms.

So, the maximum window is determined by the reduction suffered
after the exponential growth and how much LEDBAT++ can increase
the window linearly during the limited time the linear increase phase
lasts. LEDBAT++ achieves an equilibrium point, where these two ef-
fects compensate each other. We observe that in Fig. 4. After 200 s,
LEDBAT++ enters in steady state where the growth during the linear
increase phase matches exactly with the drop occurring right after the
exit of the exponential growth. This additional penalty occurs when
the 𝑅𝑇𝑇𝑏 is larger than 300 ms (in the Annex we obtain an analytic
expression that allows to compute that).

Takeaway: For rates of 20 Mps and base RTTs smaller than 20 ms,
the LEDBAT++’s rate is close to the full capacity. For base RTTs
between 20 ms and 300 ms, the periodic slow downs used in
LEDBAT++ result in a 10% penalty on the rate achieved. For base
RTTs larger than 300 ms, LEDBAT++ is unable to restore the rate
after periodic slow downs, resulting in further penalty in the rate
achieved.

5.1.2. LEDBAT++ solo performance in delay based mode: variation with
capacity

We next look into how the rate achieved by LEDBAT++ varies with
the link’s capacity. We find that the range of 𝑅𝑇𝑇𝑏 where we observe
the different performance penalties is fairly insensitive to the capacity
(at least for capacities between 1 and 40 Mbps) and that in all cases, for
values of the 𝑅𝑇𝑇𝑏 below 300 ms, the achieved rate is close to 0.9 of
the available capacity while for 𝑅𝑇𝑇𝑏 larger than that it drops further.

In Figs. 6–8 we plot the rate achieved by a single LEDBAT++ flow in
a bottleneck link with a buffer of 500 ms varying the capacity with RTT
set to 20 ms, 100 ms and 400 ms respectively. In both graphs we plot
in addition the maximum capacity and 0.9 of the maximum capacity.

Takeaway: For bottleneck link capacities between 1 Mbps and 40
Mbps, we observe that for base RTTs lower than 300 ms LEDBAT++
is able to seize 90% of the available capacity while for larger base
RTTs the throughput is further reduced. This is an effect of the
periodic slow-downs implemented by LEDBAT++.

5.1.3. Possible solutions to the performance penalty problems
We have identified that the periodic slow downs used by LED-

BAT++ result in two performance penalties, the 9
10 penalty and the

one resulting from the queuing delay experienced after the exponential
growth. In order to address the 9

10 penalty LEDBAT++ could restore
the rate it was using before the periodic slow down without using the
exponential increase. This would effectively limit the penalty to 2 RTTs
significantly reducing the penalty. The downside with this approach is
that after the 2 RTTs, the load of the bottleneck may have changed
5

Fig. 6. Rate achieved by a single LEDBAT++ flow running solo in a bottleneck link
with a buffer of 500 ms, with a base RTT of 20 ms varying the capacity.

Fig. 7. Rate achieved by a single LEDBAT++ flow running solo in a bottleneck link
with a buffer of 500 ms, with an RTT of 100 ms varying the capacity.

Fig. 8. Rate achieved by a single LEDBAT++ flow running solo in a bottleneck link
with a buffer of 500 ms, with an RTT of 400 ms varying the capacity.

and the restoration of the previous rate could result in some transient
congestion. Other possible options to reduce this penalty could be
to reduce the frequency of the periodic slow downs. For instance,
BBR [13] performs slow downs every 10 s. Moreover, in its latest
version 2, in order to reduce the penalty in performance, during slow-
downs BBRv2 reduces its flightsize to half, which can also be a possible
alternative to be considered for LEDBAT++.

Solutions to the penalty caused by the excess in queueing can be as
simple as not considering the RTTs measured in the RTT after the exit
of the exponential growth. Once the full window is restored, the ACK
clocking ensures smooth operation without artificial added delays. The



Computer Networks 212 (2022) 109036M. Bagnulo and A. García-Martínez

t

I
k
p
t
o
t
p
t
s
m
b

Fig. 9. RTT achieved by a single LEDBAT++ flow running solo in a bottleneck link
with a buffer of 500 ms, with an RTT of 20 ms varying the capacity.

potential downside of this approach is that if there is congestion at this
moment, LEDBAT++ response is delayed one RTT.

In any case, performance of these simple solutions should be thor-
oughly analyzed and this is beyond the scope of this paper.

5.1.4. Latency drift
We also perform a set of long experiments to determine if LED-

BAT++ manages to address the latency drift problem. We performed
8 runs of a single LEDBAT++ flow in a 20 Mbps bottleneck link with
a 500 ms buffer and a 20 ms base RTT. Each run lasted for 30 mins.
The RTT observed for one of these experiments is depicted in Fig. 9.
We observe that because of periodic slow downs, LEDBAT++ is able
to periodically measure the RTT correctly and that discarding earlier
measurements does not cause the latency drift problem present in
LEDBAT.

5.2. LEDBAT++ solo performance in loss based mode

For these experiments, we configure a small buffer in the bottleneck
link. Specifically, we configure a buffer of size 𝐵 equal to 30 ms.

5.2.1. LEDBAT++ solo performance in loss based mode: variation with
RTT

As we did before, we analyze the variation with the RTT of the rate
seized by a single LEDBAT++ flow when running on its own, but now
with a small buffer in the bottleneck link.

We perform experiments computing the average rate achieved by
a single LEDBAT++ flow running in a bottleneck link of capacity 𝐶
equal to 20 Mbps, with a buffer of size 𝐵 equal to 30 ms. We vary the
base RTT (𝑅𝑇𝑇𝑏) between 10 ms and 400 ms. Each experiment ran for
300 s and we computed the average rate. We perform 8 runs for each
RTT measured. The results are plotted in Fig. 10. The graph plots the
achieved rate at the application layer, and the maximum application
layer rate possible in a 20 Mbps link is also plotted. In the graph we can
observe that for RTT equal to 10 ms the rate achieved is close to the full
capacity of the link, then with RTT equal to 20 ms the rate decreases to
0.9 of the available capacity and for RTTs larger than 40 ms the rates
decrease even further.

In order to gain deeper insight of what is happening, we look at
the evolution of the flight-size for base RTT equal to 20 ms in Fig. 11.
We observe that the flight-size is most of the time larger than the BDP
corresponding to the link (the BDP of capacity 20 Mbps and RTT of
20 ms is 47 kB6). The reason why LEDBAT++ is unable to seize all the

6 Using the correction factor associated to the application rate plotted in
he graph.
6

Fig. 10. Rate achieved by a single LEDBAT++ flow running solo in a bottleneck link
of 20 Mbps with a buffer of 30 ms, varying the base RTT.

Fig. 11. Flight-size of a LEDBAT++ flow running solo in a bottleneck link of 20 Mbps
with a buffer of 30 ms, with base RTT set to 20 ms.

available capacity in this case is because of the periodic slow downs.
As in the case of large buffers, the periodic slow downs impose a 10%
penalty in the capacity used, so LEDBAT++ in this case is able to use
90% of the capacity, as observed in Fig. 10.

For smaller base RTTs, the penalty introduced by the periodic
slow downs decreases, as the minimum window of 2 MSS used by
LEDBAT++ during the slow downs is closer to the window required
to achieve full utilization of the link.

We next look into larger base RTTs. In Fig. 12 we plot the flight-size
for base RTT equal to 100 ms. We observe that the maximum flight-size
observed matches to the BDP corresponding to the base RTT plus the
available buffer (i.e., 310 kB), concluding that the losses occur because
the buffer is full. However, because LEDBAT++ is functioning as a loss
based AIMD, it is unable to reach the maximum capacity since the
buffer is smaller than the BDP [14].

In Fig. 13 we plot the flight-size for base RTT equal to 260 ms.
n this case, we observe that the maximum flight-size observed (610
B) is considerably lower than the BDP corresponding to the base RTT
lus the buffer (i.e., 767 kB). We also observe that LEDBAT++ fails
o restore the window after a periodic slow down. So, in this case, we
bserve a similar behavior than the one exhibited in delay-based mode,
hat is that exponential growth used to restore the window after a
eriodic slow down fills up the buffer and cramps LEDBAT++ capacity
o restore the window. In this case, the effect is more pronounced,
ince when the buffer is full, packets are lost (while in the delay based
ode, larger delays are observed which trigger LEDBAT++’s delay
ased mechanisms).



Computer Networks 212 (2022) 109036M. Bagnulo and A. García-Martínez
Fig. 12. Flight-size of a LEDBAT++ flow running solo in a bottleneck link of 20 Mbps
with a buffer of 30 ms, with base RTT set to 100 ms.

Fig. 13. Flight-size of a LEDBAT++ flow running solo in a bottleneck link of 20 Mbps
with a buffer of 30 ms, with base RTT set to 260 ms.

Takeaway: In a bottleneck link of 20 Mbps, we find that for buffers
of size B ms, smaller than the Target 𝑇 , LEDBAT++ performance as
a function of the base RTT is as follows. For base RTTs close to 2 ms,
the full capacity is achieved, since the minimum window used by
LEDBAT++ is enough to fill in the link. For base RTTs up to B ms,
0.9 of the capacity is achieved, since 10% of the capacity is lost due
to inactivity periods caused by periodic slow downs. For larger base
RTTs, LEDBAT++’s performance is penalized even further.

5.2.2. LEDBAT++ solo performance in loss based mode: variation with
capacity

We next look into how the rate achieved by LEDBAT++ varies with
the link’s capacity. We find that the range of 𝑅𝑇𝑇𝑏 where we observe
the different behaviors are fairly insensitive to the capacity (at least for
capacities between 1 and 40 Mbps) and that in all cases, for 𝑅𝑇𝑇𝑏 equal
to 20 ms, the achieved rate is close to 0.9 of the available capacity while
for 𝑅𝑇𝑇𝑏 equal to 100 ms it drops below that and for 𝑅𝑇𝑇𝑏 equal to
300 ms it drops even further.

In Figs. 14–16 we plot the rate achieved by a single LEDBAT++ flow
in a bottleneck link with a buffer of 30 ms varying the capacity with
𝑅𝑇𝑇𝑏 set to 20 ms, 100 ms and 300 ms respectively. In both graphs
we plot in addition the maximum capacity and 0.9 of the maximum
capacity.

6. LEDBAT++ and Cubic

In this section, we look into how LEDBAT++ performs when sharing
a bottleneck link with a TCP connection that is using Cubic as conges-
tion control algorithm. We first consider the case of large bottleneck
7

Fig. 14. Rate achieved by a single LEDBAT++ flow running solo in a bottleneck link
with a buffer of 30 ms, with a base RTT of 20 ms varying the capacity.

Fig. 15. Rate achieved by a single LEDBAT++ flow running solo in a bottleneck link
with a buffer of 30 ms, with an RTT of 100 ms varying the capacity.

Fig. 16. Rate achieved by a single LEDBAT++ flow running solo in a bottleneck link
with a buffer of 30 ms, with an RTT of 300 ms varying the capacity.

link buffers and then we move on to the case where small buffers are
used.

6.1. LEDBAT++ and Cubic with large buffers

In this case, we configure a large buffer on the bottleneck link of
500 ms. Because the buffer is much larger than the target 𝑇 , LEDBAT++
should be able to react to excess of delays. In Fig. 17 we depict the
rate achieved by a LEDBAT++ and a TCP/Cubic flow competing in a
20 Mbps bottleneck link for different values of the base RTT. For each



Computer Networks 212 (2022) 109036M. Bagnulo and A. García-Martínez

s
a
u
i
c
t
d

c
f
y

6

c
c
c
l
w
o
r
c

b

Fig. 17. Rate achieved by a single LEDBAT++ flow competing with a TCP/Cubic flow
in a bottleneck link of 20 Mbps with a buffer of 500 ms, varying the base RTT.

Fig. 18. Inflight packets for a single LEDBAT++ flow competing with a TCP/Cubic
flow in a bottleneck link of with a buffer of 500 ms.

base RTT we performed 8 experiments. We observe that LEDBAT++
yields to Cubic, fulfilling its goal, irrespectively of the base RTT.7

In this case, the capacity seized by LEDBAT++ comes from two
ources. First, LEDBAT++ always sends 2 MSS per RTT, in order to be
ble to continuously estimate the queuing delay and be able to ramp
p when the observed delay is below the target 𝑇 . The second source
s the leftovers from Cubic, resulting from the reductions of the Cubic’s
ongestion window due to losses. However, as it can be observed in
he graph 18 that depicts the flight-size of both Cubic and LEDBAT++,
espite of these effects, Cubic seizes most of the capacity.
We next measure the capacity split for bottleneck links of different

apacities and present the results in Fig. 19. We perform 8 experiments
or each capacity. Similarly than before, we observe that LEDBAT++
ields to Cubic for all measured capacities, achieving its goal.

.1.1. Short TCP flows
We next investigate how LEDBAT++ background traffic impacts the

ompletion time of short TCP flows. According to [16], 99.1% of flows
arry less than 260 KB and less than 512 packets. In 20 we plot the
ompletion time of a short TCP/Cubic flow when running alone in the
ink, when competing with a long TCP/Cubic flow and when competing
ith a long LEDBAT++ flow. We can observe that the completion time
f the short flow is similar to the one that the flow obtains when
unning solo and significantly shorter than the one obtained when
ompeting with another Cubic flow.

7 We observe that for very large values of the base RTT, Cubic struggles a
it to reach the available capacity, as it has been previously observed in [15].
8

Fig. 19. Rate achieved by a single LEDBAT++ flow competing with a TCP/Cubic flow
in a bottleneck link with a buffer of 500 ms, with 20 ms of base RTT and varying the
capacity.

Fig. 20. Completion time of a short TCP/Cubic flow in 3 scenarios: running solo,
competing with a long TCP/Cubic flow and competing with a long LEDBAT++ flow.
The bottleneck link has 20 Mbps and a buffer of 500 ms, varying the base RTT.

6.2. LEDBAT++ and Cubic with small buffers

We now explore how LEDBAT++ behaves when sharing a bottle-
neck link with a Cubic flow if the buffer is smaller than the target. For
that, we run experiments using a LEDBAT++ flow and a Cubic flow
on a 20 Mbps bottleneck link with a 30 ms buffer and varying the
base RTT. We run each experiment 8 times and the results are plotted
in Fig. 21. We observe that LEDBAT++ uses less capacity than Cubic,
but it does not yield completely, as in the case of larger buffers. That
is expected since LEDBAT++’s delay-based mechanisms are not active
and it only react to packet loss. But because of the GAIN parameter,
LEDBAT manages to avoid competing in equal grounds than Cubic and
yields part of the capacity to Cubic. Across the different values of the
base RTT, Cubic uses at least 2.5 times more capacity than LEDBAT++
(in the case of the base RTT of 80 ms) and up to 10 times more capacity
(for base RTT of 400 ms).

We also look into how LEDBAT++ competes with Cubic with small
buffers for different capacities. We observe the results in Fig. 22 and
we observe a similar behavior.

7. Inter-LEDBAT++ fairness

One of the main problems with the original LEDBAT are those
related to inter-LEDBAT fairness and the so called late-comer advan-
tage. We perform a number of experiments to learn if the proposed
LEDBAT++ mechanisms achieve inter-LEDBAT++ fairness. We start
with a number of experiments aimed to assess fairness between LED-
BAT++ flows that start at the same time and then we perform other
experiments to determine if the late-comer advantage still persists in

LEDBAT++.



Computer Networks 212 (2022) 109036M. Bagnulo and A. García-Martínez

a
c
t

7

B

Fig. 21. Rate achieved by a single LEDBAT++ flow competing with a TCP/Cubic flow
in a bottleneck link of 20 Mbps with a buffer of 30 ms, varying the base RTT.

Fig. 22. Rate achieved by a single LEDBAT++ flow competing with a TCP/Cubic flow
in a bottleneck link with a buffer of 30 ms, varying the capacity and using a base RTT
of 20 ms.

7.1. Fairness between synchronized LEDBAT++ flows

We measure the split achieved between two LEDBAT++ flows that
start at the same and share a bottleneck link of 20 Mbps for different
values of the base RTT. We perform 8 runs for each value of the base
RTT and we plot the rate achieved by one of the flows in Fig. 23(a).
We observe the flow never starves nor uses all available capacity. Most
flows achieve a rate close to 45% of the available capacity (i.e., half of
the 90% of the available capacity, that from previous experiments of a
LEDBAT++ flow running solo, we know is the maximum LEDBAT++
can seize, accounting for the capacity wasted by the periodic slow
downs). When looking at the deviations, we observe that the mean
deviation (i.e., the difference between the rates achieves between the
two flows) is generally around 15% and below 20%. We also plotted
Jain’s fairness index [17] for the two competing flows for the different
RTTs in Fig. 23(b), and we find that it is always above 0.96 (1 being
the ideal fair split).

We next perform similar experiments using bottleneck links with
different capacities, to learn about the impact of the capacity on the
fairness properties of LEDBAT++. In Fig. 24 we plot the capacity
chieved by one of the LEDBAT flows for bottleneck links with different
apacities and a base RTT of 100 ms. We observe that irrespectively of
he capacity, a fair split is achieved.

.2. Late-comer advantage

We next perform a set of experiments to assess whether LED-
9

AT++ suffers from the late-comer advantage present in LEDBAT. To
Fig. 23. Fairness for two LEDBAT++ flows sharing a 20 Mbps bottleneck link, with
both flows starting at the same time. The buffer is 500 ms and the base RTT varies.

Fig. 24. Rate achieved by a single LEDBAT++ flow sharing a bottleneck link with
another LEDBAT++ flow with both flows starting at the same time. The buffer is
500 ms, the base RTT is 100 ms and the capacity varies.

understand the mechanics of LEDBAT++ in this scenario, we run an
experiment with four LEDBAT++ flows that start with a difference of
10 s between each other. The flight-size for each of the flows is depicted
in Fig. 25 and the RTT observed for each flow is plotted in Fig. 26.

We observe that when the first flow starts, it stabilizes around the
rate required to meet the target queueing delay. The first flow was
able to accurately measure the base RTT in the initial packets and
also during the initial slow down. When the second flow starts, it is
unable to properly measure the base RTT, as the first flow is bloating
it up to reach the target queueing delay. So the second flow wrongfully



Computer Networks 212 (2022) 109036M. Bagnulo and A. García-Martínez

i
2

Fig. 25. Flight-size of four LEDBAT++ flows sharing a 20 Mbps bottleneck link starting
n intervals of 10 s apart from each other. The buffer is 500 ms and the base RTT is
0 ms.

Fig. 26. RTT of four LEDBAT++ flows sharing a 20 Mbps bottleneck link starting in
intervals of 10 s apart from each other. The buffer is 500 ms and the base RTT is
20 ms.

measures a base RTT as the real base RTT plus the target. This means
that it will then increase the sending rate until an additional queueing
delay of 𝑇 is achieved. The first flow, which has an accurate measure
of the base RTT, now observes a queuing delay of twice the target
and reduces its rate, yielding to the second flow. So far, this is the
late-comer advantage effect that was present in LEDBAT.

However, once that the second flow has occupied the whole capac-
ity available, LEDBAT++ exits slow-start and imposes an initial slow
down. This can be observed in Fig. 25, i.e., the flight-size reduction
of the second flow shortly after peaking. At this point, the buffer is
fully emptied and the second flow is now able to properly measure
the base RTT, as observed in Fig. 26. After the initial slowdown, flow
2 restores the previous congestion window, but now, with the proper
assessment of the base RTT, it will reduce its sending rate towards a
fair split with flow 1. The same mechanics occur when the third and
fourth flow enters.

Once we understand the mechanics of how LEDBAT++ addresses
the late-comer advantage problem, we present a series of experiments
to measure the resulting capacity split between two LEDBAT++ flows
that start at different times. In Fig. 27 we plot the rate of a LEDBAT++
flow sharing a bottleneck link of 20 Mbps with another LEDBAT++
flow. One of the flow starts 10 s after the other one. The rates plotted
correspond to the flow that started first. We observe that the capacity
is fairly split between them and there is no evidence of late comer ad-
vantage. We also computed Jain’s fairness index for al the experiments
and similarly to the case of flows starting at the same time, we find that
for all the different RTTs, the index is above 0.94.
10
Fig. 27. Rate achieved by a single LEDBAT++ flow sharing a 20 Mbps bottleneck link
with another LEDBAT++ flow that started 10 s later. The buffer is 500 ms and the
base RTT varies.

Fig. 28. Rate achieved by a LEDBAT++ flow with an RTT of 100 ms sharing a 20
Mbps bottleneck link with another LEDBAT++ flow with a different RTT. The buffer
is 500 ms and the base RTT of the second flow varies. Both flows start at the same
time.

Takeaway: LEDBAT++ addresses the late comer advantage and
converges to a fair split, albeit slowly.

7.3. RTT fairness

We next explore how the bottleneck link capacity is split between
two LEDBAT++ flows with different RTTs. In Fig. 28 we plot the rates
of two LEDBAT++ flows sharing a 20 Mbps link. One of the flows
experiences a base RTT equal to 100 ms while the competing flow has
an RTT that varies between 20 ms and 400 ms. In each experiment,
both flows start at the same time.

We observe that LEDBAT++ lacks of RTT fairness and that flows
with smaller base RTTs are able to seize more capacity than flows with
larger RTTs. This is not surprising since LEDBAT++ is an ACK-clocked
AIMD mechanism, as other RTT-unfair congestion control algorithms,
which are known to allocate more capacity to flows with shorter
RTTs [18].

8. Related work

To the best of our knowledge, there is no prior work measuring and
analyzing LEDBAT++ performance.

There are a number of papers that analyzed and measured LEDBAT
and proposed improvements to LEDBAT or simply alternative LBE
congestion control algorithms.

Notably, in a series of papers [5,19–21], Rossi et al. analyze, sim-
ulate and measure different versions of the LEDBAT protocol and



Computer Networks 212 (2022) 109036M. Bagnulo and A. García-Martínez

t

identified several of the shortcomings that LEDBAT++ aims to address
as well as several solutions to the identified problems. Specifically,
these papers identify the late-comer advantage problem in LEDBAT and
evaluate possible approaches to address the issue. In particular, they
propose and evaluate using a multiplicative decrease instead of additive
increase as a possible fix to the problem. LEDBAT++ does incorporate
the multiplicative decrease suggested in these papers, along with the
periodic slow downs to overcome the late-comer advantage.

[22] studies the impact of route changes during the lifetime of a
LEDBAT communication, which result in large delay variations. They
conclude that such route changes would hinder performance and fair-
ness of LEDBAT flows. While this paper does not suggests any solution
to the identified problem, the final LEDBAT specification [1] did in-
corporate a maximum lifetime for the base delay measurements of
10 min, that attempts to address this concern. Unfortunately, the
adopted solution causes in turn the latency drift problem instead. The
latency drift problem is identified in [10]. They verify its existence
through simulations. As a possible fix to the problem, the authors
suggest stopping the transfer during a period at least equal to the target
before updating the base delay measurements. This is essentially the
approach taken by LEDBAT++, as it introduces periodic slow downs,
that allows it to empty the buffer and measure the real base delay
without self-interference.

[23] and more recently [24] characterize the performance of LED-
BAT using different active queue management techniques, including
PIE and CoDel.

Eclipse [25] is an alternative LBE congestion control algorithm that
addresses some of the limitations of LEDBAT. As opposed to LEDBAT,
that uses a fixed delay target, Eclipse uses a dynamic target that
adapts to the network conditions. This is a different direction than the
one followed by LEDBAT++ to address LEDBAT issues. To validate
Eclipse, [25] performs a number of simulations using OMNeT++ in
which they compare the performance of Eclipse with LEDBAT (not
LEDBAT++ since Eclipse is prior to LEDBAT++) when running solo and
also when competing with Reno.

In [26], the authors propose LEDBAT-MP, a multi-path capable con-
gestion control algorithm based both on the original LEDBAT algorithm
and on the SCTP multi-path transport. They evaluate the performance
of the proposed LEDBAT-MP using a simulation setup using OMNeT++
and compare its performance against Reno and also against other multi-
path capable congestion control algorithms. Like Eclipse, this work is
prior to LEDBAT++ and as such, they do not consider it during the
evaluation of LEDBAT-MP.

Meng et al. [27] propose a novel scavenger congestion control
algorithm, PCC Proteus, that also aims to overcome the shortcomings
identified for LEDBAT. Proteus is an extension to the PCC utility-
based approach [28], that defines a new utility function to reflect the
objectives of scavenger traffic. As part of the evaluation of Proteus,
they perform a number of experiments involving LEDBAT, CUBIC,
Proteus and a few other congestion control algorithms. Even though
LEDBAT++ was already available in Windows 10 (through the Win-
dows 10 anniversary update [7] and described in [27,29] tested the
original LEDBAT algorithm instead of the newly proposed LEDBAT++.
Consequently, they find the well know shortcomings of LEDBAT, no-
tably, inter-LEDBAT fairness issues due to the late-comer advantage
and competition with CUBIC on equal grounds when the buffer is not
large enough to generate a queueing delay larger than LEDBAT’s target.
The conclusion is that Proteus outperforms LEDBAT, but no results are
provided regarding to how LEDBAT++ performs against Proteus (nor
any of the other congestion control algorithms analyzed).

9. Conclusions

We have experimentally studied the performance of LEDBAT++. We
find that it roughly fulfills all the goals it was designed for. Notably, it
fully yields in front of CUBIC when buffers larger than the Target are
11
used in the bottleneck and it partially yields when small buffers are
used. This is an improvement compared to LEDBAT, which competes in
equal grounds with CUBIC for small buffers [6]. Also, LEDBAT++ ad-
dresses the late-comer advantage and the latency drift issues identified
in LEDBAT, thanks to the periodic slow downs it performs.

However, we also identified that the very mechanism that allows
LEDBAT++ to address these issues (i.e., the periodic slow down) im-
poses a performance penalty, impeding LEDBAT++ to fully seize all
the available capacity when there is no competing traffic. We propose
two simple solutions to suppress the penalty, namely, restore the rate
without using slow start and disregard the delay samples during the
RTT after the restoration of the rate.

As future work, we plan to implement the proposed solutions to the
identified shortcomings in LEDBAT++ to validate their effectiveness.
Also, we plan to extend the experimental study on the performance
of LEDBAT++ to scenarios in which LEDBAT++ is competing with
model-based congestion control algorithms, such as BBR [13], which
is becoming increasingly popular.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work has been partially supported by the EU EC through the
NGI Pointer RIM project, Grant 871528, and the Madrid Government
(Comunidad de Madrid-Spain) under the Multiannual Agreement with
UC3M in the line of Excellence of University Professors (EPUC3M21),
and in the context of the V PRICIT (Regional Programme of Research
and Technological Innovation).

Appendix. Model for LEDBAT++ solo performance

A.1. 9
10

𝑡ℎ
Approximation for small and medium base RTTs

For small and medium base RTTs we can estimate the impact of the
periodic slow downs as follows.

When not in a periodic slow down, the average congestion window
(expressed in Bytes) is set to:

𝑊 = 𝐶 ∗ (𝑅𝑇𝑇𝑏 + 𝐵𝑈𝐹𝐹 ) (5)

Periodically, LEDBAT++ reduces the window to 2 MSS for 2 RTTs
and then uses slow-start to increase the window up to the value that
it had before the periodic slow down. The behavior is repeated after 9
times the time that it took for slow-start to ramp back up the window.

We call 𝑇𝑠𝑠 the time that it takes for slow-start to increase the
window from 2 MSS back to the value it had before the reduction. 𝑇𝑠𝑠
(expressed in RTTs) can be computed as:

𝑇𝑠𝑠 = 𝑙𝑜𝑔2(
𝑊

𝑀𝑆𝑆
) (6)

We can then express the observed behavior in terms of periodic slow
down epochs, each one composed of: first, 2 RTTs during which the
window is set to 2 MSS, second, a period of duration 𝑇𝑠𝑠 during which
the window increase from 2 MSS to the average steady state window
𝑊 using slow-start and third, a period of duration 9𝑇𝑠𝑠 during which
he window oscillates around 𝑊 . Hence the number of bytes sent in
one slow down epoch can be calculated as:

𝐵𝑠𝑒𝑛𝑡 = 2 ∗ 2 ∗ 𝑀𝑆𝑆 + 2 ∗ 𝑊 + 9 ∗ 𝑇𝑠𝑠 ∗ 𝑊 (7)

the second term is the sum of segments sent during slow-start
(geometric progression).



Computer Networks 212 (2022) 109036M. Bagnulo and A. García-Martínez

m
l

𝑅

𝑇

𝛽

w

s

a
e
t
𝑅

R

The maximum number of packets that could be sent during the same
period can be approximated as:

𝐵𝑚𝑎𝑥 = 2 ∗ 𝐶 ∗ 𝑅𝑇𝑇𝑏 + 10 ∗ 𝑇𝑠𝑠 ∗ 𝑊 (8)

This results in a ratio of the packets sent with respect to the maxi-
um packets that can be sent using the full capacity of the bottleneck
ink equal to:

=
2 ∗ 2 ∗ 𝑀𝑆𝑆 + 2 ∗ 𝑊 + 9 ∗ 𝑇𝑠𝑠 ∗ 𝑊

2 ∗ 𝐶 ∗ 𝑅𝑇𝑇𝑏 + 10 ∗ 𝑇𝑠𝑠 ∗ 𝑊
(9)

For values of 𝑊 that are large enough, which result in also a larger
𝑠𝑠, the ratio of 𝐵𝑠𝑒𝑛𝑡 over 𝐵𝑚𝑎𝑥 can be approximated by

9
10 .

A.2. Model for large base RTTs

For larger base RTTs, we have observed that the exponential growth
results in a queueing delay larger than the target, forcing a reduction
in the window immediately after exiting the exponential growth. After
this reduction, LEDBAT++ observes a delay smaller than the target 𝑇
and enters in linear increase, which is maintained until the next peri-
odic slow down. The average rate is then determined by the magnitude
of the initial decrease in the window right after existing the exponential
growth and the overall duration of the linear increase period.

During exponential growth, each ACK received generates GAIN
additional packets. If 𝑅𝑇𝑇𝑏 is larger than 120 ms, GAIN is equal to 1.
This means that, for base RTTs larger than 120 ms, if in the 𝑛th RTT
k packets were sent, in the (𝑛 + 1)𝑡ℎ RTT, 2𝑘 packets will be issued.
Because of the combination of exponential increase and ACK clocking,
2𝑘 packets will be issued during the time it takes the bottleneck to
transmit 𝑘 packets. So, packets will spend some (increasing) time in the
buffer. If the queueing delay caused by these 𝑘 additional packets in the
last round of the exponential growth exceeds the target 𝑇 , it triggers a
subsequent window reduction.

According to the LEDBAT++ algorithm, the 𝐶𝑊𝑛+1 after measuring
a queueing delay larger than the Target 𝑇 in round 𝑛 is computed as:

𝐶𝑊𝑛+1 = 𝛽.𝐶𝑊𝑛 (10)

with

𝛽 =
2.𝑇 − 𝑞𝑑

𝑇
(11)

where 𝑞𝑑 is the queuing delay experienced by the last packet of the last
round of the exponential growth.8

We call 𝑠𝑠𝑒𝑥𝑡 the window size (measured in segments of size MSS)
at which exponential growth is exited. When 𝑠𝑠𝑒𝑥𝑡 is approached using
exponential growth, the last packet will experience a queuing delay
equal to the transmission delay of the extra packets added during this
round. If 𝑠𝑠𝑒𝑥𝑡 is a power of 2, 𝑠𝑠𝑒𝑥𝑡

2 packet are added. However, if 𝑠𝑠𝑒𝑥𝑡
is not a power of 2, the number of packets added in the last round is:
𝑠𝑠𝑒𝑥𝑡 − 2𝐹𝐿𝑂𝑂𝑅(𝑙𝑜𝑔2(𝑠𝑠𝑒𝑥𝑡)). This implies that:

=
2𝑇 − (𝑠𝑠𝑒𝑥𝑡 − 2𝐹𝐿𝑂𝑂𝑅(𝑙𝑜𝑔2(𝑠𝑠𝑒𝑥𝑡))).𝑀𝑆𝑆

𝐶
𝑇

(12)

since each added packet adds an extra 𝑀𝑆𝑆
𝐶 delay.

The duration (in RTTs) of the exponential growth phase is 𝑇𝑠𝑠 =
𝑙𝑜𝑔2(𝑠𝑠𝑒𝑥𝑡). The duration of the linear increase phase is then 9 ∗ 𝑇𝑠𝑠.
In steady state, the linear increase is equal to the decrease experienced
right after exiting the exponential growth. This means that:

𝑠𝑠𝑒𝑥𝑡(1 − 𝛽) = 9 ∗ 𝑇𝑠𝑠 (13)

Solving (numerically) Eq. (13) for 𝑠𝑠𝑒𝑥𝑡, we find that 𝑠𝑠𝑒𝑥𝑡 =
850𝐾𝐵, which is close to the value observed in Fig. 8.

8 LEDBAT++ applies a filter of the minimum of the last 4 packets, but we
ill neglect that here.
12
The queue generated after the exit of the exponential growth im-
poses a performance penalty when the window resulting from the
reduction decreases below the BDP required to fill the capacity of the
bottleneck link. Mathematically, this is expressed as:

𝛽.𝑠𝑠𝑒𝑥𝑡 < 𝐶.𝑅𝑇𝑇𝑏 (14)

Using the 𝑠𝑠𝑒𝑥𝑡 value computed earlier, we find this holds for values
of 𝑅𝑇𝑇𝑏 larger than 300 ms. This is aligned with what we observe in
Fig. 2. We observe that for other RTTs larger than 300 ms, the 𝑠𝑠𝑒𝑥𝑡 is
imilar and independent of the 𝑅𝑇𝑇𝑏.
We perform similar computations for other values of the capacity,

nd we obtain similar 𝑅𝑇𝑇𝑏 threshold values after which the penalty is
xperienced, i.e., the 𝑅𝑇𝑇𝑏 threshold does not vary significantly with
he bottleneck capacity. For instance, for a capacity of 40 Mbps, the
𝑇𝑇𝑏 threshold computed is 330 ms.

eferences

[1] S. Shalunov, G. Hazel, J. Iyengar, M. Kuhlewind, Low extra delay background
transport (LEDBAT), in: Request for Comments, (6817) RFC Editor, 2012.

[2] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, R. Scheffenegger, CUBIC for
Fast Long-Distance Networks, 8312, RFC Editor, 2018.

[3] S. Shalunovtold, This is how your BitTorrent downloads move so fast, 2013,
Fast Company blog URL https://www.fastcompany.com/3014951/why-your-
bittorrent-downloads-move-so-fast.

[4] LEDBAT Wikipedia entry, 2018, URL https://en.wikipedia.org/wiki/LEDBAT.
[5] G. Carofiglio, L. Muscariello, D. Rossi, S. Valenti, The quest for LEDBAT fairness,

in: Global Communications Conference, 2010, GLOBECOM, 2010, pp. 1–6.
[6] P. Balasubramanian, O. Ertugay, D. Havey, LEDBAT++: Congestion Control for

Background Traffic, draft-irtf-iccrg-ledbat-plus-plus-01, Internet Engineering Task
Force, 2020, (in preparation) URL https://datatracker.ietf.org/doc/html/draft-
irtf-iccrg-ledbat-plus-plus-01.

[7] P. Balasubramanian, LEDBAT++: LOw priority TCP congestion control
in windows, 2017, Presentation in ICCRG meeting at IETF 100 URL
https://datatracker.ietf.org/meeting/100/materials/slides-100-iccrg-ledbat-
low-priority-tcp-congestion-control-in-windows.

[8] A. Czechowski, et al., Fundamental concepts for content management in
configuration manager, 2022, Microsoft Documentation URL https://docs.
microsoft.com/en-us/mem/configmgr/core/plan-design/hierarchy/fundamental-
concepts-for-content-management#windows-ledbat.

[9] D. Borman, R.T. Braden, Van Jacobson, R. Scheffenegger, TCP Extensions for high
performance, in: Request for Comments, (7323) RFC Editor, 2014, http://dx.doi.
org/10.17487/RFC7323, RFC 7323 URL https://rfc-editor.org/rfc/rfc7323.txt.

[10] D. Ros, M. Welzl, Assessing LEDBAT’s delay impact, IEEE Commun. Lett. 17 (5)
(2013) 1044–1047, http://dx.doi.org/10.1109/LCOMM.2013.040213.130137.

[11] N. Cardwell, Y. Cheng, C.S. Gunn, S.H. Yeganeh, Van Jacobson, BBR: Congestion-
based congestion control: Measuring bottleneck bandwidth and round-trip
propagation time, Queue 14 (5) (2016) http://dx.doi.org/10.1145/3012426.
3022184.

[12] E. Blanton, V. Paxson, M. Allman, TCP Congestion control, in: Request for
Comments, (5681) RFC Editor, 2009, http://dx.doi.org/10.17487/RFC5681, RFC
5681 URL https://rfc-editor.org/rfc/rfc5681.txt.

[13] N. Cardwell, Y. Cheng, S.H. Yeganeh, I. Swett, Van Jacobson, BBR Conges-
tion Control, draft-cardwell-iccrg-bbr-congestion-control-02, Internet Engineering
Task Force, 2022, (in preparation) URL https://datatracker.ietf.org/doc/html/
draft-cardwell-iccrg-bbr-congestion-control-02.

[14] N. Beheshti-Zavareh, Tiny Buffers for Electronic and Optical Routers (Ph.D.
thesis), Stanford University, 2009.

[15] S. Ha, I. Rhee, L. Xu, CUBIC: A new TCP-friendly high-speed TCP variant, SIGOPS
Oper. Syst. Rev. 42 (5) (2008) 64–74, http://dx.doi.org/10.1145/1400097.
1400105.

[16] P. Jurkiewicz, G. Rzym, P. Boryło, Flow length and size distributions in campus
internet traffic, 2018, arXiv e-prints arXiv:1809.03486.

[17] R.K. Jain, D.-M.W. Chiu, W.R. Hawe, et al., A Quantitative Measure of Fairness
and Discrimination. Vol. 21, Eastern Research Laboratory, Digital Equipment
Corporation, Hudson, MA, 1984.

[18] E. Gavaletz, J. Kaur, Decomposing RTT-unfairness in transport protocols, in: 2010
17th IEEE Workshop on Local Metropolitan Area Networks, LANMAN, 2010, pp.
1–6, http://dx.doi.org/10.1109/LANMAN.2010.5507159.

[19] D. Rossi, C. Testa, S. Valenti, L. Muscariello, LEDBAT: the new BitTorrent con-
gestion control protocol, in: 2010 Proceedings of 19th International Conference
on Computer Communications and Networks, IEEE, 2010, pp. 1–6.

[20] D. Rossi, C. Testa, S. Valenti, Yes, we LEDBAT: Playing with the new BitTorrent
congestion control algorithm, in: International Conference on Passive and Active
Network Measurement, Springer, 2010, pp. 31–40.

http://refhub.elsevier.com/S1389-1286(22)00188-8/sb1
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb1
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb1
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb2
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb2
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb2
https://www.fastcompany.com/3014951/why-your-bittorrent-downloads-move-so-fast
https://www.fastcompany.com/3014951/why-your-bittorrent-downloads-move-so-fast
https://www.fastcompany.com/3014951/why-your-bittorrent-downloads-move-so-fast
https://en.wikipedia.org/wiki/LEDBAT
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb5
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb5
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb5
https://datatracker.ietf.org/doc/html/draft-irtf-iccrg-ledbat-plus-plus-01
https://datatracker.ietf.org/doc/html/draft-irtf-iccrg-ledbat-plus-plus-01
https://datatracker.ietf.org/doc/html/draft-irtf-iccrg-ledbat-plus-plus-01
https://datatracker.ietf.org/meeting/100/materials/slides-100-iccrg-ledbat-low-priority-tcp-congestion-control-in-windows
https://datatracker.ietf.org/meeting/100/materials/slides-100-iccrg-ledbat-low-priority-tcp-congestion-control-in-windows
https://datatracker.ietf.org/meeting/100/materials/slides-100-iccrg-ledbat-low-priority-tcp-congestion-control-in-windows
https://docs.microsoft.com/en-us/mem/configmgr/core/plan-design/hierarchy/fundamental-concepts-for-content-management#windows-ledbat
https://docs.microsoft.com/en-us/mem/configmgr/core/plan-design/hierarchy/fundamental-concepts-for-content-management#windows-ledbat
https://docs.microsoft.com/en-us/mem/configmgr/core/plan-design/hierarchy/fundamental-concepts-for-content-management#windows-ledbat
https://docs.microsoft.com/en-us/mem/configmgr/core/plan-design/hierarchy/fundamental-concepts-for-content-management#windows-ledbat
https://docs.microsoft.com/en-us/mem/configmgr/core/plan-design/hierarchy/fundamental-concepts-for-content-management#windows-ledbat
http://dx.doi.org/10.17487/RFC7323
http://dx.doi.org/10.17487/RFC7323
http://dx.doi.org/10.17487/RFC7323
https://rfc-editor.org/rfc/rfc7323.txt
http://dx.doi.org/10.1109/LCOMM.2013.040213.130137
http://dx.doi.org/10.1145/3012426.3022184
http://dx.doi.org/10.1145/3012426.3022184
http://dx.doi.org/10.1145/3012426.3022184
http://dx.doi.org/10.17487/RFC5681
https://rfc-editor.org/rfc/rfc5681.txt
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb14
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb14
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb14
http://dx.doi.org/10.1145/1400097.1400105
http://dx.doi.org/10.1145/1400097.1400105
http://dx.doi.org/10.1145/1400097.1400105
http://arxiv.org/abs/1809.03486
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb17
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb17
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb17
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb17
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb17
http://dx.doi.org/10.1109/LANMAN.2010.5507159
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb19
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb19
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb19
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb19
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb19
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb20
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb20
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb20
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb20
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb20


Computer Networks 212 (2022) 109036M. Bagnulo and A. García-Martínez
[21] G. Carofiglio, L. Muscariello, D. Rossi, C. Testa, S. Valenti, Rethinking the low
extra delay background transport (LEDBAT) protocol, Comput. Netw. 57 (8)
(2013) 1838–1852.

[22] A.J. Abu, S. Gordon, Impact of delay variability on LEDBAT performance, in:
2011 IEEE International Conference on Advanced Information Networking and
Applications, IEEE, 2011, pp. 708–715.

[23] Y. Gong, D. Rossi, C. Testa, S. Valenti, M.D. Taht, Fighting the bufferbloat:
On the coexistence of AQM and low priority congestion control, in: 2013
Proceedings IEEE INFOCOM, 2013, pp. 3291–3296, http://dx.doi.org/10.1109/
INFCOM.2013.6567153.

[24] R. Al-Saadi, G. Armitage, J. But, Characterising LEDBAT performance through
bottlenecks using PIE, FQ-CoDel and FQ-PIE active queue management, in: 2017
IEEE 42nd Conference on Local Computer Networks, LCN, IEEE, 2017, pp.
278–285.

[25] H. Adhari, T. Dreibholz, S. Werner, E.P. Rathgeb, Eclipse: A new dynamic
delay-based congestion control algorithm for background traffic, in: 2015 18th
International Conference on Network-Based Information Systems, 2015, pp.
115–123, http://dx.doi.org/10.1109/NBiS.2015.21.

[26] H. Adhari, S. Werner, T. Dreibholz, E. P. Rathgeb, LEDBAT-MP – on the applica-
tion of "lower-than-best-effort" for concurrent multipath transfer, in: 2014 28th
International Conference on Advanced Information Networking and Applications
Workshops, 2014, pp. 765–771, http://dx.doi.org/10.1109/WAINA.2014.125.

[27] T. Meng, N.R. Schiff, P. Brighten Godfrey, M. Schapira, PCC proteus: Scavenger
transport and beyond, in: Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication, in: SIGCOMM
’20, Association for Computing Machinery, New York, NY, USA, 2020, http:
//dx.doi.org/10.1145/3387514.3405891.

[28] M. Dong, Q. Li, D. Zarchy, P. Brighten Godfrey, M. Schapira, PCC: Re-architecting
congestion control for consistent high performance, in: 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), USENIX Associa-
tion, Oakland, CA, 2015, pp. 395–408, URL https://www.usenix.org/conference/
nsdi15/technical-sessions/presentation/dong.
13
[29] P. Balasubramanian, O. Ertugay, D. Havey, LEDBAT++: Congestion Control
for Background Traffic, draft-balasubramanian-iccrg-ledbatplusplus-00, Internet
Engineering Task Force, 2019, (in preparation) URL https://datatracker.ietf.org/
doc/html/draft-balasubramanian-iccrg-ledbatplusplus-00.

Marcelo Bagnulo received the Electrical Engineering degree
from the University of Uruguay and the Ph.D. degree
in telecommunications from the Universidad Carlos III de
Madrid (UC3M), Spain. Since 2008, he has been a tenured
Associate Professor at UC3M. He has published more than
80 articles in the field of advanced communications in
journals and congresses, including IEEE INFOCOM, ACM
SIGCOMM, ACM Mobicom, ACM IMC, and IEEE/ACM
TRANSACTIONS ON NETWORKING. He is the author of
21 RFCs in the Internet Engineering Task Force (IETF),
including the Shim6 protocol for IPv6 multihoming and the
NAT64/DNS64 tools suite for IPv6 transition. He has 26 H-
index and 4258 total citations. His research interests include
Internet architecture and protocols, interdomain routing,
and security. From 2009 to 2011, he was a member of the
Internet Architecture Board.

Alberto García-Martínez received the degree in telecom-
munication engineering, in 1995, and the Ph.D. degree in
telecommunications, in 1999. In 1998, he joined the Uni-
versidad Carlos III de Madrid (UC3M), where he has been
an Associate Professor, since 2001. He has published more
than 50 articles in technical journals (IEEE/ACM Transac-
tions on Networking, Computer Networks), magazines (IEEE
Wireless Communications, IEEE Communications Magazine),
and conferences. He has coauthored three RFCs. His main
interests include interdomain routing, transport protocols,
network security, and blockchain technologies.

http://refhub.elsevier.com/S1389-1286(22)00188-8/sb21
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb21
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb21
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb21
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb21
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb22
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb22
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb22
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb22
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb22
http://dx.doi.org/10.1109/INFCOM.2013.6567153
http://dx.doi.org/10.1109/INFCOM.2013.6567153
http://dx.doi.org/10.1109/INFCOM.2013.6567153
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb24
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb24
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb24
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb24
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb24
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb24
http://refhub.elsevier.com/S1389-1286(22)00188-8/sb24
http://dx.doi.org/10.1109/NBiS.2015.21
http://dx.doi.org/10.1109/WAINA.2014.125
http://dx.doi.org/10.1145/3387514.3405891
http://dx.doi.org/10.1145/3387514.3405891
http://dx.doi.org/10.1145/3387514.3405891
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/dong
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/dong
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/dong
https://datatracker.ietf.org/doc/html/draft-balasubramanian-iccrg-ledbatplusplus-00
https://datatracker.ietf.org/doc/html/draft-balasubramanian-iccrg-ledbatplusplus-00
https://datatracker.ietf.org/doc/html/draft-balasubramanian-iccrg-ledbatplusplus-00

	An experimental evaluation of LEDBAT++
	Introduction
	Limitations of LEDBAT
	Overview of LEDBAT++
	Experimental setup
	LEDBAT++ solo performance
	LEDBAT++ solo performance in delay based mode
	LEDBAT++ solo performance in delay based mode: variation with RTT
	LEDBAT++ solo performance in delay based mode: variation with capacity
	Possible solutions to the performance penalty problems
	Latency drift

	LEDBAT++ solo performance in loss based mode
	LEDBAT++ solo performance in loss based mode: variation with RTT
	LEDBAT++ solo performance in loss based mode: variation with capacity


	LEDBAT++ and Cubic
	LEDBAT++ and Cubic with large buffers
	Short TCP flows

	LEDBAT++ and Cubic with small buffers

	Inter-LEDBAT++ fairness
	Fairness between synchronized LEDBAT++ flows
	Late-comer advantage
	RTT fairness

	Related work
	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix. Model for LEDBAT++ solo performance
	910th Approximation for small and medium base RTTs
	Model for large base RTTs

	References


