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Abstract: In this work we address the following problem: Having chosen a well diversified portfolio,
we show how to improve on its return, maintaining the diversification. In order to achieve this boost
on return we construct a neighborhood of the well diversified portfolio and find a portfolio that
maximizes the return in that neighborhood. For that we use the method of maximum entropy in
the mean to find a portfolio that yields any possible return up to the maximum return within the
neighborhood. The implicit bonus of the method is that if the benchmark portfolio has acceptable risk
and diversification, the portfolio of maximum return in that neighborhood will also have acceptable
risk and diversification.

Keywords: well diversified portfolio; optimal portfolio; maximum entropy in mean for linear
programming problems; benchmark tracking

1. Introduction and Preliminaries

Consider a collection of n assets and let us denote by {ρk : k = 1, . . . , n} the collection
of random rates of return of the collection, and by ra = (r1, . . . , rn) the vector of expected
return of these assets, that is E[ρk] = rk, k = 1, . . . , n. A portfolio with no short positions
consists of a vector w = (w1, . . . , wn) such that 〈w, u〉 = 1 and the expected return of the
portfolio is given by 〈w, ra〉. Here u = (1, . . . , 1). The class P of admissible portfolios is
defined by P = {w ∈ Rn : 0 ≤ wk ≤ 1, 〈w, u〉 = 1}.

An investor interested in obtaining the maximum possible return on her investment
needs to solve the following problem:

Find w ∈ Rn at which max{〈w, ra〉 : w ∈ P} is reached.

Certainly, this problem has a solution and it is a corner of P . However, this solution
is not satisfactory because it ignores some essential issues. Most notably, neither the risk
nor the diversification of the portfolio is taken into consideration. There are many ways of
setting up a satisfactory (risk, return) balance, and each one of them leads to a solution to
the problem. The classical, and most widely used, mean-variance solution by [1] has been
known for long to be highly sensitive to parameter estimation errors (e.g., of covariance
matrix and especially mean vector of assets returns, see [2]). Several solutions have been
proposed for a robust portfolio optimization within this paradigm based on a trade-off of
risk and return [3].

The other relevant issue related to the classical Markowitz proposal is the diversifi-
cation issue. Diversification appears to be an intuitive concept but as with the notion of
risk, there does not seem to exist an agreement on how to specify and measure it. From
a practitioner perspective, it is widely accepted that a well-diversified portfolio is one
where shocks to individual components do not heavily affect the overall performance of the
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portfolio. This qualitative definition translates in the mean-variance model to an increase
in the number of uncorrelated constituents in the portfolio, as it is clear that the larger the
number of (uncorrelated) assets the lower the overall variance of the portfolio, and this can
be driven to almost zero in an equally weighted portfolio. However authors such as [4]
show that in the case of equity mutual funds in spite of the huge number of stocks they
hold (more than 100 in many cases) their portfolios are not perfectly diversified, in terms
of risk reduction; reference [5] show that in non-Gaussian return distributions, increasing
portfolio sizes could not reduce monotonically large risks, and instead a lower number
of assets could improve diversification in a bear market. In any case, for the practitioner
diversification of a portfolio is still tied to a play with size (number of assets) and approxi-
mate weights to uniform distribution. A recent extensive review of the research literature
dealing with the relation of number of assets and portfolio diversification is given in [6],
and a more general review of diversification in portfolio theory, with focus on its defining
principles, usefulness and measurement is given in [7].

Supervised methods to achieve diversification based on risk reduction, such as the
MV optimization approach for minimizing the variance, in practice tend to concentrate
on very small subsets of the portfolios of interest (more often than not, on a single asset),
and this goes against the former accepted notion of diversification, which asks for a
reasonable number of assets with similar weights in the portfolio. A prior proposal in
which diversification is taken into account along with risk and return tradeoff is that of [8].
They minimize an entropy divergence between the unknown portfolio and that of the naive
portfolio subject to return-risk constraint. In this way they achieve a shrinkage towards the
maximum diversification as high as possible while maintaining the risk-return constraint.
The use of entropy as a measure of diversification in portfolio selection has been validated
previously in [9].

Our proposal goes in a related, but quite different direction. We start from a portfolio
that satisfies some benchmarking criterion in terms of diversification and risk tolerance,
define an acceptable region in portfolio space about the benchmark, and then solve a
constrained return maximization problem within that acceptance class of well diversified
portfolios. This constrained linear programming problem is an alternative way to achieve
shrinkage towards the benchmark.

To be explicit, let us denote by w(d) = (w1(d), . . . , wn(d)) the well diversified bench-
mark and define the set of admissible portfolios by

A = {w ∈ P : ak = wk(d)− lk ≤ wk ≤ wk(d) + uk = bk , k = 1, . . . , n}. (1)

It is the specification of the lk, uk that determines the risk for the portfolios in A.
Consequently the focus of our attention is on the following problem

Problem 1. Determine a portfolio w∗ ∈ A at which 〈w∗, ra〉 reaches its maximum possible value.
That is, find

w∗ = argmax{〈w, ra〉 : w ∈ A}.

For the solution of this problem we will use the method of maximum entropy in the
mean (MEM). For this consider [10]. MEM uses the standard entropy maximization method
as a stepping stone to solve ill-posed, constrained, linear inverse problems. It is here where
our approach differs from that of [8]. They use a cross-entropy minimization procedure
under mean variance constraints to obtain a portfolio with good diversification properties.
We use the MEM to solve a sequence of constrained linear equations as a way to solve a
constrained linear programming problem by a variant of the interior point approach. The
mathematics of this approach was initially worked out in [11]. As mentioned above, for
us the constraints come from a preassigned band about the benchmark well diversified
portfolio, and at the end we shall end with the portfolio that has a maximal return in the
region of well diversified portfolios. We remark that we do not strive for efficiency in
the Markowitz (risk,return) sense. Instead we start from a well diversified portfolio and
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improve its return while maintaining a high degree of diversification. Thus, our portfolios
are efficient in the sense that it provides the highest possible returns at a given level of
diversification.

The process is as follows: Starting with r(d) = 〈w(d), ra〉 we increase the return in
small steps and solve

Problem 2. Find w(r) such that
〈w(r), ra〉 = r

〈w(r), u〉 = 1

ak ≤ wk(r) ≤ bk.

This is the problem to be solved with MEM. We increase r in small steps until no
solution to this problem exists. The last r for which the interior point method has a solution
is an approximate solution to the linear programming problem. We explain how this is
done in Section 2. In Section 4 we report our numerical examples, and for that we first
explain in Section 3 how the admissible portfolios are specified. Section 5 concludes.

2. The Maxentropic Solution to Problem 2

Instead of solving an algebraic problem, we consider a linear, inverse ill-posed prob-
lem consisting of determining a probability measure P on A = ∏n

k=1[ak, bk] such that
w(r) = EP[X] satisfies Problem 2. Here X : A → A is the identity mapping. On a σ-algebra
of Borel sets onAwe consider the reference measure Q = ∏n

k=1
(
εak (dxk)+ εbk

(dxk)
)

which
puts unit mass at the vertices of A. The reasons behind this choice are twofold: On the one
hand, the computations are simple, and on the other, is the fact that any point in any of
the intervals is a convex combination of its extreme points. Before continuing, note that
any P << Q can be written as Q = ∏n

k=1
(
(1− pk)εak (dxk) + pkεbk

(dxk)
)
. In particular,

the entropy SQ(P) of the probability P with respect to the reference measure Q is given by

SQ(P) = −
∫
A

(
dP
dQ

)
ln
(

dP
dQ

)
dQ = −

n

∑
k=1

((1− pk) ln(1− pk) + pk ln pk). (2)

Note now as well that:

wk(r) = (1− pk)ak + pkbk, k = 1, . . . , n. (3)

It is to find the appropriate pk that we use the method of maximum entropy. Our
problem consists of

Problem 3. Find P∗ such that

P∗ = argmax{SQ(P)} = argmax

{
−
(

n

∑
k=1

(1− pk) ln(1− pk) + pk ln pk

)}
;

subject to the constraints
{

EP[〈X, ra〉] = r
EP[〈X, u〉] = 1

Note that the last constraint in Problem 2 is automatically taken care of by this problem
set up. It is a routine calculation to verify that the solution to Problem 3 is given by

p∗k =
e−(λ

∗
1 bk+λ∗2 bkrk)

e−(λ
∗
1 ak+λ∗2 akrk) + e−(λ

∗
1 bk+λ∗2 bkrk)

. (4)

The Lagrange multipliers are to be found minimizing the (dual entropy) function

(λ1, λ2)→ Σ(λ1, λ2) =
n

∑
k=1

ln
(

e−(λ1ak+λ2akrk) + e−(λ1bk+λ2bkrk)
)
+ λ1 + λ2r. (5)
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This is a strictly convex function on R2. Once the minimizing values λ∗1 , λ∗2 have been
determined they are substituted in (4), and then the desired portfolio is given by

wk(r) = ak(1− p∗k ) + bk p∗k . (6)

The existence of the minimizer is equivalent to the existence of w in the interior of
A achieving that return. When the optimization problem has no solution, the minimizer
tends to infinity (in the Appendix A we explain why that happens).

To find the portfolio in A that maximizes the return fix some step size δ and consider
r0 = r(d) and rs = r(d) + sδ = rs−1 + δ. If for some s0 there is a portfolio w(rs0) of return
rs0 but no portfolio of return rs0+1 = rs0 + δ, we stop and the maximum possible return
is between rs0 and rs0 + δ, that is our estimation error is smaller than δ. Here the problem
solver must choose between increasing r fast and lowering the approximation error.

3. The Well Diversified Portfolio Selection in Practice and Related Issues

As we mentioned above, the two first stages of the problem consist of deciding upon a
well diversified benchmark, and then to build the admissible set about it. After that comes
the optimization routine described in Section 2.

3.1. Choosing a Well Diversified Portfolio

As argued in the Introduction an accepted benchmark for a diversified portfolio, in
practice, is the naive portfolio, which assigns weight wk(d) = 1/n to each of the n assets.
Another choice of reasonable well-diversified portfolio, close in nature to the naive and
which somehow reflects the market preferences, is the relative capitalization portfolio,
which assigns weight wk(d) = Ck/(∑n

j=1 Cj) to the k-th asset, with Ck being its market
capitalization.

3.2. The Admissible Portfolios

Denote byR our preferred risk measure. Suppose that it is a differentiable function,
and letR(w(d)) be the risk of the well diversified portfolio, andR(w) the risk of a portfolio
in the admissible set A. In the notations of (1) note that:

|R(w)−R(w(d))| ≤ ‖∇R(w(d))‖supk|uk − lk| = ‖∇R(w(d))‖supk|bk − uk|.

we are using the standard ‖V‖ to denote the Euclidean norm of the vector V . It certainly makes
sense to consider lk < wk(d) so that ak > 0. So, it suffices to consider lk = uk = α ·wk(d), for
0 < α < 1 and all k, which certainly yields ‖∇R(w(d))‖supk|uk − lk| < ε, and this incorpo-
rates our tolerance to the risk beyond that of the benchmark. In our experiments we will
try different values for α to evaluate the impact on varying the width of the band around
the well diversified benchmark.

3.3. Dissimilarity Measures between the Initial and the Final Portfolios

As the portfolios that we deal with admit no short positions they can be regarded as
probabilities. In the literature there are many ways of measuring distances between two
probabilities or to quantify how different they are (see, e.g., [12]). Here we shall mention
only two measures. First a true distance between probabilities, the Jeffreys distance [13], and
second a standard measure of dissimilarity, namely the Kullback–Leibler divergence [14].

The Jeffreys distance between two discrete probability laws w(1) and w(2) is defined as:

d2
J (w(1), w(2)) =

n

∑
k=1

(√
wk(1)−

√
wk(2)

)2. (7)

Of course, there is the standard Kullback–Leibler divergence, which is a measure of
dissimilarity between probabilities used in [8] to quantify how different is w(1) from w(2).
It is given by:
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K(w(1), w(2)) =
n

∑
k=1

wk(1) ln
(

wk(1)
wk(2)

)
. (8)

It rapidly follows from Jensen’s inequality that despite of the fact that the Kullback–
Leibler divergence is not a distance (it is neither symmetric nor does it satisfy the triangle
inequality), it nevertheless satisfies

K(w(1), w(2)) ≥ 0, and K(w(1), w(2)) = 0⇔ w(1) = w(2).

We shall use these two to tell how different the maximum return portfolio w∗ is from
the well diversified portfolio w(d).

3.4. The Diversification Index

A diversification index provides us with an intrinsic measure that tells us how well
diversified a given portfolio index is. If the naive portfolio is taken as the universal bench-
mark, the Kullback–Leibler divergence defined in (8) can also be considered a diversification
index. This is the approach used by [8]. However, there are other indices. For the numerical
examples developed below, we use the Kullback–Leibler divergence and the Herfindahl
diversification index. This is an intrinsic measure of diversification commonly used to
measure how well diversified a portfolio is. For a portfolio w it is given by:

H(w) =
n

∑
k=1

w2
k . (9)

Since the Herfindahl index of the naive portfolio made up of n assets is 1/n, the closer
that H(w) is to 1/n, the better diversified the portfolio is. The Herfindahl index has enjoyed
for quite some time a reputation of superior benchmark for market concentration indices
among economists and public-policy analysts; see [15] for a review on this index.

For each of the examples below we shall compute the intrinsic diversification index be-
fore and after the return maximization process, as well as the two measures of dissimilarity
detailed above.

4. Numerical Examples

This section is divided into three parts. In the first part we apply the two criteria
for choosing a well diversified benchmark from Section 3.1 and show explicitly how the
method of maximum entropy for benchmark tracking works. That is, we explain how
we choose a benchmark and examine the effect of applying the maxentropic procedure to
obtain a portfolio of maximum expected return within the admissible class. We perform
some simple tests. This could be considered an examination of the performance of an
interior point method to solve a linear programming problem.

As the input data for the method depends on market data, that is on the average
returns of the collection of assets of the portfolio, in the second section we study the
robustness of the procedure by averaging over portfolios held for a rebalancing period of
5 and 20 days. In each case we start from a well diversified portfolio w(d) with expected
return r(d) at the beginning of the period and end up with a portfolio w∗ of return r∗ at
the end of the rebalancing period. Then we average the initial and final returns for these
simulations and perform a variety of performance tests. The reason why some smoothing is
expected is the following. If we denote by rk(d) the vector of initial expected returns of the
well diversified portfolio for the k-th simulation and, similarly, denote by r∗k = rk(d) + ∆k

the vector of maximized returns at the end of the investment period in the k-th simulation,
where by ∆k we denote the improvement in the expected return after the MEM procedure
is applied to the well diversified portfolio, then if K denotes the number of simulated
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rebalancing of portfolios, the expected return of the portfolio which is held constant over
the simulations is given by:

K

∑
k=1
〈w∗k, r∗k〉 =

K

∑
k=1
〈wk(d), rk(d)〉+

K

∑
k=1

∆k. (10)

This identity explains why, even though for each specific initial return the return of
the optimized portfolio improves considerably, when we average over all input/output
pairs, the performance looks less impressive than the results of the previous section.

In the third subsection we perform a similar analysis for a non-necessarily well diver-
sified portfolio. The two examples we consider are a Markowitz portfolio [1] and a quintile
portfolio [16].

4.1. How the MEM Procedure Works

To illustrate the workings of the maxentropic benchmark tracking, we considered a
collection of n = 15 stocks of companies belonging to the DAX index and obtained their
daily close prices for a period of 500 market days from which we computed their expected
daily rates of return.

For this collection of assets we consider the following two diversified portfolios: First
the naive portfolio, with weights wj(d) = 1/15 and then a portfolio that reflects the market
capitalization computed as Cj = pricej × volumej divided by the market capitalization of
the collection, that is wj = Ci/ ∑n

i=1 Ci. We refer to this portfolio as the relative capitaliza-
tion portfolio.

For the numerical examples we considered a uniform band defined by aj = wj(d)(1− α)
and bj = wj(d)(1 + α), written in such a way that α could be changed. We considered
α = 1/2 to begin with. The step size δ is taken initially as 10% of the portfolio (by
the rationale that an investor would expect to increase its original investment by that
much). However, we incremented the portfolio target return from step to step using the
corrected recursion rs = rs−1 + (0.9)sδ, so that the increments are smaller as the step
number s increases.

4.1.1. The Naive Portfolio Is the Benchmark

For each of the 15 stocks, we show in Table 1 its weight in the naive portfolio (the
quantity to the left of the |, which is 1/15 = 0.06667), and its weight in the portfolio that
maximizes return in the admissible band about the naive portfolio (the quantity to the right
of the |).

Table 1. Initial weights of the naive portfolio (left) and weights of the portfolio that maximizes return
in the admissible band about the naive portfolio (right).

Assets Weights

1 to 3 0.06667 | 0.07549 0.06667 | 0.08646 0.06667 | 0.07888

4 to 6 0.06667 | 0.06443 0.06667 | 0.08471 0.06667 | 0.08659

7 to 9 0.06667 | 0.07726 0.06667 | 0.04915 0.06667 | 0.05003

10 to 12 0.06667 | 0.08498 0.06667 | 0.04834 0.06667 | 0.05927

13 to 15 0.06667 | 0.05132 0.06667 | 0.04693 0.06667 | 0.05615

The daily rate of return of the naive portfolio is 0.013% which is annualized to 3.3%.
After applying the maxentropic procedure the new portfolio has a daily rate of return
of 0.024%, which is annualized to 6.15%, that is almost twice as much as that of the
naive portfolio.

We mention that the norm of the gradient of the dual entropy was less than 10−6,
which means that the constraints are satisfied up to six decimal figures.
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The Herfindahl index of the naive portfolio is H(w(d)) = 0.06667 whereas that of
maximum return is H(w∗) = 0.07017. Both portfolios appear to be quite well diversi-
fied. That not much diversification is lost seems intuitive on the basis of basic analysis:
w→ H(w) is a continuous function and the neighborhood about w(d) is small, so not
much diversification appears to be lost.

4.1.2. The Relative Capitalization Portfolio is the Benchmark

We already explained how to produce a well diversified portfolio for this example.
This benchmark is a substitute of the market portfolio in terms of risk-return performance
and we assume that it incorporates some market driven notion of diversification. In
Table 2 we show the weights of the initial relative capitalization portfolio (left of |) and the
weights of the portfolio that maximizes return in the admissible band about the relative
capitalization portfolio (right of |).

Table 2. Weights of the well diversified portfolio according to the relative capitalization (left) and
weights of the portfolio that maximizes return in the admissible band about the relative capitalization
portfolio (right).

Assets Weights

1 to 3 0.06198 | 0.08190 0.09952 | 0.11952 0.07958 | 0.09957

4 to 6 0.10309 | 0.10137 0.06288 | 0.08288 0.03896 | 0.05896

7 to 9 0.10441 | 0.12439 0.11943 | 0.09943 0.06876 | 0.04876

10 to 12 0.02313 | 0.04313 0.04314 | 0.02313 0.02500 | 0.00663

13 to 15 0.02835 | 0.00835 0.02424 | 0.00424 0.11755 | 0.09775

The average daily rate of return of the initial relative capitalization portfolio is 0.014%
which annualizes to 3.7%, which is a bit higher than that of the naive portfolio. The
expected daily rate of return of the portfolio that maximizes return in the admissible band
is 0.027% which annualizes into 6.9%, again almost twice as much, and the portfolio stays
in the preassigned band about the well diversified portfolio. The Herfindahl index of
the relative capitalization portfolio is H(w(d)) = 0.0842989 whereas that of maximum
return is H(w∗) = 0.09134554, a close value to the former hence keeping a similar level
of diversification.

4.1.3. The Maximum Return Portfolios in Relation to the Benchmarks

Above we saw that given that the region of the well diversified portfolio in which
we maximize returns is small so as not to lose diversification, we need some way to
quantify how different the portfolios are. For this we use the dissimilarity measures defined
previously. The Jeffrey’s distance between two portfolios w(1) and w(2) is computed as
indicated in (7) and the Kullback–Leibler divergence is computed as indicated in (8).

Case I: The benchmark is the uniform portfolio.

In this case we have

(a) The Jefferys distance is d2
J (w

∗, w(d)) = 0.01336581.

(b) The Kullback–Leibler divergence is K(w∗, w(d)) = 0.02650156.

Case II: The relative capitalized benchmark.

In this case we have

(a) The Jefferys distance is d2
J (w

∗, w(d)) = 0.03748571.

(b) The Kullback–Leibler divergence is K(w∗, w(d)) = 0.06747427.

As one can observe in the two cases the small values in both metrics indicate the
closeness of both portfolios.
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4.2. The Average Performance of the Procedure in Real Life

In order to illustrate the practical usefulness of the MEM diversified portfolio selection
method we performed a large number of randomized backtests on a list of portfolios
over multiple historical market datasets obtained on a rolling-window basis. The raw
historical market data on a daily period is obtained for two international equity indices:
The German DAX from 2009-01-01 to 2019-12-31 (for small size portfolios), and the US
SP500 from 2008-12-01 to 2018-12-01 (for big size portfolios). Each historical market data is
resample into multiple datasets; each resample is obtained by randomly choosing a subset
of the stock names (15 for the DAX index, 50 for the SP500) and randomly choosing a
time period of 2 years (or 504 days) over the available long period. We apply a rolling
window of length 1 year (252 days) for a walk-forward backtesting where the in-sample
and out-of-sample windows are constantly shifted. In the in-sample window we estimate
parameter values of each portfolio strategy (e.g., covariance, mean, and others). Using
the estimated parameters, the optimal portfolio for each considered model is calculated,
and tests its performance in the out-sample window by holding the portfolio with the
optimal weights through a specific period. We tested for out-sample holding periods of
5 days (a week) and 20 days (one month). Walk-forward backtesting provides a historical
simulation of how each portfolio strategy would have performed in the past. This has a
clear historical interpretation and its performance can be reconciled with paper trading (for
further details see [17]).

Note that our goal is to determine how the MEM diversified portfolio selection impacts
on the performance of the associated diversified benchmark portfolio. Thus, if X is some
portfolio selection strategy we denote by MEM_X the MEM diversified portfolio selection
on top of X. For our experiments we will consider X to be: naive (i.e., equally weighted
portfolio) and capital (the market capitalization based portfolio, each weight computed
as Cj = pricej × volumej divided by the market capitalization of the collection, that is
wj = Ci/ ∑n

i=1 Ci). The respective MEM diversified portfolios will be denoted MEM_Naive
and MEM_Cap.

To evaluate the performance of each model, we use the following measures: Sharpe
ratio (the ratio between the (geometric) annualized return and the annualized standard
deviation), Maximum Drawdown (the maximum loss from a peak to a trough of a port-
folio), annual return, annual volatility (as annualized standard deviation of returns), and
Sterling ratio (the annualized return over maximum drawdown). We also compute the
Herfindahl concentration index for each portfolio as an indicator of diversification relative
to the naive portfolio (i.e., a well-diversified portfolio of n assets should have its H-index
close to 1/n). All portfolio backtesting experiments were performed with the R package
portfolioBacktest [18].

Results for the German market, where we build portfolios of 15 stocks randomly
selected from the DAX and for up to 30 price scenarios are shown in Table 3 (for portfolio
rebalancing every 5 days) and Table 4 (for portfolio rebalancing every 20 days). Results
for the US market, where we build portfolios of 50 stocks randomly selected from the
SP500, and for up to 30 price scenarios, are shown in Table 5 (for portfolio rebalancing
every 5 days) and Table 6 (for portfolio rebalancing every 20 days). The bandwidth factor α
is fixed at 0.6 (after trying several values ranging from 0.5 to 0.9 and found little variation
in the results). Bear in mind that all performance results are average values over all the
considered trading scenarios.

We saw in the first section that the expected return relative to that of the benchmark
can be increased by appropriately modifying the portfolio. As we saw in the simulations,
realized returns might be smaller than expected returns. Our scenario simulation never-
theless shows that the annual returns of the modified portfolio are larger than those of the
benchmark without affecting the diversification. We mention that the other performance
measures (Sharpe ratio, maximum drawdown and the Sterling ratio described a few lines
above) listed in the tables are satisfactory. It appears that the procedure also decreases the
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volatility of the maximum return portfolio even though this was not an objective of the
maxentropic benchmark tracking procedure.

Table 3. Performance of portfolios samples of 15 stocks (DAX), rebalance every 5, α = 0.6.

MEM_Cap Capital MEM_Naive Naive

Sharpe ratio 0.8198 0.6603 0.9894 0.9829
max drawdown 0.1451 0.1479 0.1323 0.1266

annual return 0.1305 0.1065 0.1617 0.1517
annual volatility 0.1943 0.1947 0.1773 0.1725

Sterling ratio 1.0542 0.8460 1.4459 1.3951
Herfindahl 0.0981 0.0946 0.0724 0.0667

Table 4. Performance of portfolios samples of 15 stocks (DAX), rebalance every 20, α = 0.6.

MEM_Cap Capital MEM_Naive Naive

Sharpe ratio 0.8194 0.6634 0.9892 0.9769
max drawdown 0.1453 0.1475 0.1320 0.1263

annual return 0.1312 0.1069 0.1662 0.1512
annual volatility 0.1938 0.1948 0.1779 0.1724

Sterling ratio 1.0511 0.8470 1.4421 1.3905
Herfindahl 0.0981 0.0945 0.0725 0.0667

Table 5. Performance of portfolios samples of 50 stocks (SP500), rebalance every 5, α = 0.6.

MEM_Cap Capital MEM_Naive Naive

Sharpe ratio 1.1198 1.1345 1.3937 1.4973
max drawdown 0.1088 0.1055 0.0969 0.0873

annual return 0.1639 0.1599 0.1851 0.1885
annual volatility 0.1578 0.1450 0.1339 0.1302

Sterling ratio 1.8061 1.7519 2.2411 2.3159
Herfindahl 0.0516 0.0482 0.0228 0.0200

Table 6. Performance of portfolios samples of 50 stocks (SP500), rebalance every 20, α = 0.6.

MEM_Cap Capital MEM_Naive Naive

Sharpe ratio 1.1099 1.1298 1.3734 1.4913
max drawdown 0.1092 0.1065 0.0969 0.0871

annual return 0.1625 0.1593 0.1871 0.1865
annual volatility 0.1583 0.1452 0.1338 0.1300

Sterling ratio 1.7779 1.7514 2.2283 2.3021
Herfindahl 0.0517 0.0482 0.0229 0.0200

4.3. The MEM Procedure Applied to a Non Well Diversified Portfolio

As it should be clear, the MEM procedure could be applied to any portfolio, regardless
of its being well diversified or not. For this we considered a Markowitz type portfolio and
a quintile portfolio. Recall that the quintile portfolio consists of sorting assets from high to
low by expected return and selecting the top 20% for long-only positions. The mathematical
soundness of this strategy as a solution to robust portfolio optimization is analyzed in [16].

We defined a band about the two chosen portfolios for the purpose of maxentropic
approach to return augmentation within the acceptable band about the benchmark. Keep
in mind that now the acceptable portfolios near the benchmark are not required to be
well diversified. To examine the performance of the method we performed the same tests
as those that we applied to the well diversified portfolio. The results are shown in the
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Appendix B, in Tables A1 and A2 for DAX market and Tables A3 and A4 for the US market.
The nomenclature for the portfolios in these tables is Markowitz5, for the MV or mean-
variance portfolio with target return 0.05 (in other words, the minimum variance portfolio
to achieve return of 0.05), and quintile, and the respective portfolios after applying MEM
for return maximization are termed are MEM_MV and MEM_Quin.

What is somewhat surprising from these tables, is that all performance measures
improve after the maxentropic procedure is applied except the Herfindahl diversification
index that becomes worse. The lesson seems to be that the maxentropic procedure for
benchmark tracking does improve a portfolio optimization strategy keeping in line with the
diversification or lack thereof. As an illustration of these facts we include in Appendix B
a plot of the cumulative returns of the portfolios obtained in one of the 30 simulations
considered for the DAX (Figure A1), as well as pictures of the asset allocation by the
MV method (Figure A2) and the asset allocation of the same portfolio optimized by the
maxentropic procedure (Figure A3).

5. Concluding Remarks

The first and more obvious comment is that the maxentropic procedure to obtain a
portfolio that maximizes the expected return within a band about the benchmark works
quite well, regardless of whether the benchmark is well diversified or not. If the benchmark
is well diversified, the new portfolio is well diversified as well. This is a reflection of the
fact that the diversification index is a continuous function of the portfolio. Moreover, if
the market is considered efficient and the relative capitalization reflects the efficiency of
the market, then choosing the relative capitalization as a measure of diversification for
our benchmark (which is good according to the Herfindahl index), then we maintain the
market efficiency and improve upon the return of a well diversified and efficient portfolio.

The general outcome result from our maxentropic optimization is that not only is the
expected return increased, also the realized return increases and some standard perfor-
mance measures, like the Sharpe ratio, the max drawdown and the Sterling ratio, improve
as well. This seems to happen not only when the benchmark is well diversified, but at
least for the Markowitz and the quintile portfolios, the performance measures report a
satisfactory outcome, except concerning the diversification that seems to deteriorate.

To conclude, the procedure seems to open the door to a well behaved benchmark
tracking methodology.
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Abbreviations
The following abbreviations are used in this manuscript:

MEM Maximum Entropy in the Mean
MV Mean-Variance
MEM_Naive the equally weighted MEM diversified portfolio
MEM_Cap the market capitalization weighted MEM diversified portfolio
MEM_MV the MV weighted MEM diversified portfolio
MEM_Quin the quintile weighted MEM diversified portfolio
Markowitz5 the mean-variance portfolio with target return 0.05

Appendix A. Remarks of the Dual Entropy Minimization Problem

Here we add some detail to the material in Section 2 and an example to better understand
what is behind the proof in [11]. For τ ∈ Rn the Laplace transform of the measure Q is

ζ(τ) = ln E[e〈τ,x〉],

and now for λ ∈ R2 define
Z(λ) = E[e〈C

tλ,x〉]

where C is the constraint matrix defined by setting Cik = 1 for k = 1, . . . , n and C2,k = rk
for k = 1, . . . , n and Ct denotes the transpose of C. Denote as well by d = (1, r)t the data
vector. With these notations, the dual entropy function mentioned in Section 2 is given by

Σ(λ) = ln Z(λ) + 〈λ, d〉.

The minimizer of λ∗ is determined by solving the system

∇λΣ = 0 ⇔ CEP[X] = d. (A1)

The right hand side of the identity can be written as

n

∑
k=1

(
ak

e−(λ1ak+λ2akrk)

e−(λ1ak+λ2akrk) + e−(λ1bk+λ2bkrk)
+ bk

e−(λ1bk+λ2bkrk)

e−(λ1ak+λ2akrk) + e−(λ1bk+λ2bkrk)

)
= 1 (A2)

n

∑
k=1

rk

(
ak

e−(λ1ak+λ2akrk)

e−(λ1ak+λ2akrk) + e−(λ1bk+λ2bkrk)
+ bk

e−(λ1bk+λ2bkrk)

e−(λ1ak+λ2akrk) + e−(λ1bk+λ2bkrk)

)
= r. (A3)

Take a glance at (A2) to understand the solution obtained in (4). To describe the issue
of the existence of solutions, write Ψ(λ1, λ2) = CEP[X] and then (A1) or (A2) become

Ψ(λ1, λ2) = d ≡
(

1
r

)
In order to be able to solve for (λ1, λ2) we have to make sure that the range of Ψ covers

the interior of the set containing the data point. That is the essence of the result proved
in [11]. To get the idea behind the result consider c < d any two real numbers and λ ∈ R.
Consider:

ψ(λ) := c
e−cλ

e−cλ + e−dλ
+ d

e−dλ

e−cλ + e−dλ
.

It is easy to verify that ψ(λ) tends to either c or d as λ → ±∞. So ψ maps R onto
(c, d). If we define the 2× n−constraint matrix C by setting Cik = 1 for k = 1, . . . , n and
C2,k = rk for k = 1, . . . , n, then the condition for the Lagrange multiplier to exist is that
d ∈ int(C(A)). This is what makes the maxentropic approach to the interior point approach
to the linear programming problem work. Because when we increase r(n) a large number
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of times, then (1, r(n))t is out of C(A)) and the numerical determination of the Lagrange
multipliers explodes.

Appendix B. Tables and Figures

Table A1. Performance of portfolios samples of 15 stocks (DAX), rebalance every 5, α = 0.6.

MEM_MV Markowitz5 MEM_Quin Quintile

Sharpe ratio 1.2443 0.8555 0.6955 0.5475
max drawdown 0.1099 0.1096 0.1422 0.1393

annual return 0.1806 0.1718 0.1409 0.1295
annual volatility 0.1424 0.1447 0.1921 0.1871

Sterling ratio 1.6134 1.1128 0.9360 0.7244
Herfindahl 0.2146 0.1826 0.2137 0.1957

Table A2. Performance of portfolios samples of 15 stocks (DAX), rebalance every 20, α = 0.6.

MEM_MV Markowitz5 MEM_Quin Quintile

Sharpe ratio 1.2441 0.8586 0.6875 0.5605
max drawdown 0.1102 0.1097 0.1423 0.1382

annual return 0.1807 0.1722 0.1400 0.1294
annual volatility 0.1425 0.1446 0.1921 0.1875

Sterling ratio 1.6151 1.1193 0.9305 0.7204
Herfindahl 0.2142 0.1827 0.2149 0.1957

Table A3. Performance of portfolios samples of 50 stocks (SP500), rebalance every 5, α = 0.6.

MEM_MV Markowitz5 MEM_Quin Quintile

Sharpe ratio 1.3025 1.2344 1.0650 1.0261
max drawdown 0.0809 0.0802 0.1235 0.1189

annual return 0.1399 0.1359 0.2255 0.1917
annual volatility 0.1120 0.1080 0.1805 0.1661

Sterling ratio 1.8838 1.7497 1.6349 1.6083
Herfindahl 0.1220 0.1117 0.0719 0.0598

Table A4. Performance of portfolios samples of 50 stocks (SP500), rebalance every 20, α = 0.6.

MEM_MV Markowitz5 MEM_Quin Quintile

Sharpe ratio 1.3094 1.2505 1.0555 1.0114
max drawdown 0.0813 0.0806 0.1230 0.1189

annual return 0.1410 0.1379 0.2282 0.1924
annual volatility 0.1117 0.1080 0.1804 0.1663

Sterling ratio 1.8762 1.7476 1.6549 1.6001
Herfindahl 0.1223 0.1117 0.0722 0.0600
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Figure A1. Cumulative Returns of portfolios of up to 15 stocks from DAX, rebalance every 20, for
one of the 30 scenarios considered.
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Figure A2. Asset allocation by the MV method for DAX, rebalance every 20, for one of the 30 scenarios
considered.
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Figure A3. Asset allocation by the MEM_MV method for DAX, rebalance every 20, for one of the 30
scenarios considered.
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