Universidad

ucdm | Carlosllil -Archivo
de Madrid

This is a postprint version of the following published document:

Dai, Z., Shrivastava, A., Reviriego, P. & Hernandez, J.
A. (2022, septiembre). Optimizing Learned Bloom
Filters: How Much Should Be Learned? IEEE
Embedded Systems Letters, 14(3), 123-126.

DOI: 10.1109/1es.2022.3156019

© 2022 IEEE. Personal use of this material is permitted. Permission

from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.


https://doi.org/10.1109/les.2022.3156019

Optimizing Learned Bloom Filters: How Much
Should Be Learned?

Zhenwei Dai', Anshumali Shrivastava', Pedro Reviriego?, José Alberto Hernandez?

Abstract—The Learned Bloom Filter (LBF) combines a ma-
chine learning model (learner) with a traditional Bloom filter to
improve the false positive rate (FPR) that can be achieved for a
given memory budget. The LBF has recently been generalized by
making use of the full spectrum of the learner’s prediction score.
However, in all those designs, the machine learning model is fixed.
In this paper, for the first time, the design of learned Bloom
filters is proposed and evaluated by considering the machine
learning model as one of the variables in the process. In detail,
for a given memory budget, several LBFs are constructed using
different machine learning models and the one with the lowest
false positive rate is selected. We demonstrate that our approach
can achieve much better performance than existing LBF designs
providing reductions of the FPR of up to 90% in some settings.

Index Terms—Learned Bloom Filters; Networking; Machine
Learning; URL classification.

I. INTRODUCTION

Bloom filters are widely used in software defined network-
ing for example to manage flow tables [1], to classify packets
[2] or to reduce the forwarding state [3]. Bloom filters can
efficiently implement approximate membership checking and
many variants and optimizations have been proposed over the
years [4].

A recent use of machine learning is to optimize the imple-
mentation of Bloom filters. In particular, the Learned Bloom
Filter (LBF) was introduced in [5]. The LBF combines a
machine learning model with a traditional Bloom filter and
is able to significantly reduce the total memory required to
achieve a given false positive rate in many practical settings.
The initial LBF has been subsequently extended by using
additional Bloom Filters that are checked before [6] or after
the machine learning model [7], [8] and further reduce the
false positive rate. Also, schemes to support the use of the
LBF in streaming applications on which elements are inserted
and removed dynamically have been recently proposed [9].

An interesting observation that to the best of our knowledge
has not been made before, is that in both the original LBF
design and in its extensions and optimizations, the machine
learning model is given and fixed. This means that the learned
Bloom filters can potentially be further optimized by consid-
ering the machine learning model as another variable in the
design process. In more detail, for example, different values
of the parameters of the learner can be used to build different
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LBF instances with the same memory budget and the one with
the lowest FPR can be selected.

In this paper, we make the following contributions:

1) Explore the use of the learner as a variable in the design
of LBFs and evaluate its performance.

2) Show that the proposed approach can reduce signif-
icantly the FPR for different datasets and machine
learning models with reductions of up to 90%.

The rest of the paper is organized as follows. In section
I, Bloom filters and learned Bloom filters are discussed to
provide the background needed for the rest of the paper. Sec-
tion III, introduces and discusses the optimization of learned
Bloom filters by considering the machine learning model as
a variable in the process. The proposed approach is evaluated
in section IV for a practical case study to show its potential
benefits. Finally, the paper ends with the conclusion and some
ideas for future work in section V.

II. BLOOM FILTERS AND LEARNED BLOOM FILTERS

This section covers the background of Bloom filters and
learned Bloom filters.

A. Bloom Filter (BF)

Bloom filters (BFs) were introduced more than fifty years
ago to provide approximate set representation with fast mem-
bership testing and small memory footprint [10]. BFs have
been widely applied in different fields such as computing and
networking [11]. Though previous studies have provided the
theoretical limit of BF [12], the optimization and application
of BF remains an active research area [13].

A Bloom filter is a bit array of size M initialized with
zero. To compress a set of keys, S, to the bit array, every key
x is mapped to k different buckets using &k independent hash
functions, hi, ha, ..., hi. To insert the key x, the bit values of
h;(x) are set to one. Conversely, to check whether a query g
is in the set, we return positive if all the bit values of h;(x)
are set to one. Otherwise a negative is returned. The design of
BF ensures zero false negative rate (FNR). However, BF may
generate some false positives. It happens when all the hashing
locations of z, h;(x), collide with the keys.

In expectation, the FPR can be approximated when M is
large by:

E(FPR) ~ (l—e l‘ﬁ")k. (1)

Eq. 1 suggests that the E(FPR) of BF depends on the
ratio 7. Inserting more keys into BF introduces a worse FPR.
Given a target FPR level, eq. 1 can be used to determine the
memory budget.



B. Learned Bloom Filter (LBF)

Learned Bloom filter (LBF) incorporates a classification
model to the BF. It can achieve a lower FPR by reducing
the number of keys inserted into the BF. First, LBF trains a
classification model on the available data to determine whether
the given query z is positive or not based on the observed
features. Then, LBF selects a threshold, 7', where the query x
is identified to be positive if f(x) > T. Otherwise, query x is
passed to a backup filter to check its membership as shown.
Similar to the standard BF, LBF also has no false negatives.
The false positives of LBF can be either caused by the false
positives of the classification model (f(x|z ¢ S) > T) or that
of the backup Bloom filter. If the learner classifies most of the
keys accurately, LBF can insert fewer keys into the backup
filter, which achieves a better trade-off and helps reducing the
overall FPR. This initial design can be optimized by having
a filter before and after the learned model as proposed in the
sandwiched learned Bloom filter [6].

C. Adaptive Learned Bloom Filter (Ada-BF)

Adaptive learned Bloom filter (Ada-BF) improves the LBF
by making use of the full spectrum of the prediction scores.
LBF partitions the prediction score space into two regions,
f(z) > T and f(z) < T. When f(z) > T, the membership
is fully determined by the learner (zero hash function is used).
While f(x) < T, the membership of z is further determined
using k hash functions by the backup filter. Ada-BF partitions
the score space into multiple regions, and varies number of
hash functions in different regions. Hence, Ada-BF achieves
different FPRs across regions. Generally, most of the non-keys
fall in the low score regions but only a few of them fall in
the high score regions. And the keys have an opposite trend.
Hence, in the low score regions, Ada-BF tends to use more
hash functions to achieve a smaller FPR (for most the non-
keys). While in the high regions, Ada-BF uses fewer hash
functions and tolerates a higher FPR. By tuning the number
of hash functions adaptively to the score distribution, Ada-BF
could achieve a lower overall FPR compared to the LBF [7].

D. Partitioned Learned Bloom Filter (PLBF)

The partitioned learned Bloom filter [8] partitions the score
space into multiple regions like the Ada-LBF and uses differ-
ent Bloom filters for each of those regions. The main contribu-
tions of PLBF is to generalize Ada-LBF by using independent
Bloom filters for each region rather than just varying the
number of hash functions and to formulate the derivation of
the regions and filter parameters as an optimization problem
and providing and analytical solution. As a result, PLBF is
expected to outperform the Ada-LBF in terms of FPR for a
given memory budget.

III. OPTIMIZING LBFSs

The current methods to design LBFs to minimize the FPR
for a given memory budget consider the following problem:
(P1) given a memory budget B, a learned model, and a target
LBF architecture with parameters A, find the values of A
that minimize the FPR of the LBF. Therefore, the learned
model is fixed and not part of the design process. Instead,

the proposed approach to optimize LBFs can be formally
formulated as this alternative problem: (P2) given a memory
budget B, a target learner algorithm with parameters P, and
a target LBF architecture with parameters A, find the values
of P and A that minimize the FPR of the LBF. For example,
we have a random forest algorithm whose parameters are the
number of trees and leaves and an Ada-LBF whose parameters
are the score regions, the number of hash functions for each
region and the size of the backup Bloom filter and we want to
determine the settings for all those parameters that minimize
the FPR while using a memory smaller than a target size.

As discussed in the previous section, a learned Bloom filter
is formed by a machine learning model and one or more
backup filters. Therefore in the design of all the learned Bloom
filters, the memory budget is divided in two parts, one for the
Bloom filters and the other for the machine learning model. To
achieve the lowest FPR for a given memory budget, we have
to explore the optimal memory allocation to both parts. In the
case of BF, the relationship between memory and performance
(expected FPR) is well understood and can be evaluated by a
simple closed form formula. Instead, for the machine learn-
ing models, the relation between memory and classification
accuracy depends on the data set and algorithm used and can
not be easily modeled. Intuitively, allocating more memory to
the machine learning model improves the accuracy, but also
reduces the memory available for the backup filter. Therefore,
finding the learner that achieves the best trade-off between
accuracy and model size is not straightforward.

The size of the learner depends both on the model structure
and some hyper-parameters. For example, let us consider a
Random Forest (RF) classifier. For a RF, the learner’s size
depends on the number of decision trees and the size of each of
tree. Therefore, by selecting different number of trees and tree
sizes, models that require different memory can be constructed.
Similarly for a Support Vector Machine, the number of support
vectors determines the amount of memory needed and for
a neural network, the number of neurons and connections
between them. Therefore, for each model structure, it is
possible to provide implementations with different memory
usage and accuracy by varying the model hyper-parameters.
For the learned Bloom filters, given the machine learning
model, there are still some hyper-parameters to tune in order
to achieve the optimal performance, i.e. the threshold 7" in
LBFE.

Determining analytically the parameters of the machine
learning model that will result in the LBF implementation with
the lowest FPR is a challenging theoretical problem. Therefore,
to show the potential benefits of the proposed approach, we use
a simpler experimental method to find the best configuration
by trying different choices of the hyper-parameters of the
machine learning model, and testing the FPR achieved by
the learned Bloom filters under each hyper-parameter setup.
This allows us to evaluate the potential of considering the
machine learning model as part of the LBF design process.
The development of a theoretical framework to determine the
best configuration is left for future work.



IV. EVALUATION

To illustrate the potential benefits of the proposed approach,
we test the FPR of three different learned Bloom filters, LBF,
Ada-BF and Partitioned LBF, under several machine learn-
ing models: Random Forest (RF), Support Vector Machines
(SVM) and Neural Networks (NNs) with a single hidden layer.
Our experiments are performed on the malicious URLs and
malware datasets used in [7]. The malicious URLs dataset
includes 485,730 unique URLs, where 16.47% of them are
tagged as malicious. We extracted 17 lexical features to the
train of learner. The malware dataset includes 41,323 benign
files and 96,724 viral files. As in [7], we also train the models
using the well-known Python implementation, Scikit-Learn.
By varying the number of leaves and number of classification
trees, number of support vectors and number of neurons in the
hidden layer we evaluate the effect of the classification models
on the overall FPR achieved by the learned Bloom filters.

The three models are trained using 30% of the samples.
1) To train random forest models with different accuracy, we
vary the number of trees from 6 to 15 and the number of
leaves from 2 to 20; 2) For the SVM models, we raise the
penalty weight C' from 0.01 x 2° to 0.01 x 22°. The scale
of penalty weight is negatively correlated with the number of
support vectors and model size; 3) The NNs are tuned through
increasing the hidden layer dimension from 30 to 310.

To have a fair comparison of Ada-BF, PLBF and LBF
under different learner setups, we fix the total memory budget
= 400K, 600K 800K for the URL data set and of 400K,
500K and 600K for the malware dataset. The backup filter
size equals to the memory budget minus the learner size. We
randomly choose 30% samples to tune the hyper-parameters
of LBF, PLBF and Ada-BF. Since the learned Bloom filters
have no false negatives, the performance of learned Bloom
filters is measured by the FPR.

The size of the models increases linearly with the number
of trees and leaves, support vectors, and neurons. Instead, the
marginal increment of the model accuracy decreases. Hence,
when the model size becomes larger, it may not be beneficial
to keep investing more memory on the learner to improve
the model accuracy. The results for the RF are summarized
in Figures 1 and 2. We can observe that the FPR decreases
sharply as we start to increase the number of leaves. But after
the number of leaves is larger than 4, the FPR starts to increase
slowly though the FPR has some small fluctuations. Therefore,
to optimize the performance of the learned Bloom filters, we
may not choose the classification model with best prediction
accuracy, suggesting the importance of jointly optimizing the
learner and Bloom filters. Compared to the design in [7] where
the number of trees is 10 and number of leaves is 20, jointly
optimizing the Ada-BF, LBF, and PLBF reduces the FPR by
around 70% under different memory budgets for the URL
dataset, and up to 90% for the malware dataset (Table I). This
is a remarkable improvement for real applications.

The results for SVMs and NNs are summarized in Figures 3
and 4 for the URL dataset. It can be seen that depending on
the memory budget and learning filter type, the lowest FPR
is obtained for different hyperparameter values in both the

SVM and the NN. This confirms that considering the machine
learning model as part of the learned Bloom filter design would
reduce the FPR for a given memory budget. In the case of the
NN, there is a trend to increase the FPR as the number of
neurons in the hidden layer increases suggesting that there is
no benefit in investing more memory on the NN. For the SVM,
the lowest FPRs are typically achieved by values in the middle
of the penalty weight range explored.

V. CONCLUSIONS AND FUTURE WORK

Learned Bloom filters that combine a machine learning
model with Bloom filters have shown significant reductions in
false positive rate over traditional Bloom filters. In this paper,
we proposed to use the machine learning model as a variable
in the design showing that it can further reduce the false
positive rate of learned Bloom filters. Our experiments suggest
that tuning the learner can significantly reduce the FPR and
improves the learned Bloom filters significantly. Our findings
provide a strong motivation to further study the optimization
of learned Bloom filters considering the learner model as
one of the design elements. Future work can for example
explore how to find the best parameters for the learned model
without exhaustively testing all the possible combinations and
to formalize the optimization problem.
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URL Ada-BF LBF PLBF
memory MS (T, L) opt FPR ( [7]) MS (T, L) opt FPR ( [7]) MS (T, L) opt FPR
M=400K 52.7K (6, 4) 0.450% (1.655%) | 113.6K (6, 13) | 1.400% (3.384%) 93.3K (6, 10) 0.281% (1.460%)
M=600K 52.7K (6, 4) 0.087% (0.244%) 52.7K (6, 4) 0.280% (0.963%) | 120.3K (6, 14) | 0.050% (0.200%)
M=800K | 133.8K (6, 16) | 0.022% (0.041%) 52.7K (6, 4) 0.083% (0.250%) 79.7K (6, 8) 0.013% (0.040%)
Malware Ada-BF LBF PLBF
memory MS (T, L) opt FPR ( [7]) MS (T, L) opt FPR ( [7]) MS (T, L) opt FPR
M=400K | 115.3K (7, 11) | 0.092% (0.308%) | 138.9K (7, 14) | 0.181% (0.728%) | 138.9K (7, 14) | 0.058% (0.217%)
M=500K | 154.7K (7, 16) | 0.017% (0.162%) | 115.3K (7, 11) | 0.097% (0.453%) | 138.9K (7, 14) | 0.039% (0.094%)
M=600K | 236.9K (9, 20) | 0.010% (0.056%) | 154.7K (7, 16) | 0.060% (0.281%) | 115.3K (7, 11) | 0.015% (0.070%)

TABLE I: The size of optimal classification model and comparison of the FPR. The column MS (T, L) gives the size of the learner and
the corresponding number of trees and number of leaves. The column opt FPR ( [7]) provides the optimal FPR and the FPR achieved under
the learner setup in [7].
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Fig. 1: Performance of Ada-BF, LBF, and PLBF with a Random Forest in the malicious URL dataset
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Fig. 2: Performance of Ada-BF, LBF, and PLBF with a Random Forest in the malware dataset
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Fig. 3: Performance of Ada-BF, LBF, and PLBF with a SVM in the malicious URL dataset
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Fig. 4: Performance of Ada-BF, LBF, and PLBF with a single hidden layer NN in the malicious URL dataset





