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Abstract—In order to increase the robustness of a circuit 

against SEUs, fault injection is commonly used to locate weak 
areas. Autonomous Emulation is a very powerful tool to locate 
these areas by executing huge fault injection campaigns. In this 
work, fault injection has been extensively applied to a PIC18 
microprocessor, while executing three different workloads. A 80 
million fault campaign has been performed, and results show 
that a failure rate lower than 1% can be obtained by hardening a 
24% of the circuit flip-flops, for the given applications.  
 

Index Terms—SEU, Fault Injection, FPGA-emulation  

I. INTRODUCTION 
ECHNOLOGY scaling increases notably the digital 
circuits’ sensitiveness to environmental effects [1]. In 

particular, soft errors due to cosmic radiation effects are a 
main concern, not only in safety-critical applications but also 
in mainstream applications, even at earth surface [2]. In order 
to ensure the reliable operation of a circuit under soft errors, 
adding fault tolerant mechanisms is required. These 
mechanisms add redundancy, producing area overhead, 
increasing the power consumption and reducing the circuit 
performance [3]. A trade-off between reliability, cost and 
performance must be reached [7]. 

In the literature there are recent approaches to deal with soft 
error rate (SER) reduction in a cost effective way, reducing 
area overhead, power and performance penalties 
[4][5][6][7][8]. A solution to reduce the soft error rate, 
improving the reliability, in a cost effective way consists in 
performing selective hardening in early design stages [5], i.e., 
applying mitigation techniques just in some parts of the circuit 
during the design stage.  

Evaluating the susceptibility to soft errors in order to 
indentify critical parts of a circuit is an essential task to 
perform selective hardening efficiently. Soft error sensitivity 
of a circuit depends on technological factors, functional 
features and on the workload.  

In [9], a methodology to estimate the SER is presented. 
Technological factors are enclosed in the concepts of Nominal 
FIT (Failure in Time), which is related to the electrical 
characteristics of the technology, and Time Derating, which 
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involves the times when the circuit is susceptible to SEU. 
Functional aspects are considered under the term Logic 
Derating, which is the probability of a SEU to impact the 
behaviour of the circuit. It depends on the circuit architecture 
and the workload. Fault injection is used to estimate logic 
derating. 

In [10], technological aspects are measured through a static 
test, in which the circuit does not run a real application. This 
test is performed through radiation testing. A dynamic test is 
performed by checking the circuit behaviour under faults 
while the circuit is running a specific workload. Fault 
injection techniques are used to perform the dynamic test.  

Fault injection is the most accepted solution by the 
scientific community to perform the dynamic test or to 
estimate logic derating. This paper is oriented in the same 
way. The behaviour of the circuit under faults is analysed 
from a functional point of view. By using fault injection, we 
are able to locate critical circuit areas so that they can be 
hardened before manufacturing the circuit. Once the circuit is 
hardened and manufactured, radiation testing will be required 
to check the result. This work is focused on the sensitivity 
analysis, and hardening and radiation testing fall outside the 
scope of the paper. 

A method to locate weak circuit areas for selective 
hardening in digital circuits is described. A PIC18 
microcontroller macrocell has been used as case study since 
microprocessors are typical circuits where penalties 
introduced by hardening techniques must be minimized. Three 
different workloads, with different nature, have been used to 
demonstrate that the critical parts of a circuit depend on the 
running workload. 

The Autonomous Emulation system [11] has been used. 
This tool profits from hardware emulation on platform 
FPGAs, and provides a very high fault injection rate, allowing  
massive fault injection campaigns. It profits from hardware 
speed since all fault injection tasks, like controlling the 
injection campaign, observing the circuit behaviour to classify 
the faults or applying the stimuli, are performed in hardware. 
One of the advantages of the fault injection system hardware 
implementation is that some tasks can be paralleled, specially, 
in the case of calculation-based tasks.  

This technique exploits the embedded hardware resources 
available in the FPGA platforms, like RAM memory blocks in 
order to implement the complete fault injection environment. 
Furthermore, Autonomous Emulation provides more 
observability and controllability than other proposals. These 
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features are exploited to optimise the injection process and 
making it faster. Most approaches [9][12] rely on Statistical 
Fault Injection (SFI) to reduce the huge amount of possible 
faults to a representative reduced fault set. 

 Autonomous Emulation provides the following capabilities 
in a cost-effective way: 
 Obtaining the accurate fault dictionary for every memory 

element in the circuit, for a given workload. Every possible 
SEU in a memory element can be injected and evaluated for 
a workload, without the need of selecting statistical samples. 

 Analysing the weak areas of the circuit at first design stage. 
This allows the designer to study the trade-off between the 
applied hardening techniques and introduced penalties (in 
area, performance and power consumption). This analysis 
can be performed iteratively since the evaluation process is 
very fast. 
The paper is organized as follows. Section 2 describes the 

experimental setup, including the autonomous emulation 
system built over the PIC18 circuit and the different 
workloads. Section 3 shows the results obtained and a 
thorough discussion. Finally, section 4 states some 
conclusions.  

II. EXPERIMENTAL SETUP 
As a case study, an in-house developed PIC18 macrocell 

running three different workloads has been tested. An 
autonomous fault emulation system [11] has been built.  

A. Autonomous Fault Emulation 
Autonomous emulation is an automatic tool to perform fault 

injection analysis on circuit descriptions. Fault injection is 
done according to the commonly accepted fault model bit-flip, 
corresponding to SEU effect on memory elements into digital 
integrated circuits. This injection is executed directly on 
circuit memory elements prototyped on a programmable 
device (FPGA).  

Although the final implementation will be an ASIC, 
memory elements are equivalent in an FPGA prototyped 
version. Little differences could be caused by the use of 
different synthesisers for FPGA and ASIC libraries. If an 
exact result is required, the circuit should be compiled for the 
ASIC technology and every gate and flip-flop replaced for a 
behavioural equivalent FPGA model. 

In Autonomous emulation system, a modified 
(instrumented) version of the circuit is prototyped on a FPGA 
platform along with a module in charge of performing the 
whole fault injection campaign.  

The main advantage of Autonomous Emulation approach is 
the capability to abort the emulation once a fault is classified 
as failure or silent, restoring the circuit state to the previous 
clock cycle to the injection of the fault classified. With this 
optimisation, few clock cycles are employed per fault 
emulation and high fault injection speeds are achieved. 

The Autonomous Emulation system built for this work 
includes the synthesized and instrumented PIC18 macrocell, 
the program memory, a fault classification mechanism and the 
emulation control unit. 

B. PIC18 microprocessor 
PIC18 is an 8-bit, high performance microprocessor, well 

suited for embedded applications. It is a RISC processor with 
Harvard architecture and a 2-stage pipeline (fetch and 
execution) [13].  

Commercial implementations offer up to 128kB of ROM 
memory for program and data, and up to 4kB of RAM 
memory. 

The used PIC18 IP has been developed to build 
microprocessor systems with certain computational power and 
to be able to include new peripherals. Peripherals are attached 
to the data bus and can be controllers by mapping special 
function registers or by replacing a RAM memory bank and 
mapping the peripheral in RAM space address. 

The developed IP can be configured in terms of ROM 
memory, RAM memory and the selection of peripherals. 

The core blocks include: 
 Instruction fetch and decode,  
 Program counter and associated registers and the 

program counter stack (32 addresses). 
 Program Memory (ROM) 
 User Memory (RAM) and related logic, like addressing 

logic (block select, indirect addressing). 
 ALU: arithmetic and logic functions, the working register 

(WREG) and a multiplier. 
Developed peripherals include:  
 Input-output ports (5): PortA to PortD. 
 Timers (4): Timer0 to Timer3 
 UART: asynchronous serial communications. 
The setup chosen for the experiment include PortB and 

PortD, the timers and the UART.  
In order to build the autonomous emulation system for fault 

injection, the PIC18 macrocell has been synthesized for a 
Virtex-4 FPGA family. Synthesis results are shown in Table 
1Table 1, showing the number of flip-flops, LUTs (Look-Up 
Tables) and RAM memory blocks. The design includes RAM 
blocks for user RAM and PC stack. Program memory has 
been left out of the design, so that the program can be easily 
changed without the need of rebuilding the emulation system. 
In commercial PICs, program memory is FLASH, and thus 
not sensitive to SEU. If program memory is implemented 
using RAM, it should be protected using EDAC codes. 

Table 1. PIC18 synthesis results 

Virtex-4 Used 
Flip-flops 596 
LUTs 2,314 
Block-RAMs 7 

Results are written to port B and port D. Writing to a port a 
result which is different than expected or writing it in a not 
exact clock cycle will result on the fault being classified as a 
failure. 

C. Workloads 
Three different applications have been used to test the 

microprocessor: a matrix multiplication, a serial data 
transmission using the UART and a real time clock. 
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The matrix multiplication is a data intensive application, 
which spends most of the time moving data from memory to 
the ALU and back, and making arithmetical operations. In this 
application, the ALU is the most used component.  

For the data transmission program, the microprocessor TX 
and RX signal are shorted, so that it receives through RX the 
same data sent through TX. The program consists in a 
continuous flow of characters going through the serial port. 
The UART is the most used component in this application. 

The real time clock application uses a timer to maintain the 
system clock, which is a very important task in any space 
application. The timer is set to trigger a periodic interrupt. The 
interrupt service routine increments a tick counter, and several 
functions are used to update the system date and time. In this 
case, the most critical blocks are the timer used and the 
interrupt handler block. 

The three applications write partial data to the 
microprocessor ports in order to check the correct executions 
of the programs. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 
An intensive fault injection campaign has been performed 

for three workloads. A single fault has been injected in every 
circuit flip-flop, and in every clock cycle of every workload. 
Only some clock cycles at the beginning have been left out. 
Table 2Table 2 shows the characteristics of the three fault 
injection campaigns. Tables 3 to 5 show the grouped fault 
classifications for the three workloads, and Table 6Table 6 
shows a failure rate comparative between the three 
applications. 

Table 2. Fault injection characteristics 

 Workload 
clock cycles 

Total injected
faults 

Matrix multiplication 55,784  33,414,616
Serial communication 28,963 17,213,076
Real Time Clock 51,103 29,693,316

Table 3. Grouped Fault classification: matrix multiplication 

 #FF Failure Silent Latent RAM Latent
Pipeline 2 72.768 0 177 38.623
ALU 42 93.675 223.110 728.432 1.297.711
Data&Addr 52 163.073 0 1.440.199 1.297.496
Instructions 104 1.028.126 55.936 2.036.476 2.680.998
Ports 48 446.272 0 2.228.432 2.928
Interrupts 79 0 534 4.294.834 111.568
Timers 152 0 446.272 7.196.270 836.626
UART 117 0 892.544 5.522.616 111.568
Total 596 1.803.914 1.618.396 23.447.436 6.377.518
 5,43% 4,87% 70,52% 19,18%

Table 4. Grouped Fault classification: serial communication 

 #FF Failure Silent Latent RAM Latent
Pipeline 2 39,327 17,507 472 456
ALU 42 5,753 369,365 837,690 194
Data&Addr 52 423,956 297,752 714,980 65,124
Instructions 104 347,010 1,068,999 1,332,515 255,100
Ports 48 231,048 0 932,680 222,560
Interrupts 79 4,134 52,702 2,223,603 1,160
Timers 152 0 635,226 3,754,686 0
UART 117 1,305,026 1,538,300 534,603 1,148
Total 596 2,356,254 3,979,851 10,331,229 545,742
  13.69% 23.12% 60.02% 3.17%

Table 5. Grouped Fault classification: real time clock 

  #FF Failure Silent Latent RAM Latent
Pipeline 2 59,569 29,433 4,993 5,647
ALU 42 56,072 748,115 817,532 470,763
Data&Addr 52 1,107,135 576,611 210,094 696,852
Instructions 104 1,210,106 1,296,209 1,312,461 1,362,608
Ports 48 398,568 189,768 1,608,744 194,328
Interrupts 79 221,431 118,943 3,519,434 76,051
Timers 152 936,260 982,425 5,021,772 632,335
UART 117 0 844,578 4,932,279 52,200
Total 596 3,989,141 4,786,082 17,427,309 3,490,784

13.43% 16.12% 58.69% 11.76%

Table 6. Failure rates comparative 

  #FF Matrix UART RTC 
Pipeline 2 0.22% 0.23% 0.20%
ALU 42 0.28% 0.03% 0.19%
Data&Addr 52 0.49% 2.46% 3.73%
Instructions 104 3.09% 2.02% 4.08%
Ports 48 1.34% 1.34% 1.34%
Interrupts 79 0.00% 0.02% 0.75%
Timers 152 0.00% 0.00% 3.15%
UART 117 0.00% 7.58% 0.00%
Total 596 5.43% 13.69% 13.43%

 
In these tables, a fault is considered silent when the fault 

injection effect disappears completely from the circuit. A 
failure indicates the fault has been propagated to the 
microprocessor ports. Latent faults indicate that at the end of 
the program execution some flip-flop values are different than 
the ones in the fault free circuit, but the fault has not been 
propagated to the ports. RAM latent faults are like latent 
faults, but the fault has propagated into RAM blocks. 

These results give a lot of significant information about the 
circuit. There are two flip-flops that control the pipeline flow, 
which produce a failure in a very high amount of faults, and 
should be protected. 

The matrix multiplication program is data intensive, and 
produces a higher amount of failures in the ALU. The 
communication program produces more failures when faults 
are injected in the UART, and the real time clock application 
shows more failures in the used timer and interrupt treatment 
blocks.  

Ports show a high failure rate in any application because 
they are used to check the results. The rate would be lower 
with the real applications.  

The real time clock application fails quite more in the 
addressing (Data&Addr) and instruction blocks. The 
addressing block fails because in this application there are 
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frequent subroutine calls, and context storage and restoring 
force the use of indirect addressing. The instruction block fails 
more because the program is more complex and uses a higher 
number of different instructions.  

 However, the most powerful ability of autonomous 
emulation is to obtain the fault classification in a per flip-flop 
basis. It allows selecting the critical sections of the circuit for 
hardening. In the tables, it can be noticed that most of the 
faults producing failures are related with instructions 
(program counter and instruction register), with 
microprocessor ports, and with UART and timers in the 
applications which use them. 

A deeper analysis is presented in Fig. 1, 2 and 3, which 
graphically shows the fault classification of every flip-flop. 
Every horizontal line represents a different flip-flop. The 
whole line is the total number of faults injected in the flip-flop 
(one for each clock cycle).  

In these figures, failures are colored in red (dark), so that 
critical flip-flops can be easily identified. This way, it can be 
noticed that the most critical flip-flops in the design are those 
related with ports, the program counter and specific parts used 
by each application, like the ALU, UART, timers and 
interrupts. 

Port related flip-flops always produce failures in the three 
applications, because values at ports are directly used to 
determine the classification of faults. In real applications, 
ports are usually critical parts of the circuit, given that they 
propagate faults very easily. 

The program counter also produces a high amount of 
failures, but not all the bits. Only the least significant 12 bits 
(out of 20) produce failures. The rest produces latent faults. 
The explanation is the design of the program memory. Instead 
of reading zeros when accessing an empty memory position, 
the program has been replicated throughout all the memory 
space. This way, high bits on the program counter do not 
affect the program sequence when affected by SEUs.   

There are also other flip-flops related to the program 
counter that throw a lot of failures, such as the Top Of Stack 
register (TOS). It stores the returning address of a subprogram 
or interrupt. Only the first 12 bits are critical, the same as the 
program counter and for the same reason. 

ALU related registers are not very critical in these 
applications. These registers are the working register (WREG) 
the status register (STATUS) and two registers used to store 
multiplication results (PRODH and PRODL). In general, these 
registers do not produce many failures. In the matrix 
multiplication application (Fig. 1), the failure rate is higher 
because it is data intensive and the ALU is used more often. 
The working register is going to be critical, independently of 
the application, because it is used very often for all sorts of 
operations. 

Other group of registers that produce many failures are 
indirect addressing registers, FSR0 to FSR2 (corresponding to 
Data&Addr section in tables). These are the pointers for 
indirect addressing, so when they fail, data are handled 
incorrectly. In the matrix multiplication application, there is 

very little indirect addressing, and the failure rate is lower.  
In the communications and real time clock applications, the 

failure rate due to indirect addressing is higher. In the 
communications application, the variable that controls the 
characters sent through the serial port is accessed using FSR2, 
and produces failures when characters different than expected 
are sent. In the real time clock application there are a lot of 
subroutine calls and interrupts, which produce a lot of context 
saving and restoring. Context variables use indirect 
addressing, so a lot of failures are produced. 

The UART and timers produce failures just on the 
applications that use them. The UART is a big block 
composed mainly by counters, and fault injection produces the 
timing to fail when the UART is in use (Fig. 2). Something 
similar happens to timers. The real time clock application uses 
one of the four microprocessor timers and produces a lot of 
failures when injecting in that timer (Fig. 3). 

Figures also show the parts of the circuit that are not used. 
Unused parts produce latent faults. The fault is stored and it 
does not produce a failure because it is never used and it 
cannot disappear because it is never overwritten, so it remains 
latent forever. This is the case of the interrupt controller, 
PORTA and unused timers. 

From this analysis, several conclusions can be obtained. On 
the one side, there are some microprocessor areas that should 
be protected with independence of the application, because 
they are critical for the microprocessor correct flow. On the 
other side, there are some parts of the circuit that should be 
hardened according to the workload. For the tested workloads, 
it can be deduced that hardening a 24% of the flip-flops (using 
TMR in a preliminary approach) the failure rate obtained is 
lower than 1%. 

This analysis shows the possibilities that the Autonomous 
Emulation fault injection system can offer. The fault 
classification heavily depends on the application used as 
workload, and different hardening decisions can be taken for 
the same circuit but different applications. Autonomous 
Emulation is a very powerful tool used to locate weak areas of 
a circuit, taking into account the workload executed.  

Selectively hardening a design, in relation to the particular 
application it is going to run, may result in a lower area 
overhead, compared with a full hardening approach, while 
maintaining a great reduction in the failure rate. 

IV. CONCLUSIONS 
Applying hardening techniques to a whole circuit can be a 

waste of resources, if we consider the particular use of the 
circuit in the final application. Microprocessor cores are 
general purpose circuits, and the usage of its resources 
depends heavily on the workload. There are usually some 
parts of the circuit that are seldom or not used at all and extra 
resources to harden them would be wasted. 

In this paper, we have used the autonomous emulation fault 
injection system to perform a massive fault injection campaign 
in a PIC18 microprocessor, running three different 
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applications, a matrix multiplication, serial communications 
and a real time clock. 

Results show that some parts of the circuit are critical for 
any application, and others that should be protected only if 
they are used. Given a workload, weak circuit areas can be 
easily located thanks to Autonomous Emulation. 
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Fig. 1. Per flip-flop fault classification: matrix multiplication 
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Fig. 2. Per flip-flop fault classification: serial communication 
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Fig. 3. Per flip-flop fault classification: real time clock 
 




