
This is a postprint version of the following published document:

Valderas, M. G., Garcia, M. P., Lopez, C. & Entrena,
L. (2010, agosto). Extensive SEU Impact Analysis of a
PIC Microprocessor for Selective Hardening. IEEE
Transactions on Nuclear Science, 57(4), 1986-1991.

DOI: 10.1109/tns.2009.2039581

 © 2010 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

https://doi.org/10.1109/tns.2009.2039581

TNS-00684-2009

1

Abstract—In order to increase the robustness of a circuit

against SEUs, fault injection is commonly used to locate weak
areas. Autonomous Emulation is a very powerful tool to locate
these areas by executing huge fault injection campaigns. In this
work, fault injection has been extensively applied to a PIC18
microprocessor, while executing three different workloads. A 80
million fault campaign has been performed, and results show
that a failure rate lower than 1% can be obtained by hardening a
24% of the circuit flip-flops, for the given applications.

Index Terms—SEU, Fault Injection, FPGA-emulation

I. INTRODUCTION
ECHNOLOGY scaling increases notably the digital
circuits’ sensitiveness to environmental effects [1]. In

particular, soft errors due to cosmic radiation effects are a
main concern, not only in safety-critical applications but also
in mainstream applications, even at earth surface [2]. In order
to ensure the reliable operation of a circuit under soft errors,
adding fault tolerant mechanisms is required. These
mechanisms add redundancy, producing area overhead,
increasing the power consumption and reducing the circuit
performance [3]. A trade-off between reliability, cost and
performance must be reached [7].

In the literature there are recent approaches to deal with soft
error rate (SER) reduction in a cost effective way, reducing
area overhead, power and performance penalties
[4][5][6][7][8]. A solution to reduce the soft error rate,
improving the reliability, in a cost effective way consists in
performing selective hardening in early design stages [5], i.e.,
applying mitigation techniques just in some parts of the circuit
during the design stage.

Evaluating the susceptibility to soft errors in order to
indentify critical parts of a circuit is an essential task to
perform selective hardening efficiently. Soft error sensitivity
of a circuit depends on technological factors, functional
features and on the workload.

In [9], a methodology to estimate the SER is presented.
Technological factors are enclosed in the concepts of Nominal
FIT (Failure in Time), which is related to the electrical
characteristics of the technology, and Time Derating, which

Manuscript received April 3, 2009.
Authors are with Electronic Technology Department, University Carlos III

of Madrid, Av. Universidad 30, 28911 Leganes, Madrid, Spain. Phone: +34
916246018, Fax: +34 916249430. Email: {mgvalder, mportela, celia,
entrena}@ing.uc3m.es.

involves the times when the circuit is susceptible to SEU.
Functional aspects are considered under the term Logic
Derating, which is the probability of a SEU to impact the
behaviour of the circuit. It depends on the circuit architecture
and the workload. Fault injection is used to estimate logic
derating.

In [10], technological aspects are measured through a static
test, in which the circuit does not run a real application. This
test is performed through radiation testing. A dynamic test is
performed by checking the circuit behaviour under faults
while the circuit is running a specific workload. Fault
injection techniques are used to perform the dynamic test.

Fault injection is the most accepted solution by the
scientific community to perform the dynamic test or to
estimate logic derating. This paper is oriented in the same
way. The behaviour of the circuit under faults is analysed
from a functional point of view. By using fault injection, we
are able to locate critical circuit areas so that they can be
hardened before manufacturing the circuit. Once the circuit is
hardened and manufactured, radiation testing will be required
to check the result. This work is focused on the sensitivity
analysis, and hardening and radiation testing fall outside the
scope of the paper.

A method to locate weak circuit areas for selective
hardening in digital circuits is described. A PIC18
microcontroller macrocell has been used as case study since
microprocessors are typical circuits where penalties
introduced by hardening techniques must be minimized. Three
different workloads, with different nature, have been used to
demonstrate that the critical parts of a circuit depend on the
running workload.

The Autonomous Emulation system [11] has been used.
This tool profits from hardware emulation on platform
FPGAs, and provides a very high fault injection rate, allowing
massive fault injection campaigns. It profits from hardware
speed since all fault injection tasks, like controlling the
injection campaign, observing the circuit behaviour to classify
the faults or applying the stimuli, are performed in hardware.
One of the advantages of the fault injection system hardware
implementation is that some tasks can be paralleled, specially,
in the case of calculation-based tasks.

This technique exploits the embedded hardware resources
available in the FPGA platforms, like RAM memory blocks in
order to implement the complete fault injection environment.
Furthermore, Autonomous Emulation provides more
observability and controllability than other proposals. These

Extensive SEU impact analysis of a PIC
microprocessor for selective hardening

Mario García Valderas, Marta Portela García, Celia López, Luis Entrena

T

TNS-00684-2009

2

features are exploited to optimise the injection process and
making it faster. Most approaches [9][12] rely on Statistical
Fault Injection (SFI) to reduce the huge amount of possible
faults to a representative reduced fault set.

 Autonomous Emulation provides the following capabilities
in a cost-effective way:
 Obtaining the accurate fault dictionary for every memory

element in the circuit, for a given workload. Every possible
SEU in a memory element can be injected and evaluated for
a workload, without the need of selecting statistical samples.

 Analysing the weak areas of the circuit at first design stage.
This allows the designer to study the trade-off between the
applied hardening techniques and introduced penalties (in
area, performance and power consumption). This analysis
can be performed iteratively since the evaluation process is
very fast.
The paper is organized as follows. Section 2 describes the

experimental setup, including the autonomous emulation
system built over the PIC18 circuit and the different
workloads. Section 3 shows the results obtained and a
thorough discussion. Finally, section 4 states some
conclusions.

II. EXPERIMENTAL SETUP
As a case study, an in-house developed PIC18 macrocell

running three different workloads has been tested. An
autonomous fault emulation system [11] has been built.

A. Autonomous Fault Emulation
Autonomous emulation is an automatic tool to perform fault

injection analysis on circuit descriptions. Fault injection is
done according to the commonly accepted fault model bit-flip,
corresponding to SEU effect on memory elements into digital
integrated circuits. This injection is executed directly on
circuit memory elements prototyped on a programmable
device (FPGA).

Although the final implementation will be an ASIC,
memory elements are equivalent in an FPGA prototyped
version. Little differences could be caused by the use of
different synthesisers for FPGA and ASIC libraries. If an
exact result is required, the circuit should be compiled for the
ASIC technology and every gate and flip-flop replaced for a
behavioural equivalent FPGA model.

In Autonomous emulation system, a modified
(instrumented) version of the circuit is prototyped on a FPGA
platform along with a module in charge of performing the
whole fault injection campaign.

The main advantage of Autonomous Emulation approach is
the capability to abort the emulation once a fault is classified
as failure or silent, restoring the circuit state to the previous
clock cycle to the injection of the fault classified. With this
optimisation, few clock cycles are employed per fault
emulation and high fault injection speeds are achieved.

The Autonomous Emulation system built for this work
includes the synthesized and instrumented PIC18 macrocell,
the program memory, a fault classification mechanism and the
emulation control unit.

B. PIC18 microprocessor
PIC18 is an 8-bit, high performance microprocessor, well

suited for embedded applications. It is a RISC processor with
Harvard architecture and a 2-stage pipeline (fetch and
execution) [13].

Commercial implementations offer up to 128kB of ROM
memory for program and data, and up to 4kB of RAM
memory.

The used PIC18 IP has been developed to build
microprocessor systems with certain computational power and
to be able to include new peripherals. Peripherals are attached
to the data bus and can be controllers by mapping special
function registers or by replacing a RAM memory bank and
mapping the peripheral in RAM space address.

The developed IP can be configured in terms of ROM
memory, RAM memory and the selection of peripherals.

The core blocks include:
 Instruction fetch and decode,
 Program counter and associated registers and the

program counter stack (32 addresses).
 Program Memory (ROM)
 User Memory (RAM) and related logic, like addressing

logic (block select, indirect addressing).
 ALU: arithmetic and logic functions, the working register

(WREG) and a multiplier.
Developed peripherals include:
 Input-output ports (5): PortA to PortD.
 Timers (4): Timer0 to Timer3
 UART: asynchronous serial communications.
The setup chosen for the experiment include PortB and

PortD, the timers and the UART.
In order to build the autonomous emulation system for fault

injection, the PIC18 macrocell has been synthesized for a
Virtex-4 FPGA family. Synthesis results are shown in Table
1Table 1, showing the number of flip-flops, LUTs (Look-Up
Tables) and RAM memory blocks. The design includes RAM
blocks for user RAM and PC stack. Program memory has
been left out of the design, so that the program can be easily
changed without the need of rebuilding the emulation system.
In commercial PICs, program memory is FLASH, and thus
not sensitive to SEU. If program memory is implemented
using RAM, it should be protected using EDAC codes.

Table 1. PIC18 synthesis results

Virtex-4 Used
Flip-flops 596
LUTs 2,314
Block-RAMs 7

Results are written to port B and port D. Writing to a port a
result which is different than expected or writing it in a not
exact clock cycle will result on the fault being classified as a
failure.

C. Workloads
Three different applications have been used to test the

microprocessor: a matrix multiplication, a serial data
transmission using the UART and a real time clock.

TNS-00684-2009

3

The matrix multiplication is a data intensive application,
which spends most of the time moving data from memory to
the ALU and back, and making arithmetical operations. In this
application, the ALU is the most used component.

For the data transmission program, the microprocessor TX
and RX signal are shorted, so that it receives through RX the
same data sent through TX. The program consists in a
continuous flow of characters going through the serial port.
The UART is the most used component in this application.

The real time clock application uses a timer to maintain the
system clock, which is a very important task in any space
application. The timer is set to trigger a periodic interrupt. The
interrupt service routine increments a tick counter, and several
functions are used to update the system date and time. In this
case, the most critical blocks are the timer used and the
interrupt handler block.

The three applications write partial data to the
microprocessor ports in order to check the correct executions
of the programs.

III. EXPERIMENTAL RESULTS AND DISCUSSION
An intensive fault injection campaign has been performed

for three workloads. A single fault has been injected in every
circuit flip-flop, and in every clock cycle of every workload.
Only some clock cycles at the beginning have been left out.
Table 2Table 2 shows the characteristics of the three fault
injection campaigns. Tables 3 to 5 show the grouped fault
classifications for the three workloads, and Table 6Table 6
shows a failure rate comparative between the three
applications.

Table 2. Fault injection characteristics

 Workload
clock cycles

Total injected
faults

Matrix multiplication 55,784 33,414,616
Serial communication 28,963 17,213,076
Real Time Clock 51,103 29,693,316

Table 3. Grouped Fault classification: matrix multiplication

 #FF Failure Silent Latent RAM Latent
Pipeline 2 72.768 0 177 38.623
ALU 42 93.675 223.110 728.432 1.297.711
Data&Addr 52 163.073 0 1.440.199 1.297.496
Instructions 104 1.028.126 55.936 2.036.476 2.680.998
Ports 48 446.272 0 2.228.432 2.928
Interrupts 79 0 534 4.294.834 111.568
Timers 152 0 446.272 7.196.270 836.626
UART 117 0 892.544 5.522.616 111.568
Total 596 1.803.914 1.618.396 23.447.436 6.377.518
 5,43% 4,87% 70,52% 19,18%

Table 4. Grouped Fault classification: serial communication

 #FF Failure Silent Latent RAM Latent
Pipeline 2 39,327 17,507 472 456
ALU 42 5,753 369,365 837,690 194
Data&Addr 52 423,956 297,752 714,980 65,124
Instructions 104 347,010 1,068,999 1,332,515 255,100
Ports 48 231,048 0 932,680 222,560
Interrupts 79 4,134 52,702 2,223,603 1,160
Timers 152 0 635,226 3,754,686 0
UART 117 1,305,026 1,538,300 534,603 1,148
Total 596 2,356,254 3,979,851 10,331,229 545,742
 13.69% 23.12% 60.02% 3.17%

Table 5. Grouped Fault classification: real time clock

 #FF Failure Silent Latent RAM Latent
Pipeline 2 59,569 29,433 4,993 5,647
ALU 42 56,072 748,115 817,532 470,763
Data&Addr 52 1,107,135 576,611 210,094 696,852
Instructions 104 1,210,106 1,296,209 1,312,461 1,362,608
Ports 48 398,568 189,768 1,608,744 194,328
Interrupts 79 221,431 118,943 3,519,434 76,051
Timers 152 936,260 982,425 5,021,772 632,335
UART 117 0 844,578 4,932,279 52,200
Total 596 3,989,141 4,786,082 17,427,309 3,490,784

13.43% 16.12% 58.69% 11.76%

Table 6. Failure rates comparative

 #FF Matrix UART RTC
Pipeline 2 0.22% 0.23% 0.20%
ALU 42 0.28% 0.03% 0.19%
Data&Addr 52 0.49% 2.46% 3.73%
Instructions 104 3.09% 2.02% 4.08%
Ports 48 1.34% 1.34% 1.34%
Interrupts 79 0.00% 0.02% 0.75%
Timers 152 0.00% 0.00% 3.15%
UART 117 0.00% 7.58% 0.00%
Total 596 5.43% 13.69% 13.43%

In these tables, a fault is considered silent when the fault

injection effect disappears completely from the circuit. A
failure indicates the fault has been propagated to the
microprocessor ports. Latent faults indicate that at the end of
the program execution some flip-flop values are different than
the ones in the fault free circuit, but the fault has not been
propagated to the ports. RAM latent faults are like latent
faults, but the fault has propagated into RAM blocks.

These results give a lot of significant information about the
circuit. There are two flip-flops that control the pipeline flow,
which produce a failure in a very high amount of faults, and
should be protected.

The matrix multiplication program is data intensive, and
produces a higher amount of failures in the ALU. The
communication program produces more failures when faults
are injected in the UART, and the real time clock application
shows more failures in the used timer and interrupt treatment
blocks.

Ports show a high failure rate in any application because
they are used to check the results. The rate would be lower
with the real applications.

The real time clock application fails quite more in the
addressing (Data&Addr) and instruction blocks. The
addressing block fails because in this application there are

TNS-00684-2009

4

frequent subroutine calls, and context storage and restoring
force the use of indirect addressing. The instruction block fails
more because the program is more complex and uses a higher
number of different instructions.

 However, the most powerful ability of autonomous
emulation is to obtain the fault classification in a per flip-flop
basis. It allows selecting the critical sections of the circuit for
hardening. In the tables, it can be noticed that most of the
faults producing failures are related with instructions
(program counter and instruction register), with
microprocessor ports, and with UART and timers in the
applications which use them.

A deeper analysis is presented in Fig. 1, 2 and 3, which
graphically shows the fault classification of every flip-flop.
Every horizontal line represents a different flip-flop. The
whole line is the total number of faults injected in the flip-flop
(one for each clock cycle).

In these figures, failures are colored in red (dark), so that
critical flip-flops can be easily identified. This way, it can be
noticed that the most critical flip-flops in the design are those
related with ports, the program counter and specific parts used
by each application, like the ALU, UART, timers and
interrupts.

Port related flip-flops always produce failures in the three
applications, because values at ports are directly used to
determine the classification of faults. In real applications,
ports are usually critical parts of the circuit, given that they
propagate faults very easily.

The program counter also produces a high amount of
failures, but not all the bits. Only the least significant 12 bits
(out of 20) produce failures. The rest produces latent faults.
The explanation is the design of the program memory. Instead
of reading zeros when accessing an empty memory position,
the program has been replicated throughout all the memory
space. This way, high bits on the program counter do not
affect the program sequence when affected by SEUs.

There are also other flip-flops related to the program
counter that throw a lot of failures, such as the Top Of Stack
register (TOS). It stores the returning address of a subprogram
or interrupt. Only the first 12 bits are critical, the same as the
program counter and for the same reason.

ALU related registers are not very critical in these
applications. These registers are the working register (WREG)
the status register (STATUS) and two registers used to store
multiplication results (PRODH and PRODL). In general, these
registers do not produce many failures. In the matrix
multiplication application (Fig. 1), the failure rate is higher
because it is data intensive and the ALU is used more often.
The working register is going to be critical, independently of
the application, because it is used very often for all sorts of
operations.

Other group of registers that produce many failures are
indirect addressing registers, FSR0 to FSR2 (corresponding to
Data&Addr section in tables). These are the pointers for
indirect addressing, so when they fail, data are handled
incorrectly. In the matrix multiplication application, there is

very little indirect addressing, and the failure rate is lower.
In the communications and real time clock applications, the

failure rate due to indirect addressing is higher. In the
communications application, the variable that controls the
characters sent through the serial port is accessed using FSR2,
and produces failures when characters different than expected
are sent. In the real time clock application there are a lot of
subroutine calls and interrupts, which produce a lot of context
saving and restoring. Context variables use indirect
addressing, so a lot of failures are produced.

The UART and timers produce failures just on the
applications that use them. The UART is a big block
composed mainly by counters, and fault injection produces the
timing to fail when the UART is in use (Fig. 2). Something
similar happens to timers. The real time clock application uses
one of the four microprocessor timers and produces a lot of
failures when injecting in that timer (Fig. 3).

Figures also show the parts of the circuit that are not used.
Unused parts produce latent faults. The fault is stored and it
does not produce a failure because it is never used and it
cannot disappear because it is never overwritten, so it remains
latent forever. This is the case of the interrupt controller,
PORTA and unused timers.

From this analysis, several conclusions can be obtained. On
the one side, there are some microprocessor areas that should
be protected with independence of the application, because
they are critical for the microprocessor correct flow. On the
other side, there are some parts of the circuit that should be
hardened according to the workload. For the tested workloads,
it can be deduced that hardening a 24% of the flip-flops (using
TMR in a preliminary approach) the failure rate obtained is
lower than 1%.

This analysis shows the possibilities that the Autonomous
Emulation fault injection system can offer. The fault
classification heavily depends on the application used as
workload, and different hardening decisions can be taken for
the same circuit but different applications. Autonomous
Emulation is a very powerful tool used to locate weak areas of
a circuit, taking into account the workload executed.

Selectively hardening a design, in relation to the particular
application it is going to run, may result in a lower area
overhead, compared with a full hardening approach, while
maintaining a great reduction in the failure rate.

IV. CONCLUSIONS
Applying hardening techniques to a whole circuit can be a

waste of resources, if we consider the particular use of the
circuit in the final application. Microprocessor cores are
general purpose circuits, and the usage of its resources
depends heavily on the workload. There are usually some
parts of the circuit that are seldom or not used at all and extra
resources to harden them would be wasted.

In this paper, we have used the autonomous emulation fault
injection system to perform a massive fault injection campaign
in a PIC18 microprocessor, running three different

TNS-00684-2009

5

applications, a matrix multiplication, serial communications
and a real time clock.

Results show that some parts of the circuit are critical for
any application, and others that should be protected only if
they are used. Given a workload, weak circuit areas can be
easily located thanks to Autonomous Emulation.

REFERENCES
[1] International Technology Roadmap for Semiconductors,

Editions 2001-2007.
[2] R. C. Baumann, “Radiation-Induced Soft Errors in Advanced

Semiconductor Technologies”, IEEE Trans. On Device and
Materials Reliability, Vol. 5, No. 3, pp. 305-316, September
2005.

[3] M. Nicolaidis, “Design for soft error mitigation” IEEE Trans.
On Device and Materials Reliability, Vol. 5, No. 3, pp. 405-418,
2005.

[4] D. Nowroth, I. Polian, B. Becker, “A Study of Cognitive
Resilience in a JPEG Compressor” Int. Conference on
Dependable Systems & Networks, pp. 32-41, June 2008.

[5] C.G. Zoellin, H. J. Wunderlich, I. Polian, B. Becker, “Selective
Hardening in Early Design Steps” 13th European Test
Symposium, pp. 185-190, 2008.

[6] M. Zhang, S. Mitra, T. M. Mak, N. Seifert, N. J. Wang, Q. Shi,
K. S. Kim, N. R, Shanbhag, S. J. Patel, “Sequential Element
Design with Built-In Soft Error Resilience” IEEE Trans. On
Very Large Scale Integration Systems, Vol. 14, No. 12,
December 2006.

[7] K. Mohanram, N. A. Touba, “Cost-Effective Approach for
Reducing Soft Error Failure Rate in Logic Circuits”
International Test Conference, pp. 893-901, 2003.

[8] Mojtaba Mehrara, Mona Attariyan, Smitha Shyam, Kypros
Constantinides, Valeria Bertacco, Todd Austin, "Low-cost
Protection for SER Upsets and Silicon Defects", Design
Automation and Test in Europe (DATE), Nice, France, April
2007.

[9] Hang T. Nguyen, Yoad Yagil, Norbert Seifert, Mike Reitsma,
"Chip-Level Soft Error Estimation Method", IEEE Transaction
On Device And Materials Reliability, Vol. 5, No. 3, September
2005.

[10] S. Rezgui, R. Velazco, R. Ecoffet, S. Rodriguez, J. R. Mingo
“Estimating error rates in processor-based architectures” IEEE
Transactions on Nuclear Science, Vol. 48, Issue 5, pp. 1680-
1687, Octubre, 2001.

[11] C. López-Ongil, M. García-Valderas, M. Portela-Garcia, L.
Entrena, “Autonomous Fault Emulation: A New FPGA-Based
Acceleration System for Hardness Evaluation”, Trans. on
Nuclear Science, Vol. 54, No. 1, pp. 252-261, February, 2001.

[12] Jean-Marc Daveau, Alexandre Blampey, Gilles Gasiot, Joseph
Bulone, Philippe Roche, “An Industrial Fault Injection Platform
for Soft-Error Dependability Analysis and Hardening of
Complex System-On-a-Chip”, IEEE CFP09RPS-CDR 47th
Annual International Reliability Physics Symposium, Montreal,
2009.

[13] “PICmicro® 18C MCU Family. Reference Manual”, Microchip
Technology Inc., ref. DS39500A, 2000.

0% 20% 40% 60% 80% 100%

Pipeline
ALU(wreg)
ALU(stat)
ALU(stat)
ALU(mult)
Addr.(BSR)

Data
Addr.(FSR0)
Addr.(FSR0)
Addr.(FSR1)
Addr.(FSR2)

Instr.
Instr.(SP)
Instr.(PC)
Instr.(SP)

Instr.(stack)
Instr.(stack)
Instr.(stack)

Instr.(IR)
Instr.(PC)

Instr.(stack)
Instr.(stack)
Instr.(stack)

TRISA
TRISB
PORTB
TRISD

PORTD
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
UART
UART
UART
UART
UART
UART
UART
UART
UART
UART
UART
UART
UART

Failure Latent RAM Latent Silent

Fig. 1. Per flip-flop fault classification: matrix multiplication

TNS-00684-2009

6

0% 20% 40% 60% 80% 100%

Pipeline
ALU(wreg)
ALU(stat)
ALU(stat)
ALU(mult)
Addr.(BSR)

Data
Addr.(FSR0)
Addr.(FSR0)
Addr.(FSR1)
Addr.(FSR2)

Instr.
Instr.(SP)
Instr.(PC)
Instr.(SP)

Instr.(stack)
Instr.(stack)
Instr.(stack)

Instr.(IR)
Instr.(PC)

Instr.(stack)
Instr.(stack)
Instr.(stack)

TRISA
TRISB

PORTB
TRISD

PORTD
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
UART
UART
UART
UART
UART
UART
UART
UART
UART
UART
UART
UART
UART

Failure Latent RAM Latent Silent

Fig. 2. Per flip-flop fault classification: serial communication

0% 20% 40% 60% 80% 100%

Pipeline
ALU(wreg)
ALU(stat)
ALU(stat)
ALU(mult)
Addr.(BSR)

Data
Addr.(FSR0)
Addr.(FSR0)
Addr.(FSR1)
Addr.(FSR2)

Instr.
Instr.(SP)
Instr.(PC)
Instr.(SP)

Instr.(stack)
Instr.(stack)
Instr.(stack)

Instr.(IR)
Instr.(PC)

Instr.(stack)
Instr.(stack)
Instr.(stack)

TRISA
TRISB

PORTB
TRISD

PORTD
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
Timers
UART
UART
UART
UART
UART
UART
UART
UART
UART
UART
UART
UART
UART

Failure Latent RAM Latent Silent

Fig. 3. Per flip-flop fault classification: real time clock

