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Abstract 

Microprocessor-based systems are employed in an increasing number of applications where 
dependability is a major constraint. For this reason detecting faults arising during normal 
operation while introducing the least possible penalties is a main concern. Different forms of 
redundancy have been employed to ensure error-free behavior, while error detection 
mechanisms can be employed where some detection latency is tolerated. However, the high 
complexity and the low observability of microprocessors’ internal resources make the 
identification of adequate on-line error detection strategies a very challenging task, which can 
be tackled at circuit or system level. Concerning system-level strategies, a common limitation is 
in the mechanism used to monitor program execution and then detect errors as soon as possible, 
so as to reduce their impact on the application. In this work, an on-line error detection approach 
based on the reuse of available debugging infrastructures is proposed. The approach can be 
applied to different system architectures profiting from the debug trace port available in most of 
current microprocessors to observe possible misbehaviors. Two microprocessors have been used 
to study the applicability of the solution, LEON3 and ARM7TDMI. Results show that the 
presented fault detection technique enhances observability and thus error detection abilities in 
microprocessor-based systems without requiring modifications on the core architecture. 
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On the use of Embedded Debug Features for 
Permanent and Transient Fault Resilience in Microprocessors 

 
1. Introduction 

One of the challenges [1] in current and future digital circuits is to ensure correct behavior 
during their normal operation. This is especially true in the case of mission- or safety-critical 
applications such as medical, avionic and automotive ones, where emerging standards such as 
[2] demand higher levels of fault detection and tolerance from circuit manufacturers. Reduced 
transistor sizes, lower operation voltages and higher working frequencies make circuits more 
sensitive to transient faults, such as soft errors caused by cosmic rays and radioactive 
contaminants in packages. Also, other kinds of phenomena, like aging and wear-out effects, are 
becoming an increasing concern, causing both transient and permanent faults during mission 
time. Therefore, on-line protection techniques against transient and permanent faults are 
mandatory to ensure suitable levels of dependability. 

The increasing device integration level brings about systems with high complexity, like 
Systems on Chip (SoCs). SoCs may embed one or more microprocessors, memories and other 
components. In other cases, the same device can accommodate an increasing number of 
processor cores, which can effectively be used to improve the system performance. In general, 
microprocessors are main components in current digital circuits and fault protection techniques 
devised specifically for these kinds of components are needed. In general, protection techniques 
consist of two main steps: error detection to discover the effects of a fault as soon as it happens, 
and error recovery, in order to continue with the system execution with the minimum 
disturbance. However, the complexity of current microprocessors hinders the task of error 
detection. In particular, behavior monitoring and result inspection are critical issues due to the 
low observability of internal resources [3].  

Traditional methodologies are based on hardware and/or time redundancy and usually require 
changes in the application code, hardware modifications, or access to inner buses. In order to 
increase observability for on-line error detection in microprocessors we propose a solution 
based on profiting from the availability of integrated debugging infrastructures. Modern 
microprocessors include on-chip debuggers to facilitate the task of designing the software to be 
run on the system. They provide access to processor registers and memory areas and can include 
trace interfaces or buffers for tracking program execution. Once an application has been 
developed and validated on a system, the debugging infrastructures become inactive and useless 
during mission time. By means of debug interfaces, the behavior of the processor during the 
execution of whichever piece of code can be observed in details (thus improving the chances of 
detecting possible faults) without affecting the normal operation, nor involving any significant 
change in the application code, nor asking for any additional hardware structure.  

Some previous works based on this idea were presented in [4] and [5]. The approach 
presented in [4] is based on the availability of two processors in the system to duplicate the 
execution and on the reuse of available debugging infrastructures to observe and compare both 
runs, thus detecting possible misbehaviors. In that paper it was demonstrated that direct 
monitoring of the trace interface enables same or better fault detection than when observing the 
data bus. This method is generalized in [5] in order to be used in combination with different 
hardening techniques, allowing the implementation of different fault protection levels. In this 
paper, we collect the former results and make a further step in order to widen the generality of 
the method. A study of the effectiveness of the approach when the trace data is sampled at 
different instants is presented. This analysis is necessary in order to prove the applicability of 
this method to microprocessors with an access to a trace data buffer as well as for those with a 
direct access to the trace bus. Experimental results with two different microprocessor-based 
systems based on LEON3 and ARM7TDMI, which include different debugging features, are 
presented. Also, the main issues related to the implementation of our approach on the two test 
cases are studied in order to assess its applicability.  

The paper is organized as follows: Section 2 presents an overview of related works. Section 3 
describes the proposed solution to detect faults during normal operation in microprocessor 
based systems, by means of reusing debugging infrastructures in various system architectures. 
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Section 4 describes two case studies, based on the LEON3 and the ARM7TDMI cores, 
respectively, and presents the results related to the different possible implementations of our 
approach in both cases. Section 5 collects the results of the fault injection experiments aimed at 
measuring the method capability in detecting errors for different types of implementations. 
Finally, Section 6 draws some conclusions. 

 
2. Related Works 

The main objective of this paper is to propose a widely applicable on-line fault detection 
technique focused on current microprocessors. A major limitation of the existing techniques is 
the reduced accessibility to internal resources, which limits the observability of the processor 
behavior. In this paper this limitation is attacked by profiting from the debugging infrastructures 
available in most of current microprocessors. In the following, firstly a review of the existing 
on-line fault detection techniques is presented; secondly, a summary of the capabilities of 
today’s microprocessor debugging infrastructures as well as of the existing works that exploit 
them to enhance accessibility to embedded processors is given.  

Existing	on‐line	fault	detection	techniques	
Among the existing on-line fault detection techniques that can be applied to increase 

dependability in microprocessor-based systems, different types can be distinguished depending 
on the system features (single-processor or multi-processor) and on the fault detection 
requirements (concurrent or non-concurrent). Moreover, the existing techniques can be 
classified depending on the implementation: software-implemented techniques, which are based 
purely on software detection mechanisms, and hardware-based ones, which involve circuit 
modifications.  

If concurrent error detection is not required, periodic test application can be used to detect 
permanent faults that may arise due to external stresses or aging along the product mission time. 
Hardware-based self-test techniques can be employed, such as approaches based on Built-In 
Self-Test (BIST) or specific Infrastructure-IPs (I-IPs), also reusing manufacturing test 
structures, which provide excellent test quality but often require substantial design 
modifications, high hardware overhead or increase power consumption. Conversely, Software-
Based Self-Test (SBST) methodologies exploit the microprocessor itself to perform at-speed 
test application and response evaluation by running suitably developed test programs [6]. 
Usually, the test program includes instructions able to excite the faults and usually a compaction 
routine (e.g., corresponding to a software Multiple Input Signature Register, or MISR, routine), 
and instructions to transfer the results to memories or externally accessible ports; alternatively, 
the test program may write partial results to the processor ports with a hardwired MISR 
compressing the results [3][7]. 

Concurrent error detection is usually required in mission- or safety-critical applications, 
where the effects of both permanent and transient faults need to be detected and possibly 
corrected as soon as possible after their occurrence. For this purpose, designers insert additional 
code lines or specific hardware structures to store flow or/and elaborated data and check the 
consistency between the expected and executed values. Employing these techniques, the 
possibility of having an error condition with possible catastrophic effects is minimized as much 
as the error coverage is increased and fault latency is reduced. The usual higher implementation 
costs (e.g., silicon area and code length) are the price to pay to guarantee higher system security. 

Common techniques based on software modifications exploit the concepts of information, 
operation and time redundancy to detect the occurrence of errors during program execution. 
Traditional software-based techniques demand the replication of the execution of a program and 
the consequent vote among the results produced by each replica (e.g., Recovery Blocks [8] and 
N-Version Programming [9]). Although effective, these approaches rely on software designers 
for their implementation, i.e., the programmers are in charge of devising how to replicate the 
program and how to realize the voting mechanism that best fits the application the program 
implements. These processes are, in general, not automated and thus highly error prone. More 
recent techniques (such as [10] and [11]) harden programs against errors by replicating variables 
and/or introducing some control instructions. These techniques simplify the task for software 
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designers since some of them can be applied automatically to the software that is intended to be 
hardened. When replicating variables, beyond the overhead due to the repetition of computing 
instructions on two sets of data, an additional cost stems from the need to compare the obtained 
results. 

Hardware-based techniques exploit hardware redundancy. Usually, duplication of cores is 
used for fault detection and triple module redundancy (TMR) for fault correction in presence of 
single faults [12] (the probability of more than one simultaneous error in different replicas of a 
core is usually regarded as very low). Special-purpose hardware modules, called watchdog 
processors [13] are often used to monitor the control-flow of programs, as well as memory 
accesses. The introduced modules generally observe the processor bus, its ports and/or other 
internal critical signals, as described in [14] and [15]. These techniques introduce modifications 
in the processor or system structure that increase the circuit area and may also involve speed and 
power overheads. 

Hybrid methodologies (i.e., including both hardware and software modifications) have also 
been proposed (e.g., [16], [17]) to find better trade-offs between error detection abilities and 
application costs. 

In multi-core or multi-processor systems, the different processors can be exploited in order to 
perform fault detection and recovery tasks [18]-[20]. In this case, there are additional problems 
to consider since the different processors may share resources, and any possible collision must 
be prevented. In [18] a summary of the most representative error detection and recovery 
techniques aimed at multi-core systems is presented. For this kind of systems, redundant 
execution is an attractive solution to detect errors during normal operation since all cores are not 
always used and unused processors can execute redundant threads.  

Enhanced	system	observation	through	Debug	features	
The complexity of today’s systems makes validation of hardware and software modules a 

very demanding operation. Approaches based on detailed circuital simulation are limited by the 
computational effort needed, while simplified behavioral models may hide hardware effects that 
will be manifest in the final product. For this reason, significant system validation and software 
development works are performed directly on silicon prototypes. Post-silicon hardware/software 
validation in embedded systems is often supported by specific distributed infrastructures 
enabling additional circuit visibility (probes) or by means of trace buffers or hardware recorders 
[21][22][23][24]. 

Most current microprocessors include dedicated logic to support software debugging 
operations. This circuitry, usually named On-Chip Debugger (OCD), allows the designer to 
control execution and access internal resources from outside the system. Typical capabilities 
supported by an OCD include breakpoint and watchpoint setting, step execution, access to 
internal registers and memory, program and data trace. In order to connect a host computer, the 
debug interface is made available off-chip either directly or through some standard port such as 
JTAG or BDM. Serial ports are used for simple debugging operations, while parallel ports are 
used to support data-intensive debug operations such as real-time tracing. The Nexus 5001 
Forum™ standard [25] defines a rich set of OCD features divided in 4 classes, where each class 
is a superset of the features supported by the lower classes. This standard is becoming 
increasingly adopted; in addition, most of these OCD features can also be found in other 
microprocessors that do not comply with the standard. 

Embedded microprocessor cores usually come along with modules for improved support of 
debugging functions. Examples of these modules are the ARM Embedded Trace Macrocell 
(ETM) [26], the Xilinx MicroBlaze™ Trace Core (XMTC) [27], and the LEON3 Debug 
Support Unit (DSU) [30]. 

Figure 1 shows the generic architecture of a (possibly multi-core) embedded CPU equipped 
with an OCD module. Usually, the latter is tightly connected to the processing core(s) through a 
high bandwidth interface (Debug I/F), which enables control and monitoring operations. 
Depending on the specific architectures, different information may move on this connection, 
including the program counter value, the instruction register content (operation code), the results 
of arithmetic operations, memory operation target addresses and other processor status flags and 
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signals describing the conditions of pipeline and operation units. 
The OCD is typically a programmable module whose functions may include: 
 storage of trace data in an internal buffer 
 compression of program flow information through the detection of alterations in the 

program run (i.e., jumps in the executed code) 
 monitoring and comparison of the observed address or data values with predefined ones 

so as to trigger breakpoints and watchpoints 
 control of microprocessor cores for activating breakpoints and step-by-step execution. 

 
In embedded systems, OCDs (and, when available, trace buffer information) can be accessed 

through dedicated interfaces or relying on communication peripherals connected to the system 
bus. 

Microprocessor
core(s)

Microprocessor
core(s)

Microprocessor
core(s)

Microprocessor
core(s)

On‐Chip debugger
(OCD)

control trace

Debug I/F

Ethernet RS232 JTAG

Debug host

D
ed

icated
 in
terface

 
Figure 1. Generic architecture of a CPU equipped with an On-Chip Debugger 

 
Previous works have exploited debug interfaces to access the microprocessor’s internal 

resources for different purposes: the authors in [28] and [29] present fault injection techniques 
based on using OCDs and show that their features provide minimally intrusive access to 
embedded cores. 

The approach presented in [4] for dual-core systems, then extended in [5] to other system 
configurations, uses the already available debug infrastructure during normal operation to 
increase the accessibility to the microprocessor in order to detect faults in a non intrusive way. It 
takes advantage from the available parallel debug interface, in order to minimize area and 
performance penalties. Unlike other hardware-based on-line fault detection techniques, in such a 
solution the debugging interface is observed instead of the main bus, and thus the normal 
operation is not disturbed. Experimental results show that this technique presents the following 
advantages with respect to alternative methods: 

 it increases the observability during the execution of an on-line test, increasing the fault 
coverage, also with respect to approaches directly observing the processor bus [4]; 

 it applies a low cost solution, since it is based on reusing available resources in the 
system, so as to avoid circuit modification and area overhead; 

 it does not affect the performance, as the observation of internal data is done in a non-
intrusive way; 

 it is non code intrusive. The fault detection is performed by a dedicated hardware 
module at the expense of a small area overhead, without the need to modify the 
processor core. 
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3. On-line Fault Detection Technique 

In this work we propose a method that provides a general mechanism to detect the occurrence 
of permanent and transient faults, causing the least possible disturbance in the microprocessor 
system. Such technique extends the work presented in [4] and [5] to the most general case. In 
the proposed method each task considered critical for the application is replicated different 
times and/or in different processors. The problem of selecting the task(s) to be replicated 
depends on the required reliability level and on the available resources. The implications of the 
trade-off between level of protection and costs have been widely debated in literature and are 
outside the scope of this work. As a worst case, all tasks may be replicated, as in traditional 
redundancy-based techniques [12]. The task scheduler needs therefore to be programmed 
accordingly. The several executions of a task are compared relying on data obtained through the 
debugging infrastructure and possible misbehaviors caused by faults can be detected. 
Nowadays, most processors include debugging infrastructures; specifically, in this work the 
trace interface is used, since it is commonly directly accessible in modern processors (Standard 
Nexus, class 2, 3 and 4, [25]). The information that can be obtained from this trace interface 
usually includes the value of the program counter, the operation code (opcode), instruction 
results, load data and store data. 

Two alternative methods exist to capture trace information: data coming from the processor 
can be directly intercepted, or they can be temporarily stored in the trace buffer (usually 
implemented as a circular buffer architecture), which will subsequently be read. The first 
solution provides a higher degree of fault coverage and minimizes latency, but requires direct 
access to a large bandwidth interface. Conversely, the buffer solution, to be used when no direct 
trace observation is available, may introduce additional fault detection latency and may reduce 
fault coverage, depending on the buffer size and the access policies. As a matter of fact, the task 
to be monitored may be as long as to make the buffer overflow: in this case, either the task is 
divided in a series of shorter sub-tasks to be monitored, each one not causing overflow, or only 
the latest data written in the circular buffer for a task may be employed for checking, therefore 
reducing the method effectiveness. 

In order to implement the method, a specific customizable hardware module can be adopted, 
which observes the execution of replicated critical tasks. This new hardware module can either 
be integrated in a digital design without requiring core modifications (in FPGA or ASIC), or be 
connected to an external trace port: as it will be shown in Section 5, the effectiveness in 
detecting faults is proportional to the debug interface bandwidth. The module calculates a 
signature for each replica of the addressed tasks employing the information obtained from the 
debugging infrastructures. Whenever the tasks finish their execution these signatures are 
compared and if they differ, then a fault is detected and the hardware triggers some error signal. 
The fault latency achieved with this approach corresponds to the time that the replicated task 
takes to finish its execution. By profiting from debugging infrastructures the observability is 
increased and the costs are low since hardware from the original component is reused. This 
approach can be used together with different hardening techniques, since it does not need code 
modifications and does not introduce additional performance penalties. 
 
3.1. CPU Checker Architecture 

In this subsection, the architecture of the proposed hardware module, named CPU Checker, is 
described. The CPU Checker is in charge of detecting the occurrence of faults by means of 
checking the execution of each task which is replicated on different instants of time or on 
different CPUs. This module contains the following sub-modules: a memory unit, the Checker’s 
Controller and one or more CPU Observers. Figure 2 shows the proposed architecture; detailed 
information about each component of the CPU Checker are given next: 

‐ Memory unit: this sub-module is in charge of storing all the information needed to 
detect the occurrence of a fault. In order to program this memory block, the CPU 
Checker can be connected to the system bus as a peripheral, or externally accessed. This 
memory is divided in four different blocks to store the following information: the first 
and last instruction addresses of the critical task to be checked, the maximum time 
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allowed to execute the task, and the signatures that have been calculated from the 
replicas of the monitored task. The number of addresses in this memory block is the 
number of different critical tasks that are executed on which errors need to be detected.  

‐ Checker’s Controller: it is in charge of managing the error detection process.  
‐ CPU Observers: they observe individual executions of the replicated tasks. The number 

of CPU Observers in the CPU Checker depends on the number of replicas of critical 
tasks that can be executed simultaneously.  

Each CPU Observer is composed of the following three main elements:  
‐ The MISR module computes a single signature for the execution of the replica of the 

critical task using data coming from the trace interface of a processor.  
‐ The Watchdog Timer checks whether or not the task finishes within the allowed time. 
‐ The Observer’s Controller manages the signature generation and Watchdog operation.  

 
When the number of replicas of a task is more than two, the system is not only capable of 

detecting the occurrence of faults, but is also capable of identifying the processor where it 
occurred, and contribute in error correction schemes. 
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Figure 2. CPU Checker’s architecture 

 

After presenting the architecture of the CPU Checker, it is necessary to explain how this 
module works: 

‐ The first step is to configure the system by storing in the memory block the first and last 
instruction addresses for each task that needs to be monitored as well as its maximum 
execution time and, whenever needed, activate instruction tracing. 

‐ Once the system is initially configured, the various tasks start executing on the 
processors in due time. Whenever a task that needs to be checked starts its execution, a 
MISR module starts to compute a signature for this task. 

‐ When the execution of a task has finished, the calculated signature is also stored in the 
memory block. 

‐ After all the replicas of a given task have finished their execution, the computed 
signatures are compared. If they differ, a fault is detected and a warning signal is raised. 
There are three main causes that can produce an error detection: 

 The instructions executed by a task and its replicated version are different 
(signatures differ). 
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 The expected order for the different replicas execution is altered (for the 
systems where this condition is relevant). 

 One of the replicas does not finish its execution (time-out). 
‐ If no error was detected, then the processors continue to execute other tasks. Otherwise, 

the processors will carry out the appropriate recovery actions. 
 

When implementing a CPU Checker in a system, it has to be noticed that some factors can 
have a strong influence on the final signature computed by an MISR module. One of them is the 
type of information we use to compute the signature (for example, the complete trace bus or 
only a subset of signals) and another is how often this information is sampled. With respect to 
the first parameter, some experimental results are presented in Section 5 in order to analyze how 
the type of observed information affects the error detection capability of the proposed technique. 
Regarding the sampling frequency, we consider two main options taking into account the 
debugger features present in modern microprocessors. These two options differ on how the data 
is introduced in the MISR module. In the first option the data introduced in the MISR module is 
in a cycle by cycle basis, i.e. sampling data that appears on the trace bus at every clock cycle. 
This case is suitable when the trace bus is directly accessible. Whether this data changes or not 
is not relevant for the signature generation. In the second option, the signature is obtained by 
compacting the data stored in the trace buffer, and then data are sampled only after some 
condition is verified, in order to prevent the buffer overflows. Section 5 presents the results of 
the experiments performed to analyze the influence of this factor on the fault detection 
capability of the proposed solution. 
 
3.3. Applicability 

In the previous sections we have seen the architecture of the CPU Checker and how it works. 
In this subsection the applicability of the CPU Checker is studied. The CPU Checker can be 
used with various system architectures combined with different hardening techniques; in any 
case, no extra code is added to the critical tasks nor any change is introduced in their execution. 
In the following paragraphs, we provide further information on how the module we present 
works with techniques such as time redundancy, hardware redundancy and in the case of multi-
core systems.  
 
Time redundancy 

Time redundancy is a hardening technique based on repeating the execution of a critical task 
at different instants of time. The method we propose checks these repeated executions to detect 
transient fault occurrences by means of information coming from the debugging trace. Also, 
there is no need to use specific software to detect the occurrence of faults since this is done via 
the CPU Checker. When an error is detected by the module, it warns the processor about its 
occurrence and different recovery actions can be carried out (e.g. repeating the execution of the 
task, activating an alarm, etc.). With this technique the fault can be not only detected but also 
masked if the execution of the task is triplicated instead of duplicated. 

In this case, there is only one CPU Observer in the CPU Checker since only one task is 
executed. Permanent fault detection can be achieved in this case with the periodic execution of a 
test-devoted task whose outcome is known a priori. 
 
Hardware redundancy 

Another possibility to make a system fault tolerant is by repeating the execution of a critical 
task in two or more identical processors. This technique is called Hardware Redundancy. With 
the proposed method, the CPU Checker checks the execution of the repeated tasks in order to 
check the occurrence of faults. If a fault is detected, the CPU Checker warns the involved 
processors. The advantage of this method is that it represents a non intrusive solution; it does 
not alter the microprocessor’s normal operation and no extra computational effort is required. 

When working with hardware redundancy, several operation modes can be found. One of 
these modes of operation is the lockstep mode. In this mode, the same process runs on different 
processors and a comparison between the produced signals is performed on a cycle-by-cycle 
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basis; in this way, the fault latency achieved is minimal, whereas the amount of resources 
needed is higher. The method we propose works independently of the used operation mode, i.e., 
there is no need to modify the CPU Checker when working with any of these operation modes.  

As in the previous case, if we use three processors instead of two (i.e., if we use TMR) single 
faults can be masked. By using TMR it is also possible to detect the occurrence of a permanent 
fault affecting one of the cores and to perform recovery actions like replacing or removing the 
faulty module.  
 
Multiprocessor environment 

In a multiprocessor environment maximum efficiency can be achieved since various 
processors execute different tasks at the same time. In this kind of architectures, on-line error 
detection can be implemented if both time and hardware redundancy are applied profiting from 
the available cores. In this type of environment, some cores can be used to add redundancy to 
the critical tasks, i.e., two or more cores execute the same task and the results are compared. The 
management of the task’s execution can be done by different mechanisms (e.g., lockstepped 
pipelines or redundant multithreading [18]). 

If we use the CPU Checker to detect the occurrence of faults, the execution of the various 
tasks is not altered when using the proposed method. Because of this fact, it is possible to use 
the module we propose with several redundant mechanisms. The CPU Checker obtains the 
information from the trace interface of each processor and then checks for the occurrence of 
faults. In case an error has occurred the module warns all the processors involved in the 
execution of the critical task. 

 
 
4. Case studies: analysis of implementation issues  

The proposed methodologies can be applied to systems where processors are used, which are 
equipped with debug infrastructures and interfaces that make the processor trace information 
available, either on-line or through buffering. To prove the feasibility and the effectiveness of 
the proposed techniques, two microprocessor architectures have been studied, namely LEON3 
and ARM7TDMI. In the former case, the CPU Checkers have been integrated in the digital part 
of a SoC design. In the latter, the module was connected to the available external trace port. For 
each of them, an analysis of the available integrated debug interfaces has been conducted, and 
suitable CPU Checkers have been developed. The following paragraphs describe the studied 
microprocessor architectures and outline the corresponding implementation costs. 
 
4.1 LEON3 

LEON3 [30] is an open-source synthesizable VHDL model of a 32-bit processor compliant 
with the SPARC V8 RISC architecture, featuring a 7-stage pipeline and based on the AMBA 
2.0 AHB/APB bus system. The LEON3 library includes a series of IP cores that make the 
model highly configurable, and can be used in systems including up to 16 processing cores 
attached to the same bus. Experiments have been performed resorting to different configurations 
with different numbers of cores. 

LEON3 core has a circular instruction trace buffer that stores executed instructions. The trace 
buffer parallelism is 128 bits, while its dimension can be set in modules of 1 KB (a 128-entry 
buffer thus needs 2 KB). Many of current microprocessors have a trace bus directly accessible 
and in order to prove the feasibility of our approach we have modified the LEON3 interface by 
making the trace bus accessible from the outside of the core. Hence, the CPU Checker can read 
trace data to detect a possible fault. Nevertheless, the proposed methodology can be applied 
reading data from the trace buffer, at the expense of additional latency and reduced error 
detection coverage. 

In Section 3 we described the general architecture of the proposed CPU Checker and how this 
architecture can be used for different hardening techniques. In this section, we describe how to 
connect the CPU Checker to as many LEON3 processor cores as the used system architecture 
needs, and we analyze the area overhead introduced by the system. 

The area overhead does not only vary with the used processor, it does also vary because the 
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size of CPU Checker depends on the used system architecture. The size of the CPU Checker 
varies with the number of tasks to be checked and with the number of replicas executed 
simultaneously, since the size of the memory and the number of CPU Observers depend on 
these two variables, respectively. For the area overhead analysis, we considered a fixed number 
of tasks, although the number of replicas per task may differ.  

When time redundancy is used to harden a system we need the CPU Checker and the LEON3 
processor with only one core. In this case, to implement the hardening technique only the CPU 
Checker is needed (i.e., no extra hardware), since the microprocessor is also needed for the 
original system.  

In case of using hardware redundancy to harden a system, extra hardware is needed apart 
from the CPU Checker. Thus, for implementing this hardening technique the area overhead is 
the corresponding to the CPU Checker plus the number of extra cores. The size of the CPU 
Checker would depend on the number of redundant cores.  

If a multiprocessor environment has to be hardened, then only the CPU Checker is needed, 
since the original system already includes various cores, and we just profit from one or more 
available cores to replicate the execution of a critical task. In this case, the size of the CPU 
Checker does not vary necessarily with the number of processors, since not every processor has 
to run a replica of a task. This size depends on how many times a critical task is replicated (this 
fixes the number of signatures to store) and how many tasks are executed in parallel (this 
determines the number of necessary CPU Observers).  

Some experiments have been carried out in order to analyze in a practical manner the area 
overhead introduced when using the following system architectures: time redundancy with 
duplication of tasks, hardware redundancy with two identical processors, and multiprocessor 
environment based on dual core architecture. These experiments have been performed running 
an application consisting of a multiplication of two 16x16 integer matrices, which was split in 
five different critical tasks. To carry out the experiments the CPU Checker was configured so 
that it could handle the five critical tasks, i.e., the size of the memory had to be enough to store 
information of these tasks, and with one CPU Observer for the Time Redundancy case and two 
CPU Observers for the Hardware Redundancy and Multi-core cases.  

Table I shows the area results obtained with ISE for these experiments. The hardware was 
mapped on a Virtex5 FPGA (XC5VLX110T) from Xilinx and the area results are shown in 
terms of LUTs, FF and memory blocks. Figure 3 graphically represents the results obtained for 
the carried out experiment with the various system architectures. This figure shows that the area 
occupied by the CPU Checker is minimal with respect to the total area of the original system. 
The overhead introduced in the hardened system is also minimal for the case of Time 
Redundancy and Multi-core environment. In the case of Hardware Redundancy more area is 
needed to harden the system, although most of it belongs to the core replicas needed (named 
extra hardware in Table I). The size of the CPU Checker is smaller in Time Redundancy since it 
contains only one CPU Observer because only one task is executed. 

TABLE I.  AREA OCCUPIED FOR LEON3 

 Time Redundancy Hardware Redundancy Multi-core environment 

 LUTs FF Memory 
Blocks LUTs FF Memory 

Blocks LUTs FF Memory 
Blocks 

Original Leon3 
System 6,793 3,261 58 6,793 3,261 58 12,485 5,799 72 

Hardened 
System 

Extra 
HW 0 0 0 5,692 2,538 14 0 0 0 

CPU 
Checker 356 348 0 467 416 0 467 416 0 

Overhead 5.24% 10.67% - 90.66% 90.56% 24.13% 3.74% 7.17% - 
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Figure 3. Occupied area  

 

 
 

Latency 
In this section the latency of the hardened system is analyzed. This latency depends mainly on 

two factors: the time that the critical tasks take to complete their execution (execution time) and 
the used system architecture. Firstly, we analyze how the latency changes with respect to the 
execution time of tasks, and then how it varies with the used system architecture.  

The latency depends on the time that the critical tasks need to complete their execution, which 
will be proportional to the size of the critical tasks to be observed. First of all, we need to 
consider that the CPU Checker waits by far until the signature is calculated and then until the 
execution of the task has finished. In order to analyze the latency with respect to the size of the 
tasks and to provide an easier understanding, we make the assumption that the tasks are 
duplicated and they run one after the other (the worst case for latency). On the one hand, we can 
have a task with size equal to one instruction (minimum possible size); in this case the latency 
of the system will be the minimum possible since at every instruction the signature will be 
compared and the fault could be detected. However, the size of the CPU Checker is larger with 
this configuration, since many critical tasks are necessary to test a critical application. On the 
other hand, we can have a critical task that includes all the instructions of the critical 
application; in this case, the latency will be, at the most, two times the number of cycles that are 
needed to execute all the instructions. However, the size of the CPU Checker is minimal, since 
there is only one critical task to be checked. The relation between the area and the latency is 
linear for this configuration. Thus, we can state that the more times a critical application is 
partitioned (i.e., more tasks with fewer instructions per task), the latency will be smaller. In 
order to obtain the best results a trade-off between the area needed and the latency should be 
taken. 
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The other factor that affects the latency is the used system architecture. If Time Redundancy 
is applied to harden a system, then one task is executed and afterwards this task is executed once 
again, so the latency is at the most two times the number of cycles to finish the critical process. 
When Hardware Redundancy or Multi-core environments are used, the latency will depend on 
the operation mode. When working in lockstep mode, all the replicated tasks execute at the 
same time, so the latency is the time it takes to finish the execution of the task. If other mode of 
operation is used, the latency will depend on the difference between the beginnings of execution 
of the replicated tasks (the bigger the difference, the bigger the latency). 

 
4.2 ARM7TDMI 

The ARM7TDMI-S [31] is a general purpose 32-bit microprocessor based on RISC (Reduced 
Instruction Set Computer) principles. It has a Von Neumann architecture with a single 32-bit 
data bus and a three-stage pipeline. An Embedded Trace Macrocell (ETM) can be connected to 
the microprocessor core (not to the main bus) in order to perform real-time tracing. Some 
experiments have been performed on an LPC2129 from NXP [32] that is a microcontroller 
based on an ARM7TDMI with an ETM (version 1.2) connected to it. Thus, in this case, the 
trace bus is not directly accessible (like in LEON3), but the traced data are stored in a trace 
buffer accessible through the trace port. 

The ETM [33] provides instruction and data trace that is stored on a FIFO buffer. Figure 4 
shows the block diagram of the ETM.  

 

ARM 
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tracker

ETM

ARM

Trace 
control

FIFO

Trigger
conditions
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Memorymap
decode

 
Figure 4. Block diagram of ETM  

 
 
With respect to instruction trace, the program counter can be observed. In order to compress 

the data to be traced, only branch addresses are output. Regarding data trace, address data and/or 
value data can be sampled. Tracing is controlled by selecting trigger conditions and filtering 
signals to minimize the data to be traced (for instruction as well as for data tracing). By reducing 
the data to be traced, the necessary bandwidth through the trace port is reduced. Trace port size 
can vary from different versions and implementations of the ETM. The ETM integrated in the 
LPC2129 used in the performed experiments consists of 9-pins: 

 2 signals for synchronization (traceclk, tracesync) 
 3-bit signal (tracepipe) for indicating what is happening in the execute stage of the 

processor pipeline cycle by cycle  
 4-bit signal to output traced data (tracepkt). The size of this signal can be up to 16 

bits depending on the implementation of the ETM. 
When the FIFO buffer overflows, different actions can occur also depending on the version 

and implementation of the integrated ETM. In the used LPC2129, tracing is suspended until the 
buffer is read. Later versions provide more advanced options. In fact, with the newest versions, 
an increasing number of capabilities and enhanced features are available, which also facilitate 
and improve their utilization for error detection tasks.  

The general architecture of the proposed CPU Checker is also applicable to this case study 
but additional registers are necessary for recovering the traced data through the narrow trace 
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port. Thus, an additional 32-bit register (word size) is required in each CPU Observer. 
Furthermore, the functionality of the Observer’s Controller has to include the control of the 
register operation. On the other hand, ETM facilities have to be configured by means of a JTAG 
interface. Therefore, a module in charge of managing the JTAG interface to configure the ETM 
registers has been developed. TABLE II. shows the logic resources necessary to implement the 
corresponding CPU Checker and the ETM configuration module in the XC5VLX110T FPGA. 

 
TABLE II.  AREA OCCUPIED BY ARM7TDMI 

 LUTs FF Memory 
Blocks 

CPU Checker 484 450 0 
ETM configuration 

block 257 131 0 

 
The ARM7TDMI used is a hard core and the number of logic resources required for its 

implementation is not available. Results show the additional hardware needed to implement the 
error detection tasks are in the same order than for LEON3 case. The analysis of the area 
overhead involved by the different hardening techniques follows the same trend as in LEON3 
because it mainly depends on the redundancy technique used and just marginally on the 
processor used.  
 
Latency 

The latency results are slightly different from those obtained for LEON3 since in the case of 
ARM7TDMI traced data are read through a narrower trace port, which decreases the process 
speed. Furthermore, data compression techniques have influence in the time interval between 
consecutive data readings. For example, if a fault affects the execution flow, the latency for the 
ARM case is higher, since only branch addresses are sampled. 

 
5. Fault detection capability assessment  

Fault injection experiments have been performed on the available HDL description of a 
system-on-chip integrating the LEON3 core in order to evaluate the effectiveness of the 
proposed methodology in detecting errors caused by faults that occur during the processor 
normal operation. The implemented system consists in two cores in order to duplicate the 
execution of critical tasks. Therefore, the implemented CPU Checker requires two CPU 
Observers. Figure 5 shows a scheme of the implemented system. The CPU Checker is initially 
configured by one of the microprocessors through the main bus.  

Core1

CPU 
Checker

Debugger

Trace BusIrq

Main Bus

Core2

Trace Bus Irq

 
Figure 5. CPU Checker connection in a hardware redundancy based system 

 
Single-Event-Upset (SEU) fault injection campaigns have been performed by applying bit-

flips to the LEON3 core flip-flops while running a set of benchmark applications. SEUs have 
been injected randomly in space and time, and the error detection conditions detected by the 
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CPU Checker have been checked with respect to any error found in the execution results and in 
the program flow. A simulation-based fault injection setup was built using Mentor Graphics 
ModelSim, relying on a set of suitably developed simulation scripts. 

The experiments were performed running the following sample applications: 
 Fibonacci generates the first 20 Fibonacci numbers (3,200 clock cycles) 
 Ellip_f is a fifth-order wave digital elliptic filter (7,390 clock cycles). 
 

The error detection abilities obtained by employing the trace debugging infrastructure have 
been evaluated in two cases: the former consists in directly observing the trace bus interface 
exiting from the core, which is then connected to the trace buffer. The latter involves observing 
the data actually stored into the buffer. Since the trace interface is not sampled at each clock 
cycle, but just once for each instruction (or cycle in the case of multi-cycle instructions), the 
first method provides a richer set of information to the checker. 

Table III and IV present the results for SEU fault injection experiments performed with the 
Fibonacci and the Ellip_f benchmarks, respectively. In all cases 10,000 random faults are 
injected, first on the complete core, then just on the integer unit. Experimental results are 
reported considering the observation of all trace fields (opcode, load/store parameters and 
program counter), just considering the opcode field, and considering opcode and load/store 
parameters. Different cases can be distinguished: silent faults are the ones which do not cause 
any error on the elaboration results or on the program flow, and are not detected by observing 
the processor trace; detected faults are those correctly identified by the proposed methodology; 
false detected faults depend on faults which do not cause any error on the results or program 
flow, but have an effect on the processor trace and, being detected, may add some system 
performance penalty; finally, undetected faults are the ones that, even if they cause a 
misbehavior, cannot be identified by the proposed approach. 

With the Fibonacci benchmark, 10.88% of the faults injected in the core cause an error in the 
results and/or on the program flow, while 12.59% of the ones injected in the integer unit 
provoke errors. In the Ellip_f case, errors are caused by 10.40% of the faults injected in the 
core, while 11.91% of the ones injected in the integer unit provoke errors. 
 
 

TABLE III.  FAULT INJECTION RESULTS FOR THE FIBONACCI BENCHMARK 

  All trace observation 
[%] 

Opcode trace – bits (31:0) 
[%] 

Load/store + Opcode 
bits (96:64)(31:0) [%] 

  silent det. false undet. silent det. false undet. silent det. false undet. 

Interface core 64.63 10.83 24.99 0.05 80.18 10.68 8.94 0.2 73.19 10.83 15.93 0.05 
IU 51.84 12.59 35.55 0.00 74.43 12.41 12.97 0.18 64.30 12.58 23.11 0.01 

Buffer core 69.80 9.75 19.32 1.13 81.91 8.67 7.21 2.21 76.20 9.64 12.92 1.24 
IU 59.33 12.45 28.07 0.14 76.92 10.98 10.49 1.61 68.64 12.29 18.76 0.30 

 
TABLE IV.  FAULT INJECTION RESULTS FOR THE ELLIP_F BENCHMARK 

  All trace observation 
[%] 

Opcode trace – bits (31:0) 
[%] 

Load/store + Opcode 
bits (96:64)(31:0) [%] 

  silent det. false undet. silent det. false undet. silent det. false undet. 

Interface core 65.43 10.39 24.17 0.01 80.80 10.09 8.80 0.31 73.96 10.39 15.64 0.01 
IU 52.99 11.91 35.09 0.00 75.33 11.53 12.75 0.38 65.40 11.91 22.69 0.00 

Buffer core 70.91 9.24 18.69 1.16 82.63 8.41 6.97 1.99 77.21 9.15 12.39 1.25 
IU 60.95 11.66 27.13 0.25 77.98 10.54 10.11 1.37 70.11 11.53 17.98 0.38 

 
The obtained experimental results show that a larger number of faults is detected when 

reading the trace data before it reaches the trace buffer, at the expense of a higher false positive 
rate. When the trace bus is not directly accessible, the buffer interface imposes a bottleneck in 
the amount of data that can be used to calculate the signature without losing significant 
information. 

False positive faults are due to different reasons: 
‐ First, they may be due to the sampling of meaningless data to calculate the signature. In 

order to reduce this rate, instead of using the complete trace bus, a combination of the 
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observation of opcode and load/store data can be used. This solution maintains almost 
optimal fault coverage and reduces the amount of false positive.  

‐ Secondly, the trace bus in LEON3 is connected to registers belonging to the final stages 
of the pipeline, which means that traced data often correspond to instructions that have 
already completed their execution. Therefore, if a fault affects some register in the final 
stages which are not used by the specific instruction (e.g., the memory stage in a 
instruction other than load or store), the instruction may have been executed correctly, 
but trace data are not correct, thus causing a false positive.  

‐ Finally, the instant of time when the fault occurs affects the number of false positives. 
The information in the trace bus does not change every cycle and it may contain data 
that was relevant at a certain instant and later on it is no longer relevant. If the fault 
occurs in a period of time when the affected information are not relevant, it may lead to 
a false positive. 

The few undetected errors are due to faults affecting the paths connecting the core to the 
memory bus, where the results are correctly elaborated but fail to be correctly stored, or to 
system bus control signals. Complementary techniques (e.g., variable replication or code 
assertions) can be used to detect these errors. 

Experimental data show that the higher the number of observed signals, the higher is the 
percentage of detected errors, at the expense of a higher number of false detected ones: this fact 
needs to be considered when defining the error detection strategy at system level, taking into 
account system requirements and available resources. The best results are provided when the 
traced information contain the opcode and load/store parameters. In this case, errors in control 
flow as well as in data can be detected. This is an advantage over other techniques that are 
focused on control flow error detection [8]-[11]. Furthermore, experimental results published in 
[4] prove that, by observing the trace bus, the fault detection capabilities are higher than by 
using alternative (and possibly more expensive) solutions based on observing the main bus [17].  

Finally, it can be observed that the proposed approach is better suited to detect faults affecting 
the inner parts of the processor, i.e., the integer unit, since the trace interface is directly 
connected to them.  
 
6. Conclusions 

An on-line error detection technique aimed at microprocessor-based systems has been 
presented. This approach profits from available trace interfaces in current microprocessors to 
observe the behavior of the system during normal operation without introducing significant 
penalties, and without any modifications in the core design. This technique can be used with 
various system architectures combined with different hardening techniques.  

The proposed solution consists in adding a module, named CPU Checker, connected to the 
available trace interface. Two different microprocessors with different trace interfaces and 
features have been studied, LEON3 and ARM7TDMI. In LEON3 (a soft core) the trace bus is 
directly accessible whilst in ARM7TDMI (a hard core) the trace interface available only allows 
the access to a buffer trace. An analysis among three different system architectures is presented 
in terms of logic resources and involved latency in error detection. Results show that the 
necessary logic resources to implement the proposed approach involve a low percentage with 
respect to the necessary resources for the complete system.  

Fault injection experiments have been performed using the system based on LEON3 
microprocessor to assess the error detection capability of the proposed approach. Two different 
implementations of the solution have been evaluated: one implementation with direct 
observation of the trace bus, and other one accessing the trace buffer. The error detection results 
show that for the first case the undetected number of errors is lower but the number of false 
detected errors increased notably with respect to the second implementation. In both cases the 
percentage of the errors detected by the proposed approach is higher than 89% (more than 99% 
when the trace bus is directly accessible). Results also prove that the proposed approach is very 
efficient to detect faults affecting the inner parts of the processor, i.e., the integer unit. 
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