
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

This is a postprint version of the following published document:

Portela-Garcia, M., Grosso, M., Gallardo-Campos, M.,
Sonza Reorda, M., Entrena, L., Garcia-Valderas, M. &
Lopez-Ongil, C. (2012, julio). On the use of embedded
debug features for permanent and transient fault
resilience in microprocessors. Microprocessors and
Microsystems, 36(5), 334-343.

DOI: 10.1016/j.micpro.2012.02.013

© 2012 Elsevier B.V.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.micpro.2012.02.013

Page 1 of 17

On the use of Embedded Debug Features for

Permanent and Transient Fault Resilience in Microprocessors

M. Portela-Garciaa, M. Grossob, M. Gallardo-Camposa, M. Sonza Reordab, L. Entrenaa, M.
Garcia-Valderasa, C. Lopez-Ongila

*Corresponding author: (marta.portela@uc3m.es)
a University Carlos III of Madrid, Leganés, 28911, Spain
b Politecnico di Torino, Torino, Italy

Abstract

Microprocessor-based systems are employed in an increasing number of applications where
dependability is a major constraint. For this reason detecting faults arising during normal
operation while introducing the least possible penalties is a main concern. Different forms of
redundancy have been employed to ensure error-free behavior, while error detection
mechanisms can be employed where some detection latency is tolerated. However, the high
complexity and the low observability of microprocessors’ internal resources make the
identification of adequate on-line error detection strategies a very challenging task, which can
be tackled at circuit or system level. Concerning system-level strategies, a common limitation is
in the mechanism used to monitor program execution and then detect errors as soon as possible,
so as to reduce their impact on the application. In this work, an on-line error detection approach
based on the reuse of available debugging infrastructures is proposed. The approach can be
applied to different system architectures profiting from the debug trace port available in most of
current microprocessors to observe possible misbehaviors. Two microprocessors have been used
to study the applicability of the solution, LEON3 and ARM7TDMI. Results show that the
presented fault detection technique enhances observability and thus error detection abilities in
microprocessor-based systems without requiring modifications on the core architecture.

Keywords
Error detection, debug infrastructure, on-line test.

Page 2 of 17

On the use of Embedded Debug Features for
Permanent and Transient Fault Resilience in Microprocessors

1. Introduction

One of the challenges [1] in current and future digital circuits is to ensure correct behavior
during their normal operation. This is especially true in the case of mission- or safety-critical
applications such as medical, avionic and automotive ones, where emerging standards such as
[2] demand higher levels of fault detection and tolerance from circuit manufacturers. Reduced
transistor sizes, lower operation voltages and higher working frequencies make circuits more
sensitive to transient faults, such as soft errors caused by cosmic rays and radioactive
contaminants in packages. Also, other kinds of phenomena, like aging and wear-out effects, are
becoming an increasing concern, causing both transient and permanent faults during mission
time. Therefore, on-line protection techniques against transient and permanent faults are
mandatory to ensure suitable levels of dependability.

The increasing device integration level brings about systems with high complexity, like
Systems on Chip (SoCs). SoCs may embed one or more microprocessors, memories and other
components. In other cases, the same device can accommodate an increasing number of
processor cores, which can effectively be used to improve the system performance. In general,
microprocessors are main components in current digital circuits and fault protection techniques
devised specifically for these kinds of components are needed. In general, protection techniques
consist of two main steps: error detection to discover the effects of a fault as soon as it happens,
and error recovery, in order to continue with the system execution with the minimum
disturbance. However, the complexity of current microprocessors hinders the task of error
detection. In particular, behavior monitoring and result inspection are critical issues due to the
low observability of internal resources [3].

Traditional methodologies are based on hardware and/or time redundancy and usually require
changes in the application code, hardware modifications, or access to inner buses. In order to
increase observability for on-line error detection in microprocessors we propose a solution
based on profiting from the availability of integrated debugging infrastructures. Modern
microprocessors include on-chip debuggers to facilitate the task of designing the software to be
run on the system. They provide access to processor registers and memory areas and can include
trace interfaces or buffers for tracking program execution. Once an application has been
developed and validated on a system, the debugging infrastructures become inactive and useless
during mission time. By means of debug interfaces, the behavior of the processor during the
execution of whichever piece of code can be observed in details (thus improving the chances of
detecting possible faults) without affecting the normal operation, nor involving any significant
change in the application code, nor asking for any additional hardware structure.

Some previous works based on this idea were presented in [4] and [5]. The approach
presented in [4] is based on the availability of two processors in the system to duplicate the
execution and on the reuse of available debugging infrastructures to observe and compare both
runs, thus detecting possible misbehaviors. In that paper it was demonstrated that direct
monitoring of the trace interface enables same or better fault detection than when observing the
data bus. This method is generalized in [5] in order to be used in combination with different
hardening techniques, allowing the implementation of different fault protection levels. In this
paper, we collect the former results and make a further step in order to widen the generality of
the method. A study of the effectiveness of the approach when the trace data is sampled at
different instants is presented. This analysis is necessary in order to prove the applicability of
this method to microprocessors with an access to a trace data buffer as well as for those with a
direct access to the trace bus. Experimental results with two different microprocessor-based
systems based on LEON3 and ARM7TDMI, which include different debugging features, are
presented. Also, the main issues related to the implementation of our approach on the two test
cases are studied in order to assess its applicability.

The paper is organized as follows: Section 2 presents an overview of related works. Section 3
describes the proposed solution to detect faults during normal operation in microprocessor
based systems, by means of reusing debugging infrastructures in various system architectures.

Page 3 of 17

Section 4 describes two case studies, based on the LEON3 and the ARM7TDMI cores,
respectively, and presents the results related to the different possible implementations of our
approach in both cases. Section 5 collects the results of the fault injection experiments aimed at
measuring the method capability in detecting errors for different types of implementations.
Finally, Section 6 draws some conclusions.

2. Related Works

The main objective of this paper is to propose a widely applicable on-line fault detection
technique focused on current microprocessors. A major limitation of the existing techniques is
the reduced accessibility to internal resources, which limits the observability of the processor
behavior. In this paper this limitation is attacked by profiting from the debugging infrastructures
available in most of current microprocessors. In the following, firstly a review of the existing
on-line fault detection techniques is presented; secondly, a summary of the capabilities of
today’s microprocessor debugging infrastructures as well as of the existing works that exploit
them to enhance accessibility to embedded processors is given.

Existing	on‐line	fault	detection	techniques	
Among the existing on-line fault detection techniques that can be applied to increase

dependability in microprocessor-based systems, different types can be distinguished depending
on the system features (single-processor or multi-processor) and on the fault detection
requirements (concurrent or non-concurrent). Moreover, the existing techniques can be
classified depending on the implementation: software-implemented techniques, which are based
purely on software detection mechanisms, and hardware-based ones, which involve circuit
modifications.

If concurrent error detection is not required, periodic test application can be used to detect
permanent faults that may arise due to external stresses or aging along the product mission time.
Hardware-based self-test techniques can be employed, such as approaches based on Built-In
Self-Test (BIST) or specific Infrastructure-IPs (I-IPs), also reusing manufacturing test
structures, which provide excellent test quality but often require substantial design
modifications, high hardware overhead or increase power consumption. Conversely, Software-
Based Self-Test (SBST) methodologies exploit the microprocessor itself to perform at-speed
test application and response evaluation by running suitably developed test programs [6].
Usually, the test program includes instructions able to excite the faults and usually a compaction
routine (e.g., corresponding to a software Multiple Input Signature Register, or MISR, routine),
and instructions to transfer the results to memories or externally accessible ports; alternatively,
the test program may write partial results to the processor ports with a hardwired MISR
compressing the results [3][7].

Concurrent error detection is usually required in mission- or safety-critical applications,
where the effects of both permanent and transient faults need to be detected and possibly
corrected as soon as possible after their occurrence. For this purpose, designers insert additional
code lines or specific hardware structures to store flow or/and elaborated data and check the
consistency between the expected and executed values. Employing these techniques, the
possibility of having an error condition with possible catastrophic effects is minimized as much
as the error coverage is increased and fault latency is reduced. The usual higher implementation
costs (e.g., silicon area and code length) are the price to pay to guarantee higher system security.

Common techniques based on software modifications exploit the concepts of information,
operation and time redundancy to detect the occurrence of errors during program execution.
Traditional software-based techniques demand the replication of the execution of a program and
the consequent vote among the results produced by each replica (e.g., Recovery Blocks [8] and
N-Version Programming [9]). Although effective, these approaches rely on software designers
for their implementation, i.e., the programmers are in charge of devising how to replicate the
program and how to realize the voting mechanism that best fits the application the program
implements. These processes are, in general, not automated and thus highly error prone. More
recent techniques (such as [10] and [11]) harden programs against errors by replicating variables
and/or introducing some control instructions. These techniques simplify the task for software

Page 4 of 17

designers since some of them can be applied automatically to the software that is intended to be
hardened. When replicating variables, beyond the overhead due to the repetition of computing
instructions on two sets of data, an additional cost stems from the need to compare the obtained
results.

Hardware-based techniques exploit hardware redundancy. Usually, duplication of cores is
used for fault detection and triple module redundancy (TMR) for fault correction in presence of
single faults [12] (the probability of more than one simultaneous error in different replicas of a
core is usually regarded as very low). Special-purpose hardware modules, called watchdog
processors [13] are often used to monitor the control-flow of programs, as well as memory
accesses. The introduced modules generally observe the processor bus, its ports and/or other
internal critical signals, as described in [14] and [15]. These techniques introduce modifications
in the processor or system structure that increase the circuit area and may also involve speed and
power overheads.

Hybrid methodologies (i.e., including both hardware and software modifications) have also
been proposed (e.g., [16], [17]) to find better trade-offs between error detection abilities and
application costs.

In multi-core or multi-processor systems, the different processors can be exploited in order to
perform fault detection and recovery tasks [18]-[20]. In this case, there are additional problems
to consider since the different processors may share resources, and any possible collision must
be prevented. In [18] a summary of the most representative error detection and recovery
techniques aimed at multi-core systems is presented. For this kind of systems, redundant
execution is an attractive solution to detect errors during normal operation since all cores are not
always used and unused processors can execute redundant threads.

Enhanced	system	observation	through	Debug	features	
The complexity of today’s systems makes validation of hardware and software modules a

very demanding operation. Approaches based on detailed circuital simulation are limited by the
computational effort needed, while simplified behavioral models may hide hardware effects that
will be manifest in the final product. For this reason, significant system validation and software
development works are performed directly on silicon prototypes. Post-silicon hardware/software
validation in embedded systems is often supported by specific distributed infrastructures
enabling additional circuit visibility (probes) or by means of trace buffers or hardware recorders
[21][22][23][24].

Most current microprocessors include dedicated logic to support software debugging
operations. This circuitry, usually named On-Chip Debugger (OCD), allows the designer to
control execution and access internal resources from outside the system. Typical capabilities
supported by an OCD include breakpoint and watchpoint setting, step execution, access to
internal registers and memory, program and data trace. In order to connect a host computer, the
debug interface is made available off-chip either directly or through some standard port such as
JTAG or BDM. Serial ports are used for simple debugging operations, while parallel ports are
used to support data-intensive debug operations such as real-time tracing. The Nexus 5001
Forum™ standard [25] defines a rich set of OCD features divided in 4 classes, where each class
is a superset of the features supported by the lower classes. This standard is becoming
increasingly adopted; in addition, most of these OCD features can also be found in other
microprocessors that do not comply with the standard.

Embedded microprocessor cores usually come along with modules for improved support of
debugging functions. Examples of these modules are the ARM Embedded Trace Macrocell
(ETM) [26], the Xilinx MicroBlaze™ Trace Core (XMTC) [27], and the LEON3 Debug
Support Unit (DSU) [30].

Figure 1 shows the generic architecture of a (possibly multi-core) embedded CPU equipped
with an OCD module. Usually, the latter is tightly connected to the processing core(s) through a
high bandwidth interface (Debug I/F), which enables control and monitoring operations.
Depending on the specific architectures, different information may move on this connection,
including the program counter value, the instruction register content (operation code), the results
of arithmetic operations, memory operation target addresses and other processor status flags and

Page 5 of 17

signals describing the conditions of pipeline and operation units.
The OCD is typically a programmable module whose functions may include:
 storage of trace data in an internal buffer
 compression of program flow information through the detection of alterations in the

program run (i.e., jumps in the executed code)
 monitoring and comparison of the observed address or data values with predefined ones

so as to trigger breakpoints and watchpoints
 control of microprocessor cores for activating breakpoints and step-by-step execution.

In embedded systems, OCDs (and, when available, trace buffer information) can be accessed

through dedicated interfaces or relying on communication peripherals connected to the system
bus.

Microprocessor
core(s)

Microprocessor
core(s)

Microprocessor
core(s)

Microprocessor
core(s)

On‐Chip debugger
(OCD)

control trace

Debug I/F

Ethernet RS232 JTAG

Debug host

D
ed

icated
 in
terface

Figure 1. Generic architecture of a CPU equipped with an On-Chip Debugger

Previous works have exploited debug interfaces to access the microprocessor’s internal

resources for different purposes: the authors in [28] and [29] present fault injection techniques
based on using OCDs and show that their features provide minimally intrusive access to
embedded cores.

The approach presented in [4] for dual-core systems, then extended in [5] to other system
configurations, uses the already available debug infrastructure during normal operation to
increase the accessibility to the microprocessor in order to detect faults in a non intrusive way. It
takes advantage from the available parallel debug interface, in order to minimize area and
performance penalties. Unlike other hardware-based on-line fault detection techniques, in such a
solution the debugging interface is observed instead of the main bus, and thus the normal
operation is not disturbed. Experimental results show that this technique presents the following
advantages with respect to alternative methods:

 it increases the observability during the execution of an on-line test, increasing the fault
coverage, also with respect to approaches directly observing the processor bus [4];

 it applies a low cost solution, since it is based on reusing available resources in the
system, so as to avoid circuit modification and area overhead;

 it does not affect the performance, as the observation of internal data is done in a non-
intrusive way;

 it is non code intrusive. The fault detection is performed by a dedicated hardware
module at the expense of a small area overhead, without the need to modify the
processor core.

Page 6 of 17

3. On-line Fault Detection Technique

In this work we propose a method that provides a general mechanism to detect the occurrence
of permanent and transient faults, causing the least possible disturbance in the microprocessor
system. Such technique extends the work presented in [4] and [5] to the most general case. In
the proposed method each task considered critical for the application is replicated different
times and/or in different processors. The problem of selecting the task(s) to be replicated
depends on the required reliability level and on the available resources. The implications of the
trade-off between level of protection and costs have been widely debated in literature and are
outside the scope of this work. As a worst case, all tasks may be replicated, as in traditional
redundancy-based techniques [12]. The task scheduler needs therefore to be programmed
accordingly. The several executions of a task are compared relying on data obtained through the
debugging infrastructure and possible misbehaviors caused by faults can be detected.
Nowadays, most processors include debugging infrastructures; specifically, in this work the
trace interface is used, since it is commonly directly accessible in modern processors (Standard
Nexus, class 2, 3 and 4, [25]). The information that can be obtained from this trace interface
usually includes the value of the program counter, the operation code (opcode), instruction
results, load data and store data.

Two alternative methods exist to capture trace information: data coming from the processor
can be directly intercepted, or they can be temporarily stored in the trace buffer (usually
implemented as a circular buffer architecture), which will subsequently be read. The first
solution provides a higher degree of fault coverage and minimizes latency, but requires direct
access to a large bandwidth interface. Conversely, the buffer solution, to be used when no direct
trace observation is available, may introduce additional fault detection latency and may reduce
fault coverage, depending on the buffer size and the access policies. As a matter of fact, the task
to be monitored may be as long as to make the buffer overflow: in this case, either the task is
divided in a series of shorter sub-tasks to be monitored, each one not causing overflow, or only
the latest data written in the circular buffer for a task may be employed for checking, therefore
reducing the method effectiveness.

In order to implement the method, a specific customizable hardware module can be adopted,
which observes the execution of replicated critical tasks. This new hardware module can either
be integrated in a digital design without requiring core modifications (in FPGA or ASIC), or be
connected to an external trace port: as it will be shown in Section 5, the effectiveness in
detecting faults is proportional to the debug interface bandwidth. The module calculates a
signature for each replica of the addressed tasks employing the information obtained from the
debugging infrastructures. Whenever the tasks finish their execution these signatures are
compared and if they differ, then a fault is detected and the hardware triggers some error signal.
The fault latency achieved with this approach corresponds to the time that the replicated task
takes to finish its execution. By profiting from debugging infrastructures the observability is
increased and the costs are low since hardware from the original component is reused. This
approach can be used together with different hardening techniques, since it does not need code
modifications and does not introduce additional performance penalties.

3.1. CPU Checker Architecture

In this subsection, the architecture of the proposed hardware module, named CPU Checker, is
described. The CPU Checker is in charge of detecting the occurrence of faults by means of
checking the execution of each task which is replicated on different instants of time or on
different CPUs. This module contains the following sub-modules: a memory unit, the Checker’s
Controller and one or more CPU Observers. Figure 2 shows the proposed architecture; detailed
information about each component of the CPU Checker are given next:

‐ Memory unit: this sub-module is in charge of storing all the information needed to
detect the occurrence of a fault. In order to program this memory block, the CPU
Checker can be connected to the system bus as a peripheral, or externally accessed. This
memory is divided in four different blocks to store the following information: the first
and last instruction addresses of the critical task to be checked, the maximum time

Page 7 of 17

allowed to execute the task, and the signatures that have been calculated from the
replicas of the monitored task. The number of addresses in this memory block is the
number of different critical tasks that are executed on which errors need to be detected.

‐ Checker’s Controller: it is in charge of managing the error detection process.
‐ CPU Observers: they observe individual executions of the replicated tasks. The number

of CPU Observers in the CPU Checker depends on the number of replicas of critical
tasks that can be executed simultaneously.

Each CPU Observer is composed of the following three main elements:
‐ The MISR module computes a single signature for the execution of the replica of the

critical task using data coming from the trace interface of a processor.
‐ The Watchdog Timer checks whether or not the task finishes within the allowed time.
‐ The Observer’s Controller manages the signature generation and Watchdog operation.

When the number of replicas of a task is more than two, the system is not only capable of

detecting the occurrence of faults, but is also capable of identifying the processor where it
occurred, and contribute in error correction schemes.

MISR

Obs
Ctrl

MISR

Obs
Ctrl

MISR

Watchdog

Memory

Start
Addr

End
Addr

Max
Time

Signature
CHECKER’s
CONTROLER

CPU Observer 2 CPU Observer nCPU Observer 1

Data Data DataError Error Error

Obs
Ctrl

WatchdogWatchdog

Figure 2. CPU Checker’s architecture

After presenting the architecture of the CPU Checker, it is necessary to explain how this
module works:

‐ The first step is to configure the system by storing in the memory block the first and last
instruction addresses for each task that needs to be monitored as well as its maximum
execution time and, whenever needed, activate instruction tracing.

‐ Once the system is initially configured, the various tasks start executing on the
processors in due time. Whenever a task that needs to be checked starts its execution, a
MISR module starts to compute a signature for this task.

‐ When the execution of a task has finished, the calculated signature is also stored in the
memory block.

‐ After all the replicas of a given task have finished their execution, the computed
signatures are compared. If they differ, a fault is detected and a warning signal is raised.
There are three main causes that can produce an error detection:

 The instructions executed by a task and its replicated version are different
(signatures differ).

Page 8 of 17

 The expected order for the different replicas execution is altered (for the
systems where this condition is relevant).

 One of the replicas does not finish its execution (time-out).
‐ If no error was detected, then the processors continue to execute other tasks. Otherwise,

the processors will carry out the appropriate recovery actions.

When implementing a CPU Checker in a system, it has to be noticed that some factors can
have a strong influence on the final signature computed by an MISR module. One of them is the
type of information we use to compute the signature (for example, the complete trace bus or
only a subset of signals) and another is how often this information is sampled. With respect to
the first parameter, some experimental results are presented in Section 5 in order to analyze how
the type of observed information affects the error detection capability of the proposed technique.
Regarding the sampling frequency, we consider two main options taking into account the
debugger features present in modern microprocessors. These two options differ on how the data
is introduced in the MISR module. In the first option the data introduced in the MISR module is
in a cycle by cycle basis, i.e. sampling data that appears on the trace bus at every clock cycle.
This case is suitable when the trace bus is directly accessible. Whether this data changes or not
is not relevant for the signature generation. In the second option, the signature is obtained by
compacting the data stored in the trace buffer, and then data are sampled only after some
condition is verified, in order to prevent the buffer overflows. Section 5 presents the results of
the experiments performed to analyze the influence of this factor on the fault detection
capability of the proposed solution.

3.3. Applicability

In the previous sections we have seen the architecture of the CPU Checker and how it works.
In this subsection the applicability of the CPU Checker is studied. The CPU Checker can be
used with various system architectures combined with different hardening techniques; in any
case, no extra code is added to the critical tasks nor any change is introduced in their execution.
In the following paragraphs, we provide further information on how the module we present
works with techniques such as time redundancy, hardware redundancy and in the case of multi-
core systems.

Time redundancy

Time redundancy is a hardening technique based on repeating the execution of a critical task
at different instants of time. The method we propose checks these repeated executions to detect
transient fault occurrences by means of information coming from the debugging trace. Also,
there is no need to use specific software to detect the occurrence of faults since this is done via
the CPU Checker. When an error is detected by the module, it warns the processor about its
occurrence and different recovery actions can be carried out (e.g. repeating the execution of the
task, activating an alarm, etc.). With this technique the fault can be not only detected but also
masked if the execution of the task is triplicated instead of duplicated.

In this case, there is only one CPU Observer in the CPU Checker since only one task is
executed. Permanent fault detection can be achieved in this case with the periodic execution of a
test-devoted task whose outcome is known a priori.

Hardware redundancy

Another possibility to make a system fault tolerant is by repeating the execution of a critical
task in two or more identical processors. This technique is called Hardware Redundancy. With
the proposed method, the CPU Checker checks the execution of the repeated tasks in order to
check the occurrence of faults. If a fault is detected, the CPU Checker warns the involved
processors. The advantage of this method is that it represents a non intrusive solution; it does
not alter the microprocessor’s normal operation and no extra computational effort is required.

When working with hardware redundancy, several operation modes can be found. One of
these modes of operation is the lockstep mode. In this mode, the same process runs on different
processors and a comparison between the produced signals is performed on a cycle-by-cycle

Page 9 of 17

basis; in this way, the fault latency achieved is minimal, whereas the amount of resources
needed is higher. The method we propose works independently of the used operation mode, i.e.,
there is no need to modify the CPU Checker when working with any of these operation modes.

As in the previous case, if we use three processors instead of two (i.e., if we use TMR) single
faults can be masked. By using TMR it is also possible to detect the occurrence of a permanent
fault affecting one of the cores and to perform recovery actions like replacing or removing the
faulty module.

Multiprocessor environment

In a multiprocessor environment maximum efficiency can be achieved since various
processors execute different tasks at the same time. In this kind of architectures, on-line error
detection can be implemented if both time and hardware redundancy are applied profiting from
the available cores. In this type of environment, some cores can be used to add redundancy to
the critical tasks, i.e., two or more cores execute the same task and the results are compared. The
management of the task’s execution can be done by different mechanisms (e.g., lockstepped
pipelines or redundant multithreading [18]).

If we use the CPU Checker to detect the occurrence of faults, the execution of the various
tasks is not altered when using the proposed method. Because of this fact, it is possible to use
the module we propose with several redundant mechanisms. The CPU Checker obtains the
information from the trace interface of each processor and then checks for the occurrence of
faults. In case an error has occurred the module warns all the processors involved in the
execution of the critical task.

4. Case studies: analysis of implementation issues

The proposed methodologies can be applied to systems where processors are used, which are
equipped with debug infrastructures and interfaces that make the processor trace information
available, either on-line or through buffering. To prove the feasibility and the effectiveness of
the proposed techniques, two microprocessor architectures have been studied, namely LEON3
and ARM7TDMI. In the former case, the CPU Checkers have been integrated in the digital part
of a SoC design. In the latter, the module was connected to the available external trace port. For
each of them, an analysis of the available integrated debug interfaces has been conducted, and
suitable CPU Checkers have been developed. The following paragraphs describe the studied
microprocessor architectures and outline the corresponding implementation costs.

4.1 LEON3

LEON3 [30] is an open-source synthesizable VHDL model of a 32-bit processor compliant
with the SPARC V8 RISC architecture, featuring a 7-stage pipeline and based on the AMBA
2.0 AHB/APB bus system. The LEON3 library includes a series of IP cores that make the
model highly configurable, and can be used in systems including up to 16 processing cores
attached to the same bus. Experiments have been performed resorting to different configurations
with different numbers of cores.

LEON3 core has a circular instruction trace buffer that stores executed instructions. The trace
buffer parallelism is 128 bits, while its dimension can be set in modules of 1 KB (a 128-entry
buffer thus needs 2 KB). Many of current microprocessors have a trace bus directly accessible
and in order to prove the feasibility of our approach we have modified the LEON3 interface by
making the trace bus accessible from the outside of the core. Hence, the CPU Checker can read
trace data to detect a possible fault. Nevertheless, the proposed methodology can be applied
reading data from the trace buffer, at the expense of additional latency and reduced error
detection coverage.

In Section 3 we described the general architecture of the proposed CPU Checker and how this
architecture can be used for different hardening techniques. In this section, we describe how to
connect the CPU Checker to as many LEON3 processor cores as the used system architecture
needs, and we analyze the area overhead introduced by the system.

The area overhead does not only vary with the used processor, it does also vary because the

Page 10 of 17

size of CPU Checker depends on the used system architecture. The size of the CPU Checker
varies with the number of tasks to be checked and with the number of replicas executed
simultaneously, since the size of the memory and the number of CPU Observers depend on
these two variables, respectively. For the area overhead analysis, we considered a fixed number
of tasks, although the number of replicas per task may differ.

When time redundancy is used to harden a system we need the CPU Checker and the LEON3
processor with only one core. In this case, to implement the hardening technique only the CPU
Checker is needed (i.e., no extra hardware), since the microprocessor is also needed for the
original system.

In case of using hardware redundancy to harden a system, extra hardware is needed apart
from the CPU Checker. Thus, for implementing this hardening technique the area overhead is
the corresponding to the CPU Checker plus the number of extra cores. The size of the CPU
Checker would depend on the number of redundant cores.

If a multiprocessor environment has to be hardened, then only the CPU Checker is needed,
since the original system already includes various cores, and we just profit from one or more
available cores to replicate the execution of a critical task. In this case, the size of the CPU
Checker does not vary necessarily with the number of processors, since not every processor has
to run a replica of a task. This size depends on how many times a critical task is replicated (this
fixes the number of signatures to store) and how many tasks are executed in parallel (this
determines the number of necessary CPU Observers).

Some experiments have been carried out in order to analyze in a practical manner the area
overhead introduced when using the following system architectures: time redundancy with
duplication of tasks, hardware redundancy with two identical processors, and multiprocessor
environment based on dual core architecture. These experiments have been performed running
an application consisting of a multiplication of two 16x16 integer matrices, which was split in
five different critical tasks. To carry out the experiments the CPU Checker was configured so
that it could handle the five critical tasks, i.e., the size of the memory had to be enough to store
information of these tasks, and with one CPU Observer for the Time Redundancy case and two
CPU Observers for the Hardware Redundancy and Multi-core cases.

Table I shows the area results obtained with ISE for these experiments. The hardware was
mapped on a Virtex5 FPGA (XC5VLX110T) from Xilinx and the area results are shown in
terms of LUTs, FF and memory blocks. Figure 3 graphically represents the results obtained for
the carried out experiment with the various system architectures. This figure shows that the area
occupied by the CPU Checker is minimal with respect to the total area of the original system.
The overhead introduced in the hardened system is also minimal for the case of Time
Redundancy and Multi-core environment. In the case of Hardware Redundancy more area is
needed to harden the system, although most of it belongs to the core replicas needed (named
extra hardware in Table I). The size of the CPU Checker is smaller in Time Redundancy since it
contains only one CPU Observer because only one task is executed.

TABLE I. AREA OCCUPIED FOR LEON3

 Time Redundancy Hardware Redundancy Multi-core environment

 LUTs FF Memory
Blocks LUTs FF Memory

Blocks LUTs FF Memory
Blocks

Original Leon3
System 6,793 3,261 58 6,793 3,261 58 12,485 5,799 72

Hardened
System

Extra
HW 0 0 0 5,692 2,538 14 0 0 0

CPU
Checker 356 348 0 467 416 0 467 416 0

Overhead 5.24% 10.67% - 90.66% 90.56% 24.13% 3.74% 7.17% -

Page 11 of 17

Figure 3. Occupied area

Latency
In this section the latency of the hardened system is analyzed. This latency depends mainly on

two factors: the time that the critical tasks take to complete their execution (execution time) and
the used system architecture. Firstly, we analyze how the latency changes with respect to the
execution time of tasks, and then how it varies with the used system architecture.

The latency depends on the time that the critical tasks need to complete their execution, which
will be proportional to the size of the critical tasks to be observed. First of all, we need to
consider that the CPU Checker waits by far until the signature is calculated and then until the
execution of the task has finished. In order to analyze the latency with respect to the size of the
tasks and to provide an easier understanding, we make the assumption that the tasks are
duplicated and they run one after the other (the worst case for latency). On the one hand, we can
have a task with size equal to one instruction (minimum possible size); in this case the latency
of the system will be the minimum possible since at every instruction the signature will be
compared and the fault could be detected. However, the size of the CPU Checker is larger with
this configuration, since many critical tasks are necessary to test a critical application. On the
other hand, we can have a critical task that includes all the instructions of the critical
application; in this case, the latency will be, at the most, two times the number of cycles that are
needed to execute all the instructions. However, the size of the CPU Checker is minimal, since
there is only one critical task to be checked. The relation between the area and the latency is
linear for this configuration. Thus, we can state that the more times a critical application is
partitioned (i.e., more tasks with fewer instructions per task), the latency will be smaller. In
order to obtain the best results a trade-off between the area needed and the latency should be
taken.

Page 12 of 17

The other factor that affects the latency is the used system architecture. If Time Redundancy
is applied to harden a system, then one task is executed and afterwards this task is executed once
again, so the latency is at the most two times the number of cycles to finish the critical process.
When Hardware Redundancy or Multi-core environments are used, the latency will depend on
the operation mode. When working in lockstep mode, all the replicated tasks execute at the
same time, so the latency is the time it takes to finish the execution of the task. If other mode of
operation is used, the latency will depend on the difference between the beginnings of execution
of the replicated tasks (the bigger the difference, the bigger the latency).

4.2 ARM7TDMI

The ARM7TDMI-S [31] is a general purpose 32-bit microprocessor based on RISC (Reduced
Instruction Set Computer) principles. It has a Von Neumann architecture with a single 32-bit
data bus and a three-stage pipeline. An Embedded Trace Macrocell (ETM) can be connected to
the microprocessor core (not to the main bus) in order to perform real-time tracing. Some
experiments have been performed on an LPC2129 from NXP [32] that is a microcontroller
based on an ARM7TDMI with an ETM (version 1.2) connected to it. Thus, in this case, the
trace bus is not directly accessible (like in LEON3), but the traced data are stored in a trace
buffer accessible through the trace port.

The ETM [33] provides instruction and data trace that is stored on a FIFO buffer. Figure 4
shows the block diagram of the ETM.

ARM
bus

tracker

ETM

ARM

Trace
control

FIFO

Trigger
conditions

Trace port

Memorymap
decode

Figure 4. Block diagram of ETM

With respect to instruction trace, the program counter can be observed. In order to compress

the data to be traced, only branch addresses are output. Regarding data trace, address data and/or
value data can be sampled. Tracing is controlled by selecting trigger conditions and filtering
signals to minimize the data to be traced (for instruction as well as for data tracing). By reducing
the data to be traced, the necessary bandwidth through the trace port is reduced. Trace port size
can vary from different versions and implementations of the ETM. The ETM integrated in the
LPC2129 used in the performed experiments consists of 9-pins:

 2 signals for synchronization (traceclk, tracesync)
 3-bit signal (tracepipe) for indicating what is happening in the execute stage of the

processor pipeline cycle by cycle
 4-bit signal to output traced data (tracepkt). The size of this signal can be up to 16

bits depending on the implementation of the ETM.
When the FIFO buffer overflows, different actions can occur also depending on the version

and implementation of the integrated ETM. In the used LPC2129, tracing is suspended until the
buffer is read. Later versions provide more advanced options. In fact, with the newest versions,
an increasing number of capabilities and enhanced features are available, which also facilitate
and improve their utilization for error detection tasks.

The general architecture of the proposed CPU Checker is also applicable to this case study
but additional registers are necessary for recovering the traced data through the narrow trace

Page 13 of 17

port. Thus, an additional 32-bit register (word size) is required in each CPU Observer.
Furthermore, the functionality of the Observer’s Controller has to include the control of the
register operation. On the other hand, ETM facilities have to be configured by means of a JTAG
interface. Therefore, a module in charge of managing the JTAG interface to configure the ETM
registers has been developed. TABLE II. shows the logic resources necessary to implement the
corresponding CPU Checker and the ETM configuration module in the XC5VLX110T FPGA.

TABLE II. AREA OCCUPIED BY ARM7TDMI

 LUTs FF Memory
Blocks

CPU Checker 484 450 0
ETM configuration

block 257 131 0

The ARM7TDMI used is a hard core and the number of logic resources required for its

implementation is not available. Results show the additional hardware needed to implement the
error detection tasks are in the same order than for LEON3 case. The analysis of the area
overhead involved by the different hardening techniques follows the same trend as in LEON3
because it mainly depends on the redundancy technique used and just marginally on the
processor used.

Latency

The latency results are slightly different from those obtained for LEON3 since in the case of
ARM7TDMI traced data are read through a narrower trace port, which decreases the process
speed. Furthermore, data compression techniques have influence in the time interval between
consecutive data readings. For example, if a fault affects the execution flow, the latency for the
ARM case is higher, since only branch addresses are sampled.

5. Fault detection capability assessment

Fault injection experiments have been performed on the available HDL description of a
system-on-chip integrating the LEON3 core in order to evaluate the effectiveness of the
proposed methodology in detecting errors caused by faults that occur during the processor
normal operation. The implemented system consists in two cores in order to duplicate the
execution of critical tasks. Therefore, the implemented CPU Checker requires two CPU
Observers. Figure 5 shows a scheme of the implemented system. The CPU Checker is initially
configured by one of the microprocessors through the main bus.

Core1

CPU
Checker

Debugger

Trace BusIrq

Main Bus

Core2

Trace Bus Irq

Figure 5. CPU Checker connection in a hardware redundancy based system

Single-Event-Upset (SEU) fault injection campaigns have been performed by applying bit-

flips to the LEON3 core flip-flops while running a set of benchmark applications. SEUs have
been injected randomly in space and time, and the error detection conditions detected by the

Page 14 of 17

CPU Checker have been checked with respect to any error found in the execution results and in
the program flow. A simulation-based fault injection setup was built using Mentor Graphics
ModelSim, relying on a set of suitably developed simulation scripts.

The experiments were performed running the following sample applications:
 Fibonacci generates the first 20 Fibonacci numbers (3,200 clock cycles)
 Ellip_f is a fifth-order wave digital elliptic filter (7,390 clock cycles).

The error detection abilities obtained by employing the trace debugging infrastructure have
been evaluated in two cases: the former consists in directly observing the trace bus interface
exiting from the core, which is then connected to the trace buffer. The latter involves observing
the data actually stored into the buffer. Since the trace interface is not sampled at each clock
cycle, but just once for each instruction (or cycle in the case of multi-cycle instructions), the
first method provides a richer set of information to the checker.

Table III and IV present the results for SEU fault injection experiments performed with the
Fibonacci and the Ellip_f benchmarks, respectively. In all cases 10,000 random faults are
injected, first on the complete core, then just on the integer unit. Experimental results are
reported considering the observation of all trace fields (opcode, load/store parameters and
program counter), just considering the opcode field, and considering opcode and load/store
parameters. Different cases can be distinguished: silent faults are the ones which do not cause
any error on the elaboration results or on the program flow, and are not detected by observing
the processor trace; detected faults are those correctly identified by the proposed methodology;
false detected faults depend on faults which do not cause any error on the results or program
flow, but have an effect on the processor trace and, being detected, may add some system
performance penalty; finally, undetected faults are the ones that, even if they cause a
misbehavior, cannot be identified by the proposed approach.

With the Fibonacci benchmark, 10.88% of the faults injected in the core cause an error in the
results and/or on the program flow, while 12.59% of the ones injected in the integer unit
provoke errors. In the Ellip_f case, errors are caused by 10.40% of the faults injected in the
core, while 11.91% of the ones injected in the integer unit provoke errors.

TABLE III. FAULT INJECTION RESULTS FOR THE FIBONACCI BENCHMARK

 All trace observation
[%]

Opcode trace – bits (31:0)
[%]

Load/store + Opcode
bits (96:64)(31:0) [%]

 silent det. false undet. silent det. false undet. silent det. false undet.

Interface core 64.63 10.83 24.99 0.05 80.18 10.68 8.94 0.2 73.19 10.83 15.93 0.05
IU 51.84 12.59 35.55 0.00 74.43 12.41 12.97 0.18 64.30 12.58 23.11 0.01

Buffer core 69.80 9.75 19.32 1.13 81.91 8.67 7.21 2.21 76.20 9.64 12.92 1.24
IU 59.33 12.45 28.07 0.14 76.92 10.98 10.49 1.61 68.64 12.29 18.76 0.30

TABLE IV. FAULT INJECTION RESULTS FOR THE ELLIP_F BENCHMARK

 All trace observation
[%]

Opcode trace – bits (31:0)
[%]

Load/store + Opcode
bits (96:64)(31:0) [%]

 silent det. false undet. silent det. false undet. silent det. false undet.

Interface core 65.43 10.39 24.17 0.01 80.80 10.09 8.80 0.31 73.96 10.39 15.64 0.01
IU 52.99 11.91 35.09 0.00 75.33 11.53 12.75 0.38 65.40 11.91 22.69 0.00

Buffer core 70.91 9.24 18.69 1.16 82.63 8.41 6.97 1.99 77.21 9.15 12.39 1.25
IU 60.95 11.66 27.13 0.25 77.98 10.54 10.11 1.37 70.11 11.53 17.98 0.38

The obtained experimental results show that a larger number of faults is detected when

reading the trace data before it reaches the trace buffer, at the expense of a higher false positive
rate. When the trace bus is not directly accessible, the buffer interface imposes a bottleneck in
the amount of data that can be used to calculate the signature without losing significant
information.

False positive faults are due to different reasons:
‐ First, they may be due to the sampling of meaningless data to calculate the signature. In

order to reduce this rate, instead of using the complete trace bus, a combination of the

Page 15 of 17

observation of opcode and load/store data can be used. This solution maintains almost
optimal fault coverage and reduces the amount of false positive.

‐ Secondly, the trace bus in LEON3 is connected to registers belonging to the final stages
of the pipeline, which means that traced data often correspond to instructions that have
already completed their execution. Therefore, if a fault affects some register in the final
stages which are not used by the specific instruction (e.g., the memory stage in a
instruction other than load or store), the instruction may have been executed correctly,
but trace data are not correct, thus causing a false positive.

‐ Finally, the instant of time when the fault occurs affects the number of false positives.
The information in the trace bus does not change every cycle and it may contain data
that was relevant at a certain instant and later on it is no longer relevant. If the fault
occurs in a period of time when the affected information are not relevant, it may lead to
a false positive.

The few undetected errors are due to faults affecting the paths connecting the core to the
memory bus, where the results are correctly elaborated but fail to be correctly stored, or to
system bus control signals. Complementary techniques (e.g., variable replication or code
assertions) can be used to detect these errors.

Experimental data show that the higher the number of observed signals, the higher is the
percentage of detected errors, at the expense of a higher number of false detected ones: this fact
needs to be considered when defining the error detection strategy at system level, taking into
account system requirements and available resources. The best results are provided when the
traced information contain the opcode and load/store parameters. In this case, errors in control
flow as well as in data can be detected. This is an advantage over other techniques that are
focused on control flow error detection [8]-[11]. Furthermore, experimental results published in
[4] prove that, by observing the trace bus, the fault detection capabilities are higher than by
using alternative (and possibly more expensive) solutions based on observing the main bus [17].

Finally, it can be observed that the proposed approach is better suited to detect faults affecting
the inner parts of the processor, i.e., the integer unit, since the trace interface is directly
connected to them.

6. Conclusions

An on-line error detection technique aimed at microprocessor-based systems has been
presented. This approach profits from available trace interfaces in current microprocessors to
observe the behavior of the system during normal operation without introducing significant
penalties, and without any modifications in the core design. This technique can be used with
various system architectures combined with different hardening techniques.

The proposed solution consists in adding a module, named CPU Checker, connected to the
available trace interface. Two different microprocessors with different trace interfaces and
features have been studied, LEON3 and ARM7TDMI. In LEON3 (a soft core) the trace bus is
directly accessible whilst in ARM7TDMI (a hard core) the trace interface available only allows
the access to a buffer trace. An analysis among three different system architectures is presented
in terms of logic resources and involved latency in error detection. Results show that the
necessary logic resources to implement the proposed approach involve a low percentage with
respect to the necessary resources for the complete system.

Fault injection experiments have been performed using the system based on LEON3
microprocessor to assess the error detection capability of the proposed approach. Two different
implementations of the solution have been evaluated: one implementation with direct
observation of the trace bus, and other one accessing the trace buffer. The error detection results
show that for the first case the undetected number of errors is lower but the number of false
detected errors increased notably with respect to the second implementation. In both cases the
percentage of the errors detected by the proposed approach is higher than 89% (more than 99%
when the trace bus is directly accessible). Results also prove that the proposed approach is very
efficient to detect faults affecting the inner parts of the processor, i.e., the integer unit.

Page 16 of 17

References
[1] International Technology Roadmap for Semiconductors, 2010 Update to 2009 Edition (www.itrs.net)
[2] ISO/FDIS 26262 “Road Vehicles – Functional Safety” Standard
[3] M. Grosso, M. Sonza Reorda, “Exploiting Embedded FPGA in On-line Software-based Test

Strategies for Microprocessor Cores”, IEEE International On-Line Testing Symposium, pp. 95-100,
2009

[4] M. Grosso, M. Sonza Reorda, M. Portela-Garcia, M. Garcia-Valderas, C. Lopez-Ongil, L. Entrena,
“An on-line fault detection technique based on embedded debug features”, IEEE International On-
Line Testing Symposium, 2010, pp. 29-34

[5] M. Gallardo-Campos, M. Portela-Garcia, C. Lopez-Ongil, L. Entrena, M. Grosso, M. Sonza Reorda,
“Enhanced Observability in Microprocessor-based Systems for Permanent and Transient Fault
Resilience”, Conference on Design of Circuits and Integrated Systems (DCIS), 2010, pp. 240-246

[6] A. Paschalis, D. Gizopoulos, “Effective Software-Based Self-Test Strategies for On-Line Periodic
Testing of Embedded Processors”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 24, N. 1, Jan. 2005, pp. 88 – 99

[7] P. Bernardi, M. Rebaudengo, M. Sonza Reorda, “Using Infrastructure IPs to support SW-based Self-
Test of Processor Cores”, IEEE International Workshop on Microprocessor Test and Verification,
2004, pp. 22 – 27

[8] B. Randell, “System structure for software fault tolerance”, IEEE Transactions on Software
Engineering, Vol.1, N. 2, Jun 1975, pp. 220 – 232

[9] A. Avienzis, “The N-version approach to fault-tolerant software”, IEEE Transactions on Software
Engineering, Vol. 11, N. 12, Dec. 1985, pp. 1491-1501

[10] N. F. Ghalaty, M. Fazeli, H. I. Rad, S. G. Miremadi, “Software-based Control Flow Error Detection
and Correction Using Branch Triplication” IEEE International On-Line Testing Symposium, 2001,
pp. 214-217

[11] R. Vemu, J. A. Abraham, “CEDA: Control-Flow Error Detection Using Assertions” IEEE
Transactions on Computers, Vol. 60, Issue 9, Sept. 2011, pp. 1233-1245.

[12] M. Nicolaidis, Y. Zorian, “On-line testing for VLSI—a compendium of approaches”, Springer
Journal of Electronic Testing: Theory & Applications, Vol. 12, N. 1-2, 1998, pp. 7 – 20

[13] A. Mahmood and E.J. McCluskey, “Concurrent Error Detection Using Watchdog Processors—A
Survey,” IEEE Trans. on Computers, Vol. 37, N. 2, Feb. 1988, pp. 160-174

[14] R. Vemu, A. Jas, J.A. Abraham, S. Patil, R. Galivanche, “A low-cost concurrent error detection
technique for processor control logic”, ACM/IEEE Design, Automation and Test in Europe
Conference and Exhibition, 2008, pp.897-902

[15] N. Karimi, M. Maniatakos, A. Jas, A., C. Tirumurti, Y. Makris, “Workload-Cognizant Concurrent
Error Detection in the Scheduler of a Modern Microprocessor”, IEEE Trans. on Computers, Vol. 60,
N. 9, Sept. 2011, pp. 1274-1287

[16] J.R. Azambuja, A. Lapolli, L. Rosa, F. Lima Kastensmidt, “Detecting SEEs in Microprocessors
Through a Non-Intrusive Hybrid Technique”, IEEE Trans. on Nuclear Science, Vol. 58, N. 3, June
2011, pp. 993-1000

[17] P. Bernardi, L. Bolzani Poehls, M. Grosso, M. Sonza Reorda, “A Hybrid Approach for Detection and
Correction of Transient Faults in SoCs”, IEEE Trans. on Dependable and Secure Computing, Vol. 7,
N. 4, Oct.-Dec. 2010, pp. 439-445

[18] D. Gizopoulos, M. Psarakis, S. V. Adve, P. Ramachandran, S. K. S. Hari, D. Sorin, A. Meixner, A.
Biswas, X. Vera, “Architectures for Online Error Detection and Recovery in Multicore Processors”,
IEEE/ACM Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011

[19] R. Gong, K. Dai, Z. Wang, “Transient Fault Recovery on Chip Multiprocessor based on Dual Core
Redundancy and Context Saving”, IEEE International Conference per Young Computer Scientists,
2008, pp. 148-153

[20] R. Hyman, K. Bhattacharya, N. Ranganathan, “A Strategy for Soft Error Reduction in Multi Core
Designs”, IEEE International Symposium on Circuits and Systems, 2009, pp. 2217-2220

[21] M. Abramovici, “In-System Silicon Validation and Debug”, IEEE Design & Test of Computers, Vol.
25, N. 3, May-June 2008, pp.216-223

[22] B. Vermeulen, K. Goossens, “Interactive Debug of SoCs with Multiple Clocks”, IEEE Design and
Test of Computers, Vol. 28, N. 3, May-June 2011, pp. 44-51

Page 17 of 17

[23] H.F. Ko, A.B. Kinsman, N. Nicolici, “Design-for-Debug Architecture for Distributed Embedded
Logic Analysis” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, Vol. 19, N. 8, Aug.
2011, pp.1380-1393

[24] S.-B. Park, S. Mitra, “IFRA: Instruction Footprint Recording and Analysis for post-silicon bug
localization in processors”, ACM/IEEE Design Automation Conference, 2008, pp.373-378

[25] IEEE-ISTO 5001-2003, “The Nexus 5001 Forum™ Standard for a Global Embedded Processor
Debug Interface”, Version 2.0, 2003

[26] "Embedded Trace Macrocell, ETMv1.0 to ETMv3.4, Architecture Specification", ARM Limited,
2007

[27] Xilinx MicroBlaze™ Trace Core (XMTC) (v1.00c), Xilinx, 2009
[28] A. V. Fidalgo, M. G. Gericota, G. R. Alves, J. M. Ferreira, “Real-time fault injection using enhanced

on-chip debug infrastructures”, Journal of Microprocessors and Microsystems, Vol. 35, N. 4, June
2011, pp. 441-452

[29] M. Portela-Garcia, C. Lopez-Ongil, M. Garcia-Valderas, L. Entrena, "Fault Injection in Modern
Microprocessors Using On-Chip Debugging Infrastructures”, IEEE Transactions on Dependable and
Secure Computing, Vol. 8, N. 2, Jan. 2011, pp. 308-314

[30] www.gaisler.com
[31] “ARM7TDMI-S. Technical Reference Manual”, Rev 4, ARM, 2001
[32] “LPC2119/2129/2194/2292/2294 User Manual”, Philips Semiconductors, 2004

[33] “Embedded Trace Macrocell. Architecture Specification”, ARM, 2007

