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The interaction between a weakly turbulent free stream and a hypersonic shock wave is investigated theo-
retically by using linear interaction analysis (LIA). The formulation is developed in the limit in which the
thickness of the thermochemical nonequilibrium region downstream of the shock, where relaxation toward
vibrational and chemical equilibrium occurs, is assumed to be much smaller than the characteristic size of the
shock wrinkles caused by turbulence. Modified Rankine-Hugoniot jump conditions that account for dissoci-
ation and vibrational excitation are derived and employed in a Fourier analysis of a shock interacting with
three-dimensional isotropic vortical disturbances. This provides the modal structure of the post-shock gas
arising from the interaction, along with integral formulas for the amplification of enstrophy, concentration
variance, turbulent kinetic energy (TKE) and turbulence intensity across the shock. Besides confirming known
endothermic effects of dissociation and vibrational excitation in decreasing the mean post-shock temperature
and velocity, these LIA results indicate that the enstrophy, anisotropy, intensity, and TKE of the fluctua-
tions are much more amplified through the shock than in the thermochemically frozen case.Additionally, the
turbulent Reynolds number is amplified across the shock at hypersonic Mach numbers in the presence of
dissociation and vibrational excitation, as opposed to the attenuation observed in the themochemically frozen
case. These results suggest that turbulence may persist and get augmented across hypersonic shock waves
despite the high post-shock temperatures.

I. INTRODUCTION

Strong shock waves participate in a number of prob-
lems in physics, including the dynamics of high-energy in-
terstellar medium1–4, the explosions of giant stars5–8, the
fusion of matter in inertial-confinement devices9–11, and
the ignition of combustible mixtures by lasers12,13. In ad-
dition to those, an important contemporary problem of
relevance for aeronautical and astronautical engineering
is the aerothermodynamics of hypersonic flight14,15. In
hypersonics, similarly to the aforementioned problems,
the intense compression of the gas through the shock
waves generated by the fuselage leads to high tempera-
tures that can activate complex thermochemical phenom-
ena16. In particular, at high Mach numbers of up to ap-
proximately 25 in the terrestrial atmosphere, correspond-
ing to sub-ionizing, sub-orbital stagnation enthalpies of
up to approximately 15-30 MJ/kg depending on altitude,
vibrational excitation and air dissociation are the dom-
inant thermochemical phenomena typically observed in
the gas downstream of shock waves around hypersonic
flight systems.

Turbulence can also play an important role at the
high Mach numbers mentioned above, particularly in low-
altitude hypersonic flight because of the correspondingly
larger Reynolds numbers of the airflow around the fuse-
lage17–19. However, the way in which turbulence influ-
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ences the thermomechanical loads and the thermochem-
istry around hypersonic flight systems remains largely
unknown. To compound this problem, experiments in
the area of hypersonic turbulence are curtailed by the
exceedingly large flow powers required to move gases at
sufficiently high Mach and Reynolds numbers in order
to observe shock waves simultaneously with turbulence
and thermochemistry. Additionally, the airflow in most
ground facilities is poisoned with weak free-stream tur-
bulence that interacts with the shock waves enveloping
the test article. The fluctuations in the post-shock gases
induced by this interaction oftentimes lead to artificial
transition to turbulence in hypersonic boundary layers
in wind-tunnel experiments20.

Most early work on the interaction of shock waves
with turbulence have been limited to calorically per-
fect gases in boundary layers21–30, and isotropic free
streams31–35. Large-scale numerical simulations, includ-
ing DNS36–50, LES51–53, and RANS54,55, have been the
pacing item for those investigations. Nonetheless, the
rapid progress in large-scale numerical simulations dur-
ing the last decades has not abated the fundamental role
that theoretical analyses have played in understanding
shock/turbulence interactions by providing closed-form
solutions. In problems dealing with shock waves prop-
agating in turbulent free streams, as in the problem
treated in the present study, the most successful theo-
retical approach has been the linear interaction analysis
(LIA) pioneered by Ribner56–58.

Under the assumption that turbulence is comprised of
small linear fluctuations that can be separated using Ko-
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vaznay’s decomposition into vortical, entropic and acous-
tic modes59, LIA describes their two-way coupled interac-
tion with the shock by using linearized Rankine-Hugoniot
jump conditions coupled with the linearized Euler equa-
tions in the post-shock gas. The resulting formalism de-
scribes the wrinkles induced by turbulence on the shock
and the corresponding Kovaznay’s compressible turbu-
lence modes radiated by the interaction toward the down-
stream gas.

Despite its simplicity and limitations, LIA has not
only provided a valuable insight into the underlying
physical processes of shock/turbulence interactions, but
has also worked sufficiently well for predicting the
amplification of the turbulent kinetic energy (TKE)
that is commonly used for bench-marking numerical
simulations38–40. However, there exist known discrepan-
cies between LIA and numerical simulations in the way
that TKE is distributed among the diagonal components
of the Reynolds stress tensor. For instance, LIA yields
a smaller (larger) amplification of TKE associated with
streamwise (transverse) velocity fluctuations relative to
that observed in numerical simulations. These discrep-
ancies are typically attributed to the fact that LIA treats
the shock as a discontinuity, in that DNS results are ob-
served to converge to those obtained by LIA when the
ratio of the numerical shock thickness to the Kolmogorov
length scale becomes sufficiently small41,43,45.
In this study, an extension that incorporates thermo-

chemical effects of vibrational excitation and gas disso-
ciation is made to the standard LIA previously applied
to calorically perfect gases56–58,60. As in the standard
LIA, the following conditions must be satisfied: (a) the
root-mean-square (rms) of the velocity fluctuations u�

needs to be much smaller than the speed of sound in
both pre-shock and post-shock gases; (b) the amplitude
of the streamwise displacement of the distorted shock
from its mean position ξs needs to be much smaller than
the upstream integral size of the turbulence �; and (c) the
eddy turnover time �/u� needs to be much smaller than
the molecular diffusion time �2/ν based on the kinematic
viscosity ν, or equivalently, the turbulent Reynolds num-
ber Re� = u��/ν needs to be large.

In addition to the conditions (a-c) stated above, the
incorporation of thermochemical effects requires that the
characteristic size of the shock wrinkles, which is of the
same order as �, needs to be much larger than the thick-
ness �T of the thermochemical nonequilibrium region be-
hind the shock, as depicted in Fig. 1. For instance, the
value of �T behind a Mach-14 normal shock at a pres-
sure equivalent to 45 km of altitude is approximately
1 cm (see page 503 in Ref.61). In this thermochemical
nonequilibrium region, the gas relaxes toward vibrational
and chemical equilibrium in an intertwined manner, in
that the vibrational energy of the molecules and their
dissociation probability are coupled16,62. The value of
�T is approximately given by the mean post-shock veloc-
ity multiplied by the sum of the characteristic time scales
of dissociation and vibrational relaxation. Since both of

FIG. 1. Sketch of the model problem: a normal shock wave
interacts with a hypersonic free stream of weak isotropic tur-
bulence (velocities are shown in the shock reference frame).

these characteristic time scales depend inversely on pres-
sure and exponentially on the inverse of the temperature,
the veracity of the approximation �T /� � 1 in practical
hypersonic systems is expected to improve as the flight
Mach number increases and the altitude decreases.

The LIA results provided in this study yield integral
formulas for the amplification of the enstrophy, compo-
sition variance and TKE as a function of the post-shock
Mach number, the density ratio and the normalized in-
verse of the slope of the Hugoniot curve. The latter un-
dergoes a change in sign at high Mach numbers due to the
thermochemical effects. As a result, at Mach numbers
larger than approximately 13 in the conditions tested
here, a local decrement (increment) in post-shock pres-
sure – due, for instance to shock wrikling –, engenders
an increment (decrement) in post-shock density. This
peculiar structure of the Hugoniot curve at hypersonic
Mach numbers is found to strongly amplify turbulence
in the post-shock gas, where most of the TKE is ob-
served to be contained in transverse velocity fluctuations
of the vortical mode. For instance, the present LIA re-
sults in a maximum TKE amplification factor of approx-
imately 2.9, whereas this value drops to 1.7 when the gas
is assumed to be thermochemically frozen (i.e., diatomic
calorically perfect).

The remainder of this paper is structured as follows.
The Rankine-Hugoniot jump conditions across the shock
are derived in Section II accounting for dissociation and
vibrational excitation in the post-shock gas. A linearized
formulation of the problem is presented in Section III for
the interaction of a normal shock with monochromatic
vorticity disturbances. A Fourier analysis is carried out
in Section IV to address the interaction of a normal shock
with weak isotropic turbulence composed of multiple and
linearly superposed vorticity modes. Lastly, conclusions
are given in Section V.
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II. RANKINE-HUGONIOT JUMP CONDITIONS WITH
VIBRATIONAL EXCITATION AND GAS DISSOCIATION

Consider first the problem of an undisturbed, nor-
mal shock wave in a cold, inviscid, irrotational,
single-component gas consisting of symmetric diatomic
molecules. The pre-shock density, pressure, temperature,
specific internal energy, and flow velocity in the reference
frame of the shock are denoted, respectively, as �1, P1,
T1, e1 and u1. The corresponding flow variables in the
post-shock gas are denoted as �2, P2, T2, e2 and u2.

A. Conservation equations across the shock

In the reference frame attached to the shock front, the
conservation equations of mass, momentum and enthalpy
across the shock are

�1u1 = �2u2; (1a)

P1 + �1u
2
1 = P2 + �2u

2
2; (1b)

e1 + P1=�1 + u2
1=2 = e2 + P2=�2 + u2

2=2 + qd; (1c)

respectively. In this formulation, the symbol qd denotes
a positive quantity that represents the net change of spe-
cific chemical enthalpy caused by the gas dissociation re-
action

A2 
 A + A; (2)

with A2 being a generic molecular species and A its dis-
sociated atomic counterpart. In particular, qd can be
expressed as

qd = �Rg;A2
�d; (3)

where Rg;A2
is the gas constant based on the molecular

weight of A2, and �d is the characteristic dissociation
temperature. In addition, the variable � is the degree of
dissociation defined as the ratio of the mass of dissociated
A atoms to the total mass of the gas, or equivalently, the
mass fraction of A atoms.

Equations (1a)-(1c) are supplemented with the ideal-
gas equations of state in the pre-shock gas

P1=�1 = Rg;A2
T1 (4)

and in the post-shock gas

P2=�2 = (1 + �)Rg;A2
T2: (5)

Additionally, the specific internal energy in the pre-shock
gas e1 is given by the translational and rotational com-
ponents

e1 = (5=2)Rg;A2
T1; (6)

whereas in the post-shock gas e2 requires consideration of
translational, rotational, and vibrational degrees of free-
dom along with mixing between molecular and atomic

H2 O2 N2 F2 I2 Cl2

�r [K] 87.53 2.08 2.87 1.27 0.0538 0.0346
�v [K] 6338 2270 3390 1320 308 805
�d [K] 51973 59500 113000 18633 17897 28770
G 22/1 52/3 42/1 42/1 42/1 42/1

m[kg] �1026 0.16735 2.6567 2.3259 3.1548 21.072 5.8871

TABLE I. Rotational (�r), vibrational (�v) and dissociation
(�d) characteristic temperatures, along with the factor G and
the atomic mass m of relevant molecular gases.

species, which gives

e2 = Rg;A2
T2

�
3�+ (1� �)

�
5

2
+

�v=T2

e�v=T2 � 1

��
; (7)

where �v is the characteristic vibrational temperature.
The first term inside the square brackets in (7), propor-
tional to the dissociation degree �, corresponds to the
translational contribution of the monatomic species. The
second term, proportional to the factor 1��, includes the
translational, rotational and vibrational contributions of
the molecular species, where it has been assumed that
the rotational degrees of freedom are fully activated and
the molecules vibrate as harmonic oscillators.

The formulation is closed with the chemical-
equilibrium condition downstream of the shock, namely63

�2

1� � = Gm�r

�
�mkB
~2

�3=2p
T2

�2
e�

�d
T2

�
1� e�

�v
T2

�
;

(8)
where �r is the characteristic rotational temperature, m
is the atomic mass of A, kB is the Boltzmann’s constant,
~ is the reduced Planck’s constant, and G = (Qael)

2=Qaael
is a ratio of electronic partition functions of A atoms
(Qael) and A2 molecules (Qaael ). Upon neglecting the varia-
tions of the specific internal energy with temperature due
to electronic excitation, the electronic partition functions
in G can be approximated as the ground-state degener-
acy factors. Typical values of �r, �v, �d, G and m are
provided in Table I for a wide range of molecular gases.

B. Dimensionless formulation

A dimensionless formulation of the problem can be
written by introducing the dimensionless parameters

B =
Gm�rT

1=2
1

�1

�
�mkB
~2

�3=2

; �d =
�d

T1
; �v =

�v

T1
; (9)

along with the pressure, temperature, and density jumps

P = P2=P1; T = T2=T1; R = �2=�1 (10)

across the shock. In the expressions below, the solu-
tion for a vibrationally and chemically frozen gas (i.e.,
a calorically perfect diatomic gas) is recovered by taking
the limits �v !1 and �d !1 (or �! 0).
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Using these definitions, the dimensionless Rayleigh line

P = 1 +
7

5
M2

1

(
1− 1

R

)
, (11)

which relates P and R, is obtained by combining the
mass and momentum conservation equations (1a) and
(1b). In (11), the symbol M1 denotes the pre-shock
Mach number defined as

M1 = u1/c1, (12)

where c1 =
√

(7/5)Rg,A2
T1 is the speed of sound of

the pre-shock gas. Regardless of the value of M1, the
Rayleigh line always emanates from the pre-shock state,
P = 1 and R = 1, as a straight line with negative slope
in the {R−1,P} plane.
In contrast, since the post-shock gas is calorically im-

perfect, its Mach number

M2 =
u2

c2
=

M1

R
c1
c2

(13)

requires a more elaborate calculation of the speed of
sound,

c22 =
P2

ρ22

∂P2

∂T2

∣∣∣∣
ρ2

∂(e2 + qd)

∂T2

∣∣∣∣
ρ2

−

∂P2

∂T2

∣∣∣∣
ρ2

∂(e2 + qd)

∂ρ2

∣∣∣∣
T2

∂(e2 + qd)

∂T2

∣∣∣∣
ρ2

+
∂P2

∂ρ2

∣∣∣∣
T2

.

(14)
Upon substituting (5) and (7) into (14), the expression

c22
c21

=
5T
7

[
1 + α+ αR + (1 + α+ αT )×

2(1 + α)− αR (1− 2ēvib + 2βd/T )

5 + α+ 2(1− α)ē2vibe
−βv/T + αT (1− 2ēvib + 2βd/T )

]

(15)

is obtained, where

ēvib =
βv/T

eβv/T − 1
(16)

is the dimensionless component of the specific internal
energy corresponding to vibrational excitation in equi-
librium. Additionally, the coefficients αR and αT in (15)
are given by

αR = R ∂α

∂R

∣∣∣∣
T
= −α(1− α)

2− α
, (17)

αT = T ∂α

∂T

∣∣∣∣
R

= −αR


1

2
+

βd

T
1−

(
1 + βv

βd

)
e−βv/T

1− e−βv/T


 .

(18)

Equation (15), along with definitions (16), (17) and (18),
determine the post-shock Mach number (13).

FIG. 2. Hugoniot curves for different molecular gases at pre-
shock temperature T1 = 300 K and pressure P1 = 1 atm [grey
lines: present formulation; symbols: numerical results ob-
tained with NASA’s Chemical Equilibrium with Applications
(CEA) code64 excluding ionization], along with the Hugoniot
curve of a gas with Br = 106, βv = 10, and βd = 100 (line
colored by the degree of dissociation). The latter is compared
in the inset with the Hugoniot curves of a calorically perfect
monoatomic gas (grey line corresponding to γ = 5/3) and a
calorically perfect diatomic gas (grey line corresponding to
γ = 7/5).

The equations of state (4) and (5) can be combined
into a single equation as

P = (1 + α)RT . (19)

Upon substituting (4)-(7) into the conservation equations
(1a)-(1c) and using the normalizations (9) and (10), the
relation

T =
6−R−1 − 2αβd − 2(1− α)βv/

(
eβv/T − 1

)
2(α+ 3)−R(1 + α)

(20)

is obtained between α, R, and T . Lastly, the problem
is closed by rewriting the chemical-equilibrium condition
(8) in dimensionless form using (9) and (10) as

α2

1− α
= Be−βd/T

√
T
R

(
1− e−βv/T

)
, (21)

which provides an additional relation between α, R, and
T . In particular, given the dimensionless parameters βv,
βd and B, the combination of (19), (20) and (21) pro-
vides the Hugoniot curve P = P(R−1), which in the
present case is a laborious implicit function that is eval-
uated numerically and is shown in Fig. 2. As a result,
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H2 O2 N2 F2 I2 Cl2

B × 10−6 2.0668 6.472 14.0452 9.818 7.1796 0.6818
βv × 10−1 2.1127 0.7567 1.13 0.44 0.1027 0.2683
βd × 10−2 1.7324 1.9833 3.7667 0.6211 0.5966 0.959

TABLE II. Dimensionless parameters B, βv and βd for rel-
evant molecular gases at pre-shock temperature T1 = 300 K
and pressure P1 = 1 atm.

given a pre-shock Mach numberM1, the post-shock state
is completely determined by the intersection of the Hugo-
niot curve and the Rayleigh line (11).

C. The turning point in the Hugoniot curve at hypersonic
Mach numbers

It is worth discussing some peculiarities of the Hugo-
niot curve that is obtained by including dissociation and
vibrational excitation in the post-shock gas, since they
are of some relevance for the shock/turbulence interac-
tion problem studied in Sections III and IV.

The main panel in Fig. 2 shows Hugoniot curves in grey
color for H2, O2, N2 and F2 using the simple theory pro-
vided above particularized for the parameters B, βv and
βd listed in Table II. As shown in Fig. 2, the curves for
O2 and N2 compare well with the more complex numeri-
cal calculations obtained with NASA’s Chemical Equilib-
rium with Applications (CEA) code64. The latter incor-
porates variations of the specific heat with temperature
due to both vibrational and electronic excitation through
the NASA polynomials65.

To narrow down the exposition, the main panel in
Fig. 2 also shows a Hugoniot curve colored by the de-
gree of dissociation and obtained using the representative
values Br = 106, βv = 10, and βd = 100. This is a par-
ticular choice of values that nonetheless approximately
captures the order of magnitude of these parameters ob-
served among the different gases listed in Table II (with
exception of the much larger value of B observed for N2,
which translates into much higher dimensionless post-
shock temperatures being required to attain significant
dissociation of N2).

The inset in Fig. 2 shows that the Hugoniot curve
starts departing significantly from that of a calorically
perfect diatomic gas [corresponding to an adiabatic co-
efficient γ = 7/5 and a maximum density ratio R =
(γ + 1)/(γ − 1) = 6] at a rather modest degree of disso-
ciation α ∼ 1% attained at M1 ∼ 5. Despite the small-
ness of this crossover value of α, large changes in chemi-
cal enthalpy occur because of the large bond-dissociation
specific energy of most relevant species (e.g., approxi-
mately 15 MJ/kg for O2). As a result, α ∼ 1% renders
αβd = O(1) in (20), which represents a balance between
the heat absorbed by dissociation qd and the pre-shock
internal energy e1 in the conservation equation (1c). As
α is further increased, qd becomes of the same order as

FIG. 3. Normalized inverse of the slope of the Hugoniot curve
Γ as a function of the density jump across the shock T for
Br = 106, βv = 10, and βd = 100 (line colored by the degree
of dissociation). Dashed lines represent asymptotic limits for
a calorically perfect diatomic gas (βv → ∞ and α → 0), and
for a highly dissociated gas (α → 1).

e2, and the departure from calorically perfect behavior
becomes increasingly more pronounced.

As α becomes increasingly closer to unity, which re-
quires the kinetic energy of the pre-shock gas to be in-
creasingly larger than qd (or equivalently, it requires the
pre-shock Mach number M1 to be increasingly larger
than

√
βd), the slope of the Hugoniot curve undergoes

a change in sign and turns inwards toward larger specific
volumes. For the parameters investigated in Fig. 2, the
turning point occurs at α � 0.7, where T � 9 (corre-
sponding to 2700 K when T1 = 300 K), M1 � 13 and
R � 12, the latter being almost double (triple) the den-
sity ratio of a calorically perfect diatomic (monoatomic)
gas. There, the inverse of the slope of the Hugoniot curve
normalized with the slope of the Rayleigh line,

Γ = −
(

P2 − P1

1/ρ1 − 1/ρ2

)
d(1/ρ2)

dP2
=

7

5

M2
1

R2

(
∂P
∂R

)−1

,

(22)
attains a zero value. The role of Γ in the description
of the shock/turbulence interaction problem will be ad-
dressed in Sections III and IV.

As shown in Fig. 3, the value of Γ becomes negative
along the upper branch of the Hugoniot curve beyond
the turning point Γ = 0. Along that branch, an incre-
ment (decrement) in post-shock pressure induces a decre-
ment (increment) in post-shock density. For the param-
eters tested here, the value Γ in the upper branch of the
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Hugoniot curve is always larger than the critical values
for the onset of (a) shock instabilities associated with
multi-wave66,67 and multi-valued68,69 solutions, and (b)
D’yakov-Kontorovich pseudo-instabilities associated with
the spontaneous emission of sound8,70. Similar character-
istics of the Hugoniot curve have been observed elsewhere
for shocks subjected to endothermicity71–74.

D. Limit behavior in the post-shock gas

Typical distributions of the density ratio R, the post-
shock Mach numberM2 and the pre-shock Mach number
M1 are provided in Fig. 4 as a function of the temper-
ature ratio T . The curves also show the limit behavior
for � ! 0 and �v ! 1 (corresponding to a calorically
perfect diatomic gas at low temperatures), and for �! 1
(corresponding to a fully dissociated gas at high temper-
atures). Some insight into these limits is provided below.

In Fig. 4(a), the low-temperature limit of the den-
sity ratio corresponds to the standard Rankine-Hugoniot
jump condition for a calorically perfect diatomic gas,

R � 3

�
1� 1

T

�"
1 +

s
1 +

T
9 (T � 1)

2

#
; (23)

which can be derived by taking the limits � ! 0 and
�v !1 in (20). In this low-temperature limit, the nor-
malized slope of the Hugoniot curve becomes � �M�2

1 ,
as indicated in Fig. 3.

In the opposite limit, when the post-shock gas is hot
and almost fully dissociated, � ! 1, the density jump
and the normalized slope of the Hugoniot curve become

R � �d + 4T � 3 +
p

(�d + 4T � 3)2 + 2T
2T ; (24)

and

� � � 7M2
1 (R� 4)

2

5R2(8�d � 23)
; (25)

respectively, with �d > 23=8 in the conditions tested
here. At very high Mach numbers M1 �

p
�d, when

�d=T � 1, equation (24) simplifies to R � 4 in the first
approximation, whereas (25) yields very small and nega-
tive values of �. Remarkably, unlike R, M1 and M2,
the normalized inverse of the slope � is not bounded
by its asymptotic limits at low and high Mach num-
bers. The relevance of this property for the problem
of shock/turbulence interaction will be discussed in Sec-
tions III and IV.

The results mentioned above for � ! 1 indicate that
the post-shock gas increasingly resembles a monoatomic
calorically pefect gas (corresponding to an adiabatic coef-
ficient  = 5=3) at infinite Mach numbers, an effect that
can also be visualized in Fig. 2 as the Hugoniot curve
asymptotes the abscissa R�1 � 1=4. However, this limit
is of little practical relevance because it would require

FIG. 4. Distributions of (a) density jump R, (b) post-shock
Mach numberM2, and (c) pre-shock Mach numberM1 as a
function of the temperature jump T for Br = 106, �v = 10,
and �d = 100 (lines colored by the degree of dissociation; refer
to Fig. 3 for a colorbar). Dashed lines represent asymptotic
limits for a calorically perfect diatomic gas (�v ! 1 and
�! 0), and for a highly dissociated gas (�! 1).

such exceedingly high temperatures that additional ef-
fects like electronic excitation, radiation, and ionization
would have to be included in the formulation, thereby
invalidating these considerations.

III. THE INTERACTION OF A HYPERSONIC SHOCK
WAVE WITH AN INCIDENT MONOCHROMATIC
VORTICITY WAVE

For small-amplitude velocity fluctuations and vanish-
ing turbulent Mach numbers, the free-stream turbulence
in the pre-shock gas can be represented as a linear
superposition of Kovaznay’s three-dimensional vorticity
modes, which are solutions of the incompressible Euler
equations59,75. This section addresses the interaction of
the shock with a single one of those vorticity modes.
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A. Laboratory, shock and post-shock reference frames

Three reference frames are used in the analysis.
Whereas the spanwise and transverse axes of all the
frames coincide, the streamwise axis differs depending on
whether the frames are attached to the laboratory (x),
the mean shock front (xs) or the mean absolute post-
shock gas motion (xc).
In the laboratory reference frame, the streamwise coor-
dinate is denoted byxand is attached to the bulk of the
pre-shock gas, which is at rest on average. In contrast, in
the shock reference frame, which corresponds to the one
visualized in Fig. 1, the streamwise coordinatexsmoves
at the mean shock velocityu1, and is therefore defined
by the relationxs=x− u1tin terms of the time co-
ordinatet. The integral formulation of the conservation
equations across the shock can be readily written in the
shock reference frame, as done in Sec. II. Whereas the
incident vorticity wave remains stationary in space in the
laboratory frame, it becomes a wave traveling at velocity
u1 toward the shock in the shock reference frame.
In the reference frame moving with the post-shock gas,
the streamwise coordinatexcmoves with the post-shock
mean absolute velocity u1 − u2, and is therefore de-
fined asxc=x−(u1 − u2)t. In this frame, the vor-
ticity and entropy fluctuations in the post-shock gas are
stationary in space, which facilitates the description of
the problem, as shown below.

B. Orientation and form of the incident vorticity wave

Anticipating that the pre-shock turbulence is isotropic,
there is no privileged direction of the wavenumber vector
k, and therefore the amplitude of the vorticity modes
depend exclusively onk= |k|. Similarly, because of
this isotropy, there is no preferred wavenumber-vector
orientation relative to the shock surface. In principle,
this would require the formulation of a three-dimensional
problem to describe the interaction. However, a simple
rotation of the reference frame can transform the prob-
lem into a two-dimensional one, as described below (see
also Ref.36,60,76).
For an incident wavenumber vector arbitrarily oriented
in space at latitude and longitude anglesθandϕ, respec-
tively, the reference frames described in Sec. III A can be
rotated counterclockwise aroundxby an angle equal to
the longitudinal inclination of the incident waveψ, as
indicated in Fig. 5. In this way, the interaction prob-
lem becomes two-dimensional, in that all variations with
respect tozare zero.
Using the aforementioned rotation, the wavenumber-
vector components in the streamwise and transverse di-
rections are

kx=kcosθ, ky=ksinθ, (26)

respectively, withkz=0by construction. Similarly, in
the laboratory reference frame, the vorticity vector of the
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FIG. 5. Simplification of a three-dimensional problem of a
shock interacting with an arbitrarily oriented vorticity wave
to a two-dimensional problem by rotating the reference frame
around the streamwise axis.

incident wave in the pre-shock gas can be expressed as

ω1=(δω1)e
i(kxx+kyy), (27)

with

δωx,1=−εkc2 sinθcosϕ, δωy,1=εkc2 cosθcosϕ,

δωz,1=−εkc2 sinϕ, (28)

being the vorticity amplitude in each direction. In this
formulation,c2 denotes the mean speed of sound in the
post-shock gas, andεis a dimensionless velocity fluctua-
tion amplitude, which is small in the linear theory,ε 1.
The vorticity of the incident wave engenders a fluctuation
velocity field in the pre-shock gas given by

v1=(δv1)e
i(kxx+kyy), (29)

whose amplitude is

δu1=εc2 sinθsinϕ, δv1=−εc2 cosθsinϕ,

δw1=εc2 cosϕ, (30)

in thex,y, andzdirections, respectively. Specifically,
thez-component of the fluctuation velocity vector is uni-
form alongz. This component will not be carried any
further in the analysis, since it is transmitted unaltered
through the shock because of the conservation of tangen-
tial momentum. Note also that (27) and (29) are related
by the definition of the vorticityω1=k×v1. Further-
more, the velocity field (29)-(30) is one that satisfies the
incompressibility relationk·v1=0. Lastly, implicit in
the definitions given above is that the incident vortic-
ity wave is inviscid, or equivalently, that the pre-shock
Reynolds number of the fluctuation,2π|v1|/(kν1), is in-
finitely large.
To illustrate the analysis, a particular form of the pre-

shock vorticity fluctuation corresponding to the inviscid
Taylor-Green vortex

ωz,1(x, y)=εuc2
k2

ky
cos (kxx) sin (kyy) (31)

is employed in the numerical results highlighted below,
withωx,1=ωy,1=0. The corresponding streamwise and
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transverse components of the velocity fluctuations in the
pre-shock gas are given by

u1 (x; y) = "uhc2i cos (kxx) cos (kyy) ; (32a)

v1 (x; y) = "uhc2i
�
kx
ky

�
sin (kxx) sin (kyy) ; (32b)

respectively. In this formulation, "u is the amplitude of
the pre-shock streamwise velocity fluctuations

"u = " sin � sin'; (33)

with �u � 1 in the linear theory.

C. Linearized formulation of the interaction problem

In this linear theory, the vorticity and the streamwise
and transverse velocity components in the post-shock gas
reference frame are expanded to first order in "u as

! = "ukyhc22i!; u = "uhc2iu; v = "uhc2iv; (34)

respectively, with !, u and v being the corresponding
dimensionless fluctuations. The post-shock pressure and
density can be similarly expressed as

P = hP2i+ "uh�2ihc2i2p; � = h�2i(1 + "u�); (35)

with p and � being the dimensionless fluctuations of pres-
sure and density, respectively. The brackets indicate
time-averaged quantities, which are given by the solu-
tion obtained in Sec. II. In this way, all fluctuations are
defined to have a zero time average.

Assuming that the Reynolds number of the post-shock
fluctuations is infinitely large, the expansions (34)-(35)
can be employed in writing the linearized Euler conser-
vation equations of mass, streamwise momentum, trans-
verse momentum, and energy as

@��

@�
+

@�u

@�xc
+
@�v

@�y
= 0; (36a)

@�u

@�
+

@�p

@�xc
= 0; (36b)

@�v

@�
+
@�p

@�y
= 0; (36c)

@�p

@�
=
@��

@�
; (36d)

in the reference frame moving with the post-shock gas. In
this notation, the space and time coordinates have been
nondimensionalized as

�xc = kyxc; �y = kyy; � = kyhc2it: (37)

The linearized Euler equations (36) can be combined
into a single, two-dimensional periodically-symmetric
wave equation

@2 �p

@�2
=
@2 �p

@�x2
c

+
@2 �p

@�y2
(38)

for the post-shock pressure fluctuations. Equation (38)
is integrated for � � 0 within the spatiotemporal do-
main bounded by the leading reflected sonic wave trav-
eling upstream, �xc = �� , and the shock front moving
downstream �xc =M2� , withM2 = hu2i=hc2i.

In the integration of (38), the boundary condition far
downstream of the shock is provided by the isolated-
shock assumption, whereby the effect of the acoustic
waves reaching the shock front from behind is neglected.
The boundary condition at the shock front is obtained
from the linearized Rankine-Hugoniot jump conditions
assuming that (a) the thickness of the thermochemical
non-equilibrium region `T is much smaller than the in-
verse of the transverse wavenumber k�1

y ; and (b) the
displacement of the shock �s = �s(y; t) from its mean,
flat shape (see Fig. 1) is much smaller than k�1

y . In
these limits, at any transverse coordinate �y, the Rayleigh-
Hugoniot jump conditions can be applied at the mean
shock front location �xc = M2� , and can be linearized
about the mean thermochemical-equilibrium post-shock
gas state P, R, T , M2 and � calculated in Sec. II,
thereby yielding

@ ��s
@�

=
R (1� �)

2M2 (R� 1)
�ps��u1; (39a)

�us =
1 + �

2M2
�ps + �u1; (39b)

�vs = �v1�M2 (R� 1)
@ ��s
@�y

; (39c)

��s =
�

M2
2

�ps: (39d)

In (39) ��s = ky�s="u is the dimensionless shock displace-
ment, whereas �ps, ��s, �us and �vs are, respectively the
dimensionless fluctuations of pressure, density, stream-
wise velocity and transverse velocity immediately down-
stream of the shock front, where thermochemical equilib-
rium is reached in the limit ky`T � 1. In these relations,
�u1 = u1=("uhc2i) and �v1 = v1=("uhc2i) are the normal-
ized components of the pre-shock velocity field (29) en-
gendered by the incident wave described in Sec. III B.
Note that, at the turning point of the Hugoniot curve
(� = 0), the compression of the gas exerted by the shock
is isochoric in the near field, and therefore leads to van-
ishing density fluctuations immediately downstream of
the shock, as prescribed by the linearized jump condi-
tion (39d).

The flow is periodic in the transverse direction �y. As
a result, the terms involving partial derivatives with re-
spect to �y in (36a), (36c), (38), and (39c) can be eas-
ily calculated from the transverse functional form of
the post-shock flow variables given the incident vorticity
wave (31). In particular, it can be shown that the fluc-
tuations �p, �u, and ��s are proportional to cos(�y), whereas
�v is proportional to sin(�y). These prefactors are hence-
forth omitted in the analysis, but should be brought back
when reconstructing the full solution from the dimension-
less fluctuations.
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The initial conditions required to solve (38) assume
that the shock is initially flat, ��s = �vs = 0 at � = 0. Cor-
respondingly, the initial values of the fluctuations of pres-
sure and streamwise velocity immediately downstream
of the shock must satisfy the relation �us + �ps = 0 at
� = 0, as prescribed by the first acoustic wave travel-
ing upstream xc = �� . This gives a pressure fluctuation
�ps = �2M2=(1 + � + 2M2) immediately downstream of
the shock front at � = 0.

The linearized problem (38), along with its boundary
and initial conditions provided above, describe the fluc-
tuations in the post-shock gas in the LIA framework.
Remarkably, this problem can be integrated using the
mean post-shock flow obtained from the analytical for-
mulation provided in Sec. II, as done in the remainder of
this paper, or by considering a mean post-shock flow ob-
tained numerically with more sophisticated thermochem-
istry. For instance, instead of the formulation presented
in Sec. II, a one-dimensional chemical equilibrium code
like CEA (see Fig. 2 and Sec. II C) could be used to cal-
culate numerically the mean post-shock conditions in-
corporating (a) different models for the variations of the
specific heats such as the NASA polynomials65, which
include both vibrational and electronic excitation, and
(b) additional chemical effects such as ionization. This
can be understood by noticing that (38), along with its
boundary and initial conditions, depend only on the fol-
lowing dimensionless parameters: the mean density jump
R, the mean post-shock Mach number M2, and the in-
verse of the slope of the Hugoniot curve �, all of which
can be computed numerically solving a one-dimensional
shock wave subject to arbitrary thermochemistry.

D. Far-field and long-time asymptotic analysis

At long times t� (kyhc2i)�1, the solution to the wave
equation (38), subject to the boundary conditions de-
scribed in Sec. III C, yields the pressure fluctuations

�ps =

(
�l1 cos(!�) + �l2 sin(!�) if � � 1

�s cos(!�) if � � 1
(40)

behind the shock. In this formulation, ! = �
p

1�M2
2

is the dimensionless frequency, where � is a frequency
parameter defined as

� =
M2Rp
1�M2

2

�
kx
ky

�
; (41)

with kx=ky = 1=j tan �j. Cases with � � 1 cor-
respond to sufficiently small streamwise wavenumbers,
kx � ky(

p
1�M2

2)=(M2R), whereas the opposite (suf-
ficiently large streamwise wavenumbers) holds for � � 1.
The corresponding amplitudes of the pressure wave (40)

are

�l1 = � (1�R�1)(�b�
2 � �c)

�2(1� �2) + (�b�2 � �c)2

�
�2 � RM2

2

1�M2
2

�
;

(42a)

�l2 =
(1�R�1)�

p
1� �2

�2(1� �2) + (�b�2 � �c)2

�
�2 � RM2

2

1�M2
2

�
; (42b)

�s = � (1�R�1)

�
p
�2 � 1 + �b�2 � �c

�
�2 � RM2

2

1�M2
2

�
; (42c)

where �b and �c are auxiliary factors defined as

�b =
1 + �

2M2
; �c =

RM2

1�M2
2

�
1� �

2

�
: (43)

To describe the far-field post-shock gas, it is conve-
nient to split the fluctuations of velocity, pressure and
density into their acoustic (a), vortical (r) and entropic
(e) components as

�u( �xc; �) = �ua(�xc; �) + �ur(�xc); (44a)
�v(�xc; �) = �va(�xc; �) + �vr(�xc); (44b)
�p(�xc; �) = �pa(�xc; �); (44c)
��(�xc; �) = ��a(�xc; �) + ��e(�xc): (44d)

The acoustic pressure wave emerging from (38) is of
the form �pa � e�i(!a���a�x��y), where !a and �a are
the dimensionless acoustic frequency and longitudinal
wavenumber reduced with c2ky and ky, respectively,
which are related as

!2
a = �2

a + 1: (45)

In the shock reference frame �x = M2� , the oscillation
frequency at shock front, !, is related to the post-shock
Mach number as ! = !a�M2�a. Upon substituting this
relation into (45), the expressions

�a =
M2! �

p
!2 � 1 +M2

2

1�M2
2

; (46a)

!a =
! �M2

p
!2 � 1 +M2

2

1�M2
2

; (46b)

are obtained. In (46), the solution corresponding to
the positive sign in front of the square root must be
excluded since it represents nonphysical acoustic waves
whose amplitude increases exponentially with distance
downstream of the shock when ! < (1�M2

2)1=2.
Different forms of the solution arise depending on the

value of the dimensionless frequency !. At frequencies
! < (1 �M2

2)1=2, or equivalently � < 1, the amplitude
of the acoustic pressure decreases exponentially with dis-
tance downstream of the shock. On the other hand, for
! > (1�M2

2)1=2, or � > 1, the acoustic pressure becomes
a constant-amplitude wave,

�p(�xc; �) = �s cos (!a� � �a�xc); (47)
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which corresponds to a downstream-traveling sound wave
for �a < 0 (or ! < 1), and to an upstream-traveling
sound wave for �a > 0 (! > 1), both cases being refer-
enced to the post-shock gas reference frame. In this case,
the acoustic modes of the density, temperature, and ve-
locities are

��a(�xc; �) = �s cos (!a� � �a�xc); (48a)
�Ta(�xc; �) = �a cos (!a� � �a�xc); (48b)
�ua(�xc; �) = Ua cos (!a� � �a�xc); (48c)
�va(�xc; �) = Va sin (!a� � �a�xc); (48d)

respectively, where �T = (T�hT2i)=("uhT2i) is the dimen-
sionless post-shock temperature fluctuation.

The amplitudes of the acoustic modes of the stream-
wise and transverse velocity fluctuations in (48) are
proportional to the amplitude of the acoustic pressure,
Ua=�s = �a=!a and Va=�s = 1=!a, as prescribed by
second and third equations in (36). Similarly, the ampli-
tude of the acoustic mode of the post-shock temperature
fluctuations can be expressed relative to �s as

�a=�s =

2(1 + �)� �R (1� 2�evib + 2�d=T )

5 + �+ 2(1� �)�e2
vibe��v=T + �T (1� 2�evib + 2�d=T )

;

(49)

with �R, �T and �evib being defined in (17) and (18), and
(16), respectively. Note that (49) simplifies to �a=�s �
 � 1 in both the calorically perfect diatomic gas limit
(�! 0 and �v !1, for which  ! 7=5) and in the fully
dissociated gas limit (�! 1, for which  ! 5=3).

The entropic mode of the density fluctuations is deter-
mined by the linearized Rankine-Hugoniot jump condi-
tion (39d) after substracting the acoustic mode

��e(�xc) =
�

M2
2

�ps(� = �xc=M2)� ��a(�xc; � = �xc=M2) (50)

to give

��e(�xc � 1) =

(
�l1 cos(�e�xc) + �l2 sin(�e�xc) if � � 1

�s cos(�e�xc) if � � 1

(51)
in the asymptotic far field. In (51), �e = Rkx=ky is
a dimensionless wavenumber, and �j = (�M�2

2 � 1)�j

is a fluctuation amplitude that depends on � through
the pressure amplitudes �l1, �l2 and �s defined in (42).
Since the pre-shock gas contains only vortical velocity
fluctuations, all entropic modes are generated at the
shock. The entropic density fluctuations ��e are related
to the entropic temperature fluctuations

�Te(�xc � 1) = �1 + �+ �R
1 + �+ �T

��e(�xc); (52)

and both ��e and �Te induce entropic fluctuations in the de-
gree of dissociation, as shown in (8). As a result, the ther-
mochemical equilibrium state in the post-shock gas fluc-
tuates depending on the local shock curvature. Specifi-
cally, there exist fluctuations of the concentrations of the

chemical species A and A2 in the post-shock gas that are
in phase with the entropic modes of density and tem-
perature fluctuations. The normalized fluctuation of the
degree of dissociation is

��(�xc � 1) =
�� h�i
"u

= �R��e(�xc) + �T �Te(�xc)

=
(�R � �T )(1 + �)

1 + �+ �T
��e(�xc): (53)

In a similar manner, the vorticity fluctuations ! de-
fined in (34) can be expressed in terms of � as

!(�xc � 1) =

(

l cos(�r�xc + �r) if � � 1


s cos(�r�xc) if � � 1
(54)

where, as found in the entropic perturbation field, the
dimensionless rotational wavenumber is simply given by
the compressed upstream wavenumber ratio �r = �e =
Rkx=ky. The amplitudes are


l =
p

(
1 + 
2�l1)2 + (
2�l2)2; (55a)

s = 
1 + 
2�s; (55b)

where 
1 = R(1 + k2
x=k

2
y) quantifies the amplification

of the preshock vorticity as a direct result of the shock
compression and 
2 = (R � 1)(1 � �)=(2M2) measures
the vorticity production by the discontinuity front rip-
pling. The corresponding phase for � < 1 is given by
tan�r = 
2�l2=(
1 + 
2�l1), which is different to that
associated to entropic fluctuations tan�e = �l2=�l1.

Figure 6 shows the value of j
j2 as a function of the
shock strength M1 for six arbitrary values of the fre-
quency parameter �. Three of them pertain to the long-
wavelength regime � < 1 (
 = 
l) and the other three
to the short-wavelength regime � > 1 (
 = 
s). It is
found that the shape of the curve qualitatively changes
depending on the wavelength regime. For instance, when
compared to interactions with frequency � < 1, cases for
� > 1 render curves with wider peaks and whose location
corresponds to lower Mach numbers.

The streamwise and transverse components of the vor-
tical mode of the velocity read

�ur(�xc � 1) = Ur cos(�r�xc + �r); (56a)
�vr(�xc � 1) = Vr sin(�r�xc + �r); (56b)

where the phase angle is �r = 0 for � > 1. The ampli-
tudes are proportional to the vorticity fluctuations as

Ur =
1

1 + �2
r


 =
M2

2

M2
2 + (1�M2

2) �2

; (57a)

Vr =
�r

1 + �2
r


 =
�M2

p
1�M2

2

M2
2 + (1�M2

2) �2

; (57b)

where 
 depends on frequency, as shown in (55) and
Fig. 6.
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FIG. 6. Square of the vorticity amplitude j
j2 as a function
of the pre-shock Mach number M1 for Br = 106, �v = 10,
�d = 100 and six different values of the frequency parameter:
� = 0:6, 0:7, 0:8, 1:1, 1:5 and 2.

IV. THE INTERACTION OF A HYPERSONIC SHOCK
WAVE WITH WEAK ISOTROPIC TURBULENCE

The weak isotropic turbulence in the pre-shock gas
can be represented by a linear superposition of inci-
dent vorticity waves whose amplitudes " vary with the
wavenumber in accord with an isotropic energy spec-
trum E(k) = "2(k). The root mean square (rms) of the
velocity and vorticity fluctuations in the pre-shock gas
can be calculated by invoking the isotropy assumption,
which states that the probability the incident wave has
of having orientation angles ranging from � to � + d�,
and from ' to '+ d', is proportional to the solid angle
sin �d�d'=(4�). This assumption provides the expres-
sions

hu021i
"2hc2i2

=
1

3
;

hv021i
"2hc2i2

=
1

6
;
hw021i
"2hc2i2

=
1

2
(58)

for the pre-shock rms velocity fluctuations, and

h!02x;1i
"2k2hc2i2

=
1

3
;

h!02y;1i
"2k2hc2i2

=
1

6
;

h!02z;1i
"2k2hc2i2

=
1

2
(59)

for the pre-shock vorticity fluctuations. In this section, a
linear analysis is performed to calculate the variations of
the rms of the velocity and vorticity fluctuations across
the shock.

A. Amplifications of turbulent kinetic energy, turbulence
intensity, and turbulent Reynolds number across the shock

The analysis begins by expressing pre-shock compo-
nents of the velocity fluctuation modulus as

ju02j = c2"j�ua + �urj sin � sin'; (60a)
jv02j = c2"j�va + �vrj sin � sin'; (60b)
jw02j = jw01j; (60c)

where the acoustic and vortical modes of the dimension-
less velocity fluctuations in the far field are given in (48)
and (56). The relations between the modes of the stream-
wise and transverse velocity fluctuations are provided by
the irrotationality condition �va = �a�ua for the acoustic
mode, and by the solenoidal condition ky�vr = Rkx�ur for
the vortical mode.

The TKE amplification factor across the shock wave is
defined as

K =
hu022i+ hv022i+ hw022i
hu021i+ hv021i+ hw021i

=
hu022i+ hv022i
"2hc2i2

+
1

2

=
1

2

"Z �=2

0

�
�u2 + �v2

�
sin3 �d� + 1

#
; (61)

where use of (58) has been made. Furthermore, K can
also be decomposed linearly into acoustic and vortical
modes as K = Ka +Kr, with

Ka =
1

3

Z 1
1

�
U2
a + V2

a

�
P(�)d� =

1

3

Z 1
1

�2
sP(�)d�;

Kr =
1

2
+

1

3

Z 1
0

�
U2
r + V2

r

�
P(�)d�: (62)

The entropic mode does not contain any kinetic energy,
since entropy fluctuations are decoupled from velocity
fluctuations in the inviscid linear limit.

In equation (62), P (�) is a probability-density distri-
bution given by

P(�) =
3

2

M4
2R4

p
1�M2

2

[M2
2R2 + �2 (1�M2

2)]
5=2

; (63)

which satisfies the normalization
R1

0
P(�)d� = 1. In ad-

dition, the velocity amplitudes Ua, Ur, Va and Vr are
obtained using the long-time far-field asymptotic expres-
sions (48) and (57). The lower integration limit of Ka is
� = 1 since the acoustic mode decays exponentially with
distance downstream of the shock in the long-wave regime
� < 1. However, the integral 1=3

R 1

0
(�2

l1 + �2
l1)P(�)d�

needs to be added to Ka when evaluating the solution in
the near field �xs � �xc � 1.

Figure 7 shows the TKE amplification factor K, given
by the sum of the acoustic and vortical contributions in
(62), as a function of the pre-shock Mach number M1.
Similarly to the results observed in Sec. II, the onset
of vibrational excitation at M1 � 3 begins to produce
small departures of K from the thermochemically frozen
result corresponding to a diatomic calorically perfect gas.
These departures are exacerbated as the degree of disso-
ciation increases, and become significant even at small
values of � of order 1% at M1 � 5, where K signifi-
cantly departs from the curve predicted in the thermo-
chemically frozen limit corresponding to a diatomic calor-
ically perfect gas. The latter was shown to plateau at
K = 1:78 for M1 � 1 in early work37,60, whereas the
present study indicates that such plateau does not exist
when thermochemical effects at hypersonic Mach num-
bers are accounted for.
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FIG. 7. TKE amplification factor K as a function of the
pre-shock Mach number M1 for Br = 106, �v = 10, and
�d = 100 (line colored by the degree of dissociation). Dashed
lines correspond to limit behavior of K calculated using the
asymptotic expressions (23) and (24) for small and high Mach
numbers, respectively.

The resulting curve of K in Fig. 7 is non-monotonic
and contains two peaks in the hypersonic range of Mach
numbers. This behavior cannot be guessed by a simple
inspection of the post-shock density and Mach number
shown in Fig. 4. Instead, the non-monotonicity of K is
related to the strong dependence of the enstrophy am-
plification on the wavenumber. Specifically, the vortical
mode of the velocity fluctuation, which is shown below to
be the most energetic, is proportional to the post-shock
vorticity amplitude 
 given in (55), which peaks at differ-
ent pre-shock Mach numbers depending on the frequency
parameter �, as shown in Fig. 6.

The first peak of K reaches a value of 2:1 and occurs at
M1 � 6, where � � 5%. In contrast, the second peak at
K � 2:9 nearly doubles the value predicted in the ther-
mochemically frozen limit, and occurs at a much higher
Mach numberM1 � 19 where dissociation is almost com-
plete. At very large Mach numbersM1 > 40, in the fully
dissociated regime, K asymptotes to the value K � 1:69
predicted for monatomic calorically perfect gases. How-
ever, as discussed in Sec. IID, this limit has to be inter-
preted with caution because additional thermochemical
effects not included here, such as ionization and electronic
excitation, play an important role at those extreme Mach
numbers.

Most of the TKE produced across the shock belongs to
transverse velocity fluctuations of the vortical mode. To
see this, consider the decomposition of the TKE amplifi-
cation factor into longitudinal (KL) and transverse (KT)

FIG. 8. (a) Acoustic and (b) vortical modes of the streamwise
(KL) and transverse (KT) components of the TKE amplifica-
tion factor as a function of the pre-shock Mach number M1

for Br = 106, �v = 10, and �d = 100 (lines colored by the
degree of dissociation; refer to Fig. 7 for a colorbar). Dashed
lines correspond to limit behavior of KL and KT calculated
using the asymptotic expressions (23) and (24) for small and
high Mach numbers, respectively.

components as

K =
1

3
(KL + 2KT); (64)

with

KL =

Z 1
1

U2
aP(�)d�| {z }
Ka

L
kinetic energy of the

longitudinal acoustic mode

+

Z 1
0

U2
rP(�)d�| {z }
Kr

L
kinetic energy of the

longitudinal vortical mode

; (65a)

KT =
1

2

Z 1
1

V2
aP(�)d�| {z }

Ka
T

kinetic energy of the
transverse acoustic mode

+
3

4
+

1

2

Z 1
0

V2
rP(�)d�| {z }

Kr
T

kinetic energy of the
transverse vortical mode

: (65b)

The contribution of the acoustic mode to KL and KT

yields negligible TKE over the entire range of Mach num-
bers, as shown in Fig. 8(a). In contrast, the contribution
of the vortical mode is significant. Whereas the longi-
tudinal TKE of the vortical mode Kr

L dominates over
the transverse one Kr

T at supersonic Mach numbers, it
plunges below Kr

T at hypersonic Mach numbers around
the turning point of the Hugoniot curve. The value of
Kr

T peaks at M1 � 19 with Kr
T � 3:8, as observed in

Fig. 8(b). This peak is responsible for the peak in K
observed Fig. 7 at the same Mach number, thereby indi-
cating that most the TKE there is stored in vortical gas
motion in the transverse direction.
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dissociated gas

in vibrational and chemical

equilibrium

vibrationally and chemically

frozen gas

vibrationally and chemically

frozen gas
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frozen gas

FIG. 9. Schematics of the mechanism of TKE amplification
for (a) thermochemically frozen (i.e., diatomic calorically per-
fect) post-shock gas, and (b) thermochemically equilibrated
post-shock gas, both panels simulating the same pre-shock
conditions. The flow is from right to left. The magnitude of
the shock displacement and velocity perturbations have been
exaggerated for illustration purposes.

The mechanism whereby high-temperature thermo-
chemistry augments the TKE across the shock in this
LIA framework is explained by the linearized Rankine-
Hugoniot jump condition (39c) and is schematically
shown in Fig. 9. In particular, the conservation of the
tangential velocity across the wrinkled shock requires

vt= u1 cosϑ+v1sinϑ

= u2 cosϑ+v2sinϑ, (66)

whereϑ=π/2+arctan(∂ξs/∂y)is a local shock incidence
angle whose departures fromπ/2are of order u, since
kyξs=O(u)in this linear theory. The streamwise veloc-
ity fluctuationsu1andu2have been neglected in writing
(66), since their multiplication bycosβis smaller by a
factor of orderurelative to the other terms. Equation

FIG. 10. Amplification of (a) turbulence intensity and (b)
turbulent Reynolds number across the shock as a function of
the pre-shock Mach numberM1forBr= 10

6,βv= 10, and
βd = 100(lines colored by the degree of dissociation; refer
to Fig. 7 for a colorbar). The dashed lines correspond to
the values ofI2/I1andRe,2/Re,1calculated assuming that
the post-shock gas is thermochemically frozen (i.e., diatomic
calorically perfect).

(66) yields the transverse post-shock velocity fluctuation

v2=v1−(u1 − u2)
∂ξs
∂y
, (67)

which represents the dimensional counterpart of the lin-
earized Rankine-Hugoniot jump condition (39c). In
equation (67),∂ξs/∂y < 0in both configurations
sketched in Fig. 9. Note that (67) holds independently
of whether the gas is thermochemically frozen or equi-
librated. However, the thermochemistry influences (67)
by flattening the shock front (i.e., by decreasing∂ξs/∂y)
while strongly decreasing the mean post-shock velocity
u2 = u1/R, with the latter effect prevailing over the
former. As a result,v2and its associated kinetic energy
KT are larger relative to those observed in a diatomic
calorically perfect gas.
The TKE amplification, along with the aforementioned

decrease in the mean post-shock velocityu2 caused by
the thermochemical effects, also lead to a strong am-
plification of the turbulence intensity across the shock.
Specifically, the ratio of post- to pre-shock turbulence
intensities

I2
I1
=
u,2/u2
u,1/u1

=K1/2R (68)

is found to peak at the turning point of the Hugoniot
curve (α 0.7,T 9,M1 13, andR 12) with
a valueI2/I1 19, as shown in Fig. 10(a). This is in
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contrast to the maximum value I2/I1 � 8 predicted by
the theory of calorically perfect gases.

Although the theory presented above is formulated in
the inviscid limit, the ratio of post- to pre-shock turbulent
Reynolds numbers

Re�,2
Re�,1

=
u�,2�2/ν2
u�,1�1/ν1

=
K1/2

T 0.7

√
2R2 + 1

3
(69)

is a finite quantity that can be calculated. In the last
term of (69), use has been made of the fact that the only
wavenumber that is distorted through the shock is the
longitudinal one, which changes from kx in the pre-shock
fluctuations to kxR in the post-shock ones. Additionally,
the molecular viscosity is assumed to vary with temper-
ature raised to the power of 0.7.

Remarkably, the vortical post-shock fluctuations
downstream of the hypersonic shock are not only much
more intense than those upstream, but they also have
a higher turbulent Reynolds number Re�,2 > Re�,1, as
shown in Fig. 10(b). Similarly to the turbulence intensi-
ties, the maximum ratio of turbulent Reynolds numbers
across the shock is reached at the turning point of the
Hugoniot curve (α � 0.7, T � 9, M1 � 13, and R � 12)
with a value of Re�,2/Re�,1 � 5. In contrast, the the-
ory of calorically perfect gases predicts an attenuation
of the turbulent Reynolds number at those conditions.
When thermochemical effects are accounted for, the am-
plification of the turbulent Reynolds number lasts until
M1 � 20, beyond which the increase in post-shock tem-
perature and the decrease in post-shock density make
Re�,2/Re�,1 to plummet below unity.

In summary, the increase of transverse velocity fluctu-
ations of the vortical mode across the shock is responsi-
ble for the TKE amplification in this linear theory. In
addition, the results indicate that the TKE is more am-
plified when dissociation and vibrational excitation are
accounted for at high Mach numbers. in the conditions
tested here, the post-shock fluctuations resulting at hy-
personic Mach numbers can be -at most- 19 times more
intense and can have -at most- a 5-times larger turbulent
Reynolds number than the pre-shock fluctuations.

B. Amplifications of anisotropy, enstrophy, and variances of
density and degree of dissociation across the shock

The weak isotropic turbulence in the pre-shock gas be-
comes anisotropic as it traverses the shock wave. An
anisotropy factor that quantifies this change can be de-
fined as60

Ψ =
〈v̄2〉+ 〈w̄2〉 − 2〈ū2〉
〈v̄2〉+ 〈w̄2〉+ 2〈ū2〉 = 1− 2KL

KL +KT
, (70)

with −1 ≤ Ψ ≤ 1. The cases Ψ = −1 and 1 repre-
sent anisotropic turbulent flows dominated by longitu-
dinal and transverse velocity fluctuations, respectively.

FIG. 11. Anisotropy factor Ψ as a function of the pre-shock
Mach number M1 for Br = 106, βv = 10, and βd = 100 (line
colored by the degree of dissociation). Dashed lines corre-
spond to limit behavior of Ψ calculated using the asymptotic
expressions (23) and (24) for small and high Mach numbers,
respectively.

In contrast, Ψ = 0 corresponds to an isotropic turbu-
lent flow, KT = KL = K. Figure 11 shows that dis-
sociation and vibrational excitation dissociation lead to
larger anisotropy factors in the post-shock gas compared
to the thermochemically frozen (diatomic calorically per-
fect) case in the relevant range of hypersonic Mach num-
bers up to the fully-dissociated gas limit.

The vortical motion downstream of the shock is quan-
tified by the enstrophy amplification factor

W =
〈ω′2

x,2〉+ 〈ω′2
y,2〉+ 〈ω′2

z,2〉
〈ω′2

x,1〉+ 〈ω′2
y,1〉+ 〈ω′2

z,1〉
=

1

3
+

2

3
W⊥, (71)

where use of (59) and of the invariance of the normal
vorticity across the shock has been made. In (71), W⊥
is the enstrophy amplification factor in the transverse
direction

W⊥ =
1

3
+

2

3

〈ω′2
y,2〉+ 〈ω′2

z,2〉
〈ω′2

y,1〉+ 〈ω′2
z,1〉

=
R+ 3Wz

4
, (72)

with

Wz =
〈ω′2

z,2〉
〈ω′2

z,1〉
=

∫ ∞

0

Ω2 R2M2
2 P(ζ)

R2M2
2 + (1−M2

2)ζ
2
dζ (73)

being the amplification factor of the rms of the
z−component of the vorticity. Equation (73) includes
the asymptotic amplitudes defined in (55) and the rela-
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FIG. 12. Enstrophy W as a function of the pre-shock Mach
number M1 for Br = 106, �v = 10, and �d = 100 (line col-
ored by the degree of dissociation). Dashed lines correspond
to limit behavior of W calculated using the asymptotic ex-
pressions (23) and (24) for small and high Mach numbers,
respectively.

tion

sin2 �(�)P(�) =
3

2

M6
2R6

p
1�M2

2

[M2
2R2 + �2 (1�M2

2)]
7=2

: (74)

The enstrophy amplification factor W is provided in
Fig. 12 as a function of the pre-shock Mach number. Sim-
ilarly to Fig. 7 for K, the curve of W displays two max-
ima, but the differences with respect to the thermochem-
ically frozen case are much larger for W . The first peak
of W is dominated by the increase of short-wavelength
vorticity, as shown in Fig. 6, and it represents an ampli-
fication of nearly four times the enstrophy predicted by
the theory of calorically perfect gases.

Whereas the pre-shock density is uniform because of
the vortical character of the incident modes, the density
in the post-shock gas fluctuates due to both acoustic and
entropic modes generated by the shock wrinkles. To in-
vestigate these fluctuations, consider the normalized den-
sity variance

h�022i
h�2

2i
= (Ga +Ge)

Z 1
0

E(k)k2dk; (75)

which depends on the integral of the energy spectrum E
over the entire wavenumber space. The prefactors Ga
and Ge represent density-variance components induced
by acoustic and entropic modes, respectively, and are

FIG. 13. Entropic prefactors of (a) the post-shock density
variance and (b) the post-shock degree of dissociation as a
function of the pre-shock Mach number M1 for Br = 106,
�v = 10, and �d = 100 (lines colored by the degree of dis-
sociation; refer to Fig. 12 for a colorbar). Dashed lines cor-
respond to limit behavior of Ge and Ae calculated using the
asymptotic expressions (23) and (24) for small and high Mach
numbers, respectively.

given by

Ga = Ka; (76a)

Ge =
�
�M�2

2 � 1
�2 Z 1

0

�
�2
l1 + �2

l2

�
P(�)d�+

+
�
�M�2

2 � 1
�2 Z 1

1

�2
sP(�)d�; (76b)

where use of (51) has been made. Figure 13(a) shows
that, while the vortical fluctuations across the shock are
increased by dissociation, the density variance induced
by the entropic mode is small forM1 . 10 but increases
sharply thereafter up to M1 � 19, where it achieves a
maximum value. As observed by comparing Figs. 8(b)
and 13(a), the acoustic prefactor Ga is found to be neg-
ligible compared to the entropic one Ge.

Whereas the Rankine-Hugoniot jump condition (39d)
evaluated at the turning point of the Hugoniot curve
� = 0 indicates that the density fluctuations immediately
downstream of the shock are zero, the entropic prefactor
in Fig. 13(a) at M1 ' 13 (where � vanishes) leads to a
non-zero density variance. The two results can be rec-
onciled by noticing that the formulation in (76) and the
approximation Ge � Ga are applicable only to the far
field downstream of the shock. In contrast, the acoustic
mode needs to be retained near the shock. Specifically,
the post-shock density fluctuations in the near field van-
ish as � ! 0 because of a destructive interference be-
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tween the acoustic and entropic modes. In contrast, the
entropic mode dominates in the far field and leads to
non-zero post-shock density fluctuations.

The entropic component of the density variance engen-
ders a variance of the degree of dissociation given by

h�02i = Ae
Z 1

0

E(k)k2dk; (77)

where

Ae =
(�R � �T )2(1 + �)2

(1 + �+ �T )2
Ge (78)

is the corresponding prefactor. Figure 13 (b) shows that
Ae attains a maximum value atM1 � 15, and becomes
negligible both in absence of dissociation and when dis-
sociation is complete.

V. CONCLUSIONS

The interaction between a hypersonic shock wave and
weak isotropic turbulence has been been addressed in
this work using LIA. Contrary to previous studies of
shock/turbulence interactions focused on calorically per-
fect gases, the results provided here account for endother-
mic thermochemical effects of vibrational excitation and
gas dissociation enabled by the high post-shock tempera-
tures. Important approximations used in this theory are
that the thickness of the thermochemical non-equilibrium
region trailing the shock front is small compared to the
characteristic size of the shock wrinkles, and that all fluc-
tuations in the flow are small relative to the mean.

The results presented here indicate that the thermo-
chemical effects act markedly on the solution in a number
of important ways with respect to the results predicted
by the theory of calorically perfect gases:

(a) Significant departures from calorically-perfect-gas
behavior can be observed in the solution even at
modest degrees of dissociation of 1%, corresponding
to Mach 5 and therefore to the beginning of the
hypersonic range. This is because the associated
bond-dissociation energies of typical molecules are
large. As a result, the chemical enthalpy invested in
dissociation in the post-shock gas can easily surpass
the pre-shock thermal energy and become of the
same order as the pre-shock kinetic energy.

(b) A turning point in the Hugoniot curve is observed
at approximately Mach 13 and 70% degree of dis-
sociation that leads to a significant increase of the
mean post-shock density of approximately 12 times
its pre-shock value, which represents nearly twice
the maximum density jump predicted by the theory
of calorically perfect gases.

(c) The aerothermodynamic behavior of the post-shock
gas changes fundamentally around the turning

point in the Hugoniot curve. As the Mach number
increases above 13, positive fluctuations of stream-
wise velocity engender positive pressure fluctua-
tions in the post-shock gas that are accompanied by
negative density fluctuations. In this way, the local
post-shock density and pressure are anticorrelated,
although the shock remains stable to corrugations
in all operating conditions tested here.

(d) The amplification of TKE is larger than that ob-
served in calorically perfect gases. Whereas the
streamwise velocity fluctuations across the shock
are decreased, the transverse ones are greatly in-
creased (i.e., much more than in a diatomic calor-
ically perfect gas). This phenomenon can be ex-
plained in the linear theory by using the conserva-
tion of tangential momentum, which elicits larger
transverse velocity fluctuations as a result of the
increase in post-shock density that occurs due to
dissociation and vibrational excitation. This ef-
fect also leads to a much more significant increase
of anisotropy and enstrophy across the shock than
that observed in a diatomic calorically perfect gas.

(e) Most of the amplified content of TKE is stored
in vortical velocity fluctuation modes in the post-
shock gas. The trend of the TKE amplification
factor with the pre-shock Mach number is non-
monotonic and involves two maximum values, one
equal to 2.1 at Mach 6 (corresponding to a degree
of dissociation of 5%), and a second one equal to
2.9 at Mach 19 (corresponding to a degree of dis-
sociation larger than 99%).

(f) The turbulence intensity and turbulent Reynolds
number increase across the shock and reach maxi-
mum amplification factors of 19 and 5, respectively,
both occurring at the turning point of the Hugo-
niot curve (Mach 13 and degree of dissociation of
70%). The maximum amplification factor of the
turbulence intensity is more than twice the one at-
tainable in a diatomic calorically perfect gas. The
amplification of the turbulent Reynolds number ob-
served here is in contrast with the attenuation pre-
dicted by the theory of calorically perfect gases at
hypersonic Mach numbers.

(g) The density variance in the post-shock gas is almost
exclusively generated by entropic modes radiated
by the shock wrinkles, and nearly doubles the value
predicted for calorically perfect gases. Similarly,
the shock front generates entropic fluctuations of
the concentration of atomic species that might be
relevant for applications in supersonic combustion
if the post-shock gas is going to be employed to
oxidize the fuel14,77.

The LIA predictions for the overall TKE amplifica-
tion factor in calorically perfect gases have been pre-
viously found to be in fair agreement with numerical
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simulations36,38,39,49 and experiments33. However, the
way LIA predicts the amplified TKE to be partitioned in
the streamwise and transverse directions has not been as
successful. In particular, computational and experimen-
tal studies at supersonic Mach numbers have often re-
ported Reynolds stress tensors with dominant streamwise
contributions, this being an effect typically attributed
to convective non-linearities and molecular transport49.
Whether these discrepancies subside or persist at hyper-
sonic Mach numbers is an open question of research.

The theoretical results provided here indicate ampli-
fied levels of post-shock fluctuation energies that could
perhaps be unexpected at first, because of the high post-
shock temperatures prevailing at hypersonic Mach num-
bers. These findings would greatly benefit from compar-
isons with simulations and experiments in future studies.

This theory could be extended to include additional
phenomena such as: (a) non-equilibrium vibrational re-
laxation and finite-rate dissociation16,78–80; (b) multi-
component gas mixtures (particularly O2 and N2 for
shock/turbulence interactions in air); (c) compressibil-
ity and anisotropy in the pre-shock turbulence; (d) the
effects of walls downstream of the shock to address
modal resonance in high-temperature inviscid shock lay-
ers around hypersonic projectiles; and (e) electronic ex-
citation, radiation, and ionization in the post-shock gas
for hypersonic flows at orbital stagnation enthalpies.
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